diff options
| author | Matej Kosik | 2015-11-02 16:38:52 +0100 |
|---|---|---|
| committer | Hugo Herbelin | 2015-12-10 09:35:11 +0100 |
| commit | 6ce8d9b4b99afca623408e7052d5e6aaf72bb4ab (patch) | |
| tree | 96fc55c5f8a1afd5e642ce52c665daf288d8a160 /doc | |
| parent | f37c09e169b11ed683aeb9147c402b9980a6706c (diff) | |
TYPOGRAPHY
Diffstat (limited to 'doc')
| -rw-r--r-- | doc/refman/RefMan-cic.tex | 24 |
1 files changed, 12 insertions, 12 deletions
diff --git a/doc/refman/RefMan-cic.tex b/doc/refman/RefMan-cic.tex index 8f50c1c323..eaf400f263 100644 --- a/doc/refman/RefMan-cic.tex +++ b/doc/refman/RefMan-cic.tex @@ -158,7 +158,7 @@ More precisely the language of the {\em Calculus of Inductive U''}. As $U$ depends on $x$, one says that $\forall~x:T,U$ is a {\em dependent product}. If $x$ does not occur in $U$ then $\forall~x:T,U$ reads as {\it ``if T then U''}. A {\em non dependent - product} can be written: $T \rightarrow U$. + product} can be written: $T \ra U$. \item if $x$ is a variable and $T$, $u$ are terms then $\lb x:T \mto u$ ($\kw{fun}~x:T~ {\tt =>}~ u$ in \Coq{} concrete syntax) is a term. This is a notation for the $\lambda$-abstraction of @@ -587,7 +587,7 @@ then: \right]} \def\GammaC{\left[\begin{array}{r \colon l} \nO & \nat\\ - \nS & \nat\rightarrow\nat + \nS & \nat\ra\nat \end{array} \right]} \begin{itemize} @@ -615,12 +615,12 @@ Inductive list (A : Type) : Type := \end{coq_example*} then: \def\GammaI{\left[\begin{array}{r \colon l} - \List & \Type\rightarrow\Type + \List & \Type\ra\Type \end{array} \right]} \def\GammaC{\left[\begin{array}{r \colon l} \Nil & \forall~A\!:\!\Type,~\List~A\\ - \cons & \forall~A\!:\!\Type,~A\rightarrow\List~A\rightarrow\List~A + \cons & \forall~A\!:\!\Type,~A\ra\List~A\ra\List~A \end{array} \right]} \begin{itemize} @@ -649,13 +649,13 @@ Inductive Length (A : Type) : list A -> nat -> Prop := \end{coq_example*} then: \def\GammaI{\left[\begin{array}{r \colon l} - \Length & \forall~A\!:\!\Type,~\List~A\rightarrow\nat\rightarrow\Prop + \Length & \forall~A\!:\!\Type,~\List~A\ra\nat\ra\Prop \end{array} \right]} \def\GammaC{\left[\begin{array}{r c l} \LNil & \hskip.1em:\hskip.1em & \forall~A\!:\!\Type,~\Length~A~(\Nil~A)~\nO\\ \LCons & \hskip.1em:\hskip.1em & \forall~A\!:\!\Type,~\forall~a\!:\!A,~\forall~l\!:\!\List~A,~\forall~n\!:\!\nat,\\ - & & \Length~A~l~n\rightarrow \Length~A~(\cons~A~a~l)~(\nS~n) + & & \Length~A~l~n\ra \Length~A~(\cons~A~a~l)~(\nS~n) \end{array} \right]} \begin{itemize} @@ -690,9 +690,9 @@ then: \end{array} \right]} \def\GammaC{\left[\begin{array}{r \colon l} - \node & \forest\rightarrow\tree\\ + \node & \forest\ra\tree\\ \emptyf & \forest\\ - \consf & \tree\rightarrow\forest\rightarrow\forest + \consf & \tree\ra\forest\ra\forest \end{array} \right]} \begin{itemize} @@ -733,14 +733,14 @@ $\begin{array}{@{} l} \prefix\nat : \Set\\ \prefix\nO : \nat\\ \prefix\nS : \nat\ra\nat\\ - \prefix\List : \Type\rightarrow\Type\\ + \prefix\List : \Type\ra\Type\\ \prefix\Nil : \forall~A\!:\!\Type,~\List~A\\ - \prefix\cons : \forall~A\!:\!\Type,~A\rightarrow\List~A\rightarrow\List~A\\ - \prefix\Length : \forall~A\!:\!\Type,~\List~A\rightarrow\nat\rightarrow\Prop\\ + \prefix\cons : \forall~A\!:\!\Type,~A\ra\List~A\ra\List~A\\ + \prefix\Length : \forall~A\!:\!\Type,~\List~A\ra\nat\ra\Prop\\ \prefix\LNil : \forall~A\!:\!\Type,~\Length~A~(\Nil~A)~\nO\\ \begin{array}{l l} \hskip-.5em\prefix\LCons :\hskip-.5em & \forall~A\!:\!\Type,~\forall~a\!:\!A,~\forall~l\!:\!\List~A,~\forall~n\!:\!\nat,\\ - & \Length~A~l~n\rightarrow \Length~A~(\cons~A~a~l)~(\nS~n) + & \Length~A~l~n\ra \Length~A~(\cons~A~a~l)~(\nS~n) \end{array} \end{array}$ |
