aboutsummaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authorMatej Kosik2015-11-02 16:38:52 +0100
committerHugo Herbelin2015-12-10 09:35:11 +0100
commit6ce8d9b4b99afca623408e7052d5e6aaf72bb4ab (patch)
tree96fc55c5f8a1afd5e642ce52c665daf288d8a160 /doc
parentf37c09e169b11ed683aeb9147c402b9980a6706c (diff)
TYPOGRAPHY
Diffstat (limited to 'doc')
-rw-r--r--doc/refman/RefMan-cic.tex24
1 files changed, 12 insertions, 12 deletions
diff --git a/doc/refman/RefMan-cic.tex b/doc/refman/RefMan-cic.tex
index 8f50c1c323..eaf400f263 100644
--- a/doc/refman/RefMan-cic.tex
+++ b/doc/refman/RefMan-cic.tex
@@ -158,7 +158,7 @@ More precisely the language of the {\em Calculus of Inductive
U''}. As $U$ depends on $x$, one says that $\forall~x:T,U$ is a
{\em dependent product}. If $x$ does not occur in $U$ then
$\forall~x:T,U$ reads as {\it ``if T then U''}. A {\em non dependent
- product} can be written: $T \rightarrow U$.
+ product} can be written: $T \ra U$.
\item if $x$ is a variable and $T$, $u$ are terms then $\lb x:T \mto u$
($\kw{fun}~x:T~ {\tt =>}~ u$ in \Coq{} concrete syntax) is a term. This is a
notation for the $\lambda$-abstraction of
@@ -587,7 +587,7 @@ then:
\right]}
\def\GammaC{\left[\begin{array}{r \colon l}
\nO & \nat\\
- \nS & \nat\rightarrow\nat
+ \nS & \nat\ra\nat
\end{array}
\right]}
\begin{itemize}
@@ -615,12 +615,12 @@ Inductive list (A : Type) : Type :=
\end{coq_example*}
then:
\def\GammaI{\left[\begin{array}{r \colon l}
- \List & \Type\rightarrow\Type
+ \List & \Type\ra\Type
\end{array}
\right]}
\def\GammaC{\left[\begin{array}{r \colon l}
\Nil & \forall~A\!:\!\Type,~\List~A\\
- \cons & \forall~A\!:\!\Type,~A\rightarrow\List~A\rightarrow\List~A
+ \cons & \forall~A\!:\!\Type,~A\ra\List~A\ra\List~A
\end{array}
\right]}
\begin{itemize}
@@ -649,13 +649,13 @@ Inductive Length (A : Type) : list A -> nat -> Prop :=
\end{coq_example*}
then:
\def\GammaI{\left[\begin{array}{r \colon l}
- \Length & \forall~A\!:\!\Type,~\List~A\rightarrow\nat\rightarrow\Prop
+ \Length & \forall~A\!:\!\Type,~\List~A\ra\nat\ra\Prop
\end{array}
\right]}
\def\GammaC{\left[\begin{array}{r c l}
\LNil & \hskip.1em:\hskip.1em & \forall~A\!:\!\Type,~\Length~A~(\Nil~A)~\nO\\
\LCons & \hskip.1em:\hskip.1em & \forall~A\!:\!\Type,~\forall~a\!:\!A,~\forall~l\!:\!\List~A,~\forall~n\!:\!\nat,\\
- & & \Length~A~l~n\rightarrow \Length~A~(\cons~A~a~l)~(\nS~n)
+ & & \Length~A~l~n\ra \Length~A~(\cons~A~a~l)~(\nS~n)
\end{array}
\right]}
\begin{itemize}
@@ -690,9 +690,9 @@ then:
\end{array}
\right]}
\def\GammaC{\left[\begin{array}{r \colon l}
- \node & \forest\rightarrow\tree\\
+ \node & \forest\ra\tree\\
\emptyf & \forest\\
- \consf & \tree\rightarrow\forest\rightarrow\forest
+ \consf & \tree\ra\forest\ra\forest
\end{array}
\right]}
\begin{itemize}
@@ -733,14 +733,14 @@ $\begin{array}{@{} l}
\prefix\nat : \Set\\
\prefix\nO : \nat\\
\prefix\nS : \nat\ra\nat\\
- \prefix\List : \Type\rightarrow\Type\\
+ \prefix\List : \Type\ra\Type\\
\prefix\Nil : \forall~A\!:\!\Type,~\List~A\\
- \prefix\cons : \forall~A\!:\!\Type,~A\rightarrow\List~A\rightarrow\List~A\\
- \prefix\Length : \forall~A\!:\!\Type,~\List~A\rightarrow\nat\rightarrow\Prop\\
+ \prefix\cons : \forall~A\!:\!\Type,~A\ra\List~A\ra\List~A\\
+ \prefix\Length : \forall~A\!:\!\Type,~\List~A\ra\nat\ra\Prop\\
\prefix\LNil : \forall~A\!:\!\Type,~\Length~A~(\Nil~A)~\nO\\
\begin{array}{l l}
\hskip-.5em\prefix\LCons :\hskip-.5em & \forall~A\!:\!\Type,~\forall~a\!:\!A,~\forall~l\!:\!\List~A,~\forall~n\!:\!\nat,\\
- & \Length~A~l~n\rightarrow \Length~A~(\cons~A~a~l)~(\nS~n)
+ & \Length~A~l~n\ra \Length~A~(\cons~A~a~l)~(\nS~n)
\end{array}
\end{array}$