aboutsummaryrefslogtreecommitdiff
path: root/doc/sphinx
diff options
context:
space:
mode:
authorGuillaume Melquiond2018-03-22 15:43:49 +0100
committerGitHub2018-03-22 15:43:49 +0100
commitd275cbc0980ecca00c6a8e0ed172df67eef3d8f4 (patch)
tree4b9383a071db90e64abb5d9f1c533d39e159eb57 /doc/sphinx
parenta5aa8da2dcaa62b0abb5e2ce2d466894c5b82b65 (diff)
parent788e841e51bbe081be522b1ae50e630ea1c3df99 (diff)
Merge pull request #7040 from maximedenes/sphinx-doc-chapter-22
Sphinx doc chapter 22
Diffstat (limited to 'doc/sphinx')
-rw-r--r--doc/sphinx/addendum/micromega.rst252
-rw-r--r--doc/sphinx/index.rst1
2 files changed, 253 insertions, 0 deletions
diff --git a/doc/sphinx/addendum/micromega.rst b/doc/sphinx/addendum/micromega.rst
new file mode 100644
index 0000000000..e850587c8a
--- /dev/null
+++ b/doc/sphinx/addendum/micromega.rst
@@ -0,0 +1,252 @@
+.. _ micromega:
+
+Micromega: tactics for solving arithmetic goals over ordered rings
+==================================================================
+
+:Authors: Frédéric Besson and Evgeny Makarov
+
+Short description of the tactics
+--------------------------------
+
+The Psatz module (``Require Import Psatz.``) gives access to several
+tactics for solving arithmetic goals over :math:`\mathbb{Z}`, :math:`\mathbb{Q}`, and :math:`\mathbb{R}` [#]_.
+It also possible to get the tactics for integers by a ``Require Import Lia``,
+rationals ``Require Import Lqa`` and reals ``Require Import Lra``.
+
++ ``lia`` is a decision procedure for linear integer arithmetic (see Section :ref:`lia <lia>`);
++ ``nia`` is an incomplete proof procedure for integer non-linear
+ arithmetic (see Section :ref:`nia <nia>`);
++ ``lra`` is a decision procedure for linear (real or rational) arithmetic
+ (see Section :ref:`lra <lra>`);
++ ``nra`` is an incomplete proof procedure for non-linear (real or
+ rational) arithmetic (see Section :ref:`nra <nra>`);
++ ``psatz D n`` where ``D`` is :math:`\mathbb{Z}` or :math:`\mathbb{Q}` or :math:`\mathbb{R}`, and
+ ``n`` is an optional integer limiting the proof search depth
+ is an incomplete proof procedure for non-linear arithmetic.
+ It is based on John Harrison’s HOL Light
+ driver to the external prover `csdp` [#]_. Note that the `csdp` driver is
+ generating a *proof cache* which makes it possible to rerun scripts
+ even without `csdp` (see Section :ref:`psatz <psatz>`).
+
+The tactics solve propositional formulas parameterized by atomic
+arithmetic expressions interpreted over a domain :math:`D` ∈ {ℤ, ℚ, ℝ}.
+The syntax of the formulas is the following:
+
+ .. productionlist:: `F`
+ F : A ∣ P ∣ True ∣ False ∣ F 1 ∧ F 2 ∣ F 1 ∨ F 2 ∣ F 1 ↔ F 2 ∣ F 1 → F 2 ∣ ¬ F
+ A : p 1 = p 2 ∣ p 1 > p 2 ∣ p 1 < p 2 ∣ p 1 ≥ p 2 ∣ p 1 ≤ p 2
+ p : c ∣ x ∣ −p ∣ p 1 − p 2 ∣ p 1 + p 2 ∣ p 1 × p 2 ∣ p ^ n
+
+where :math:`c` is a numeric constant, :math:`x \in D` is a numeric variable, the
+operators :math:`−, +, ×` are respectively subtraction, addition, and product;
+:math:`p ^ n` is exponentiation by a constant :math:`n`, :math:`P` is an arbitrary proposition.
+For :math:`\mathbb{Q}`, equality is not Leibniz equality = but the equality of
+rationals ==.
+
+For :math:`\mathbb{Z}` (resp. :math:`\mathbb{Q}`), :math:`c` ranges over integer constants (resp. rational
+constants). For :math:`\mathbb{R}`, the tactic recognizes as real constants the
+following expressions:
+
+::
+
+ c ::= R0 | R1 | Rmul(c,c) | Rplus(c,c) | Rminus(c,c) | IZR z | IQR q | Rdiv(c,c) | Rinv c
+
+where :math:`z` is a constant in :math:`\mathbb{Z}` and :math:`q` is a constant in :math:`\mathbb{Q}`.
+This includes integer constants written using the decimal notation, *i.e.*, c%R.
+
+
+*Positivstellensatz* refutations
+--------------------------------
+
+The name `psatz` is an abbreviation for *positivstellensatz* – literally
+"positivity theorem" – which generalizes Hilbert’s *nullstellensatz*. It
+relies on the notion of Cone. Given a (finite) set of polynomials :math:`S`,
+:math:`\mathit{Cone}(S)` is inductively defined as the smallest set of polynomials
+closed under the following rules:
+
+:math:`\begin{array}{l}
+\dfrac{p \in S}{p \in \mathit{Cone}(S)} \quad
+\dfrac{}{p^2 \in \mathit{Cone}(S)} \quad
+\dfrac{p_1 \in \mathit{Cone}(S) \quad p_2 \in \mathit{Cone}(S) \quad
+\Join \in \{+,*\}} {p_1 \Join p_2 \in \mathit{Cone}(S)}\\
+\end{array}`
+
+The following theorem provides a proof principle for checking that a
+set of polynomial inequalities does not have solutions [#]_.
+
+.. _psatz_thm:
+
+**Theorem (Psatz)**. Let :math:`S` be a set of polynomials.
+If :math:`-1` belongs to :math:`\mathit{Cone}(S)`, then the conjunction
+:math:`\bigwedge_{p \in S} p\ge 0` is unsatisfiable.
+A proof based on this theorem is called a *positivstellensatz*
+refutation. The tactics work as follows. Formulas are normalized into
+conjunctive normal form :math:`\bigwedge_i C_i` where :math:`C_i` has the
+general form :math:`(\bigwedge_{j\in S_i} p_j \Join 0) \to \mathit{False})` and
+:math:`\Join \in \{>,\ge,=\}` for :math:`D\in \{\mathbb{Q},\mathbb{R}\}` and
+:math:`\Join \in \{\ge, =\}` for :math:`\mathbb{Z}`.
+
+For each conjunct :math:`C_i`, the tactic calls a oracle which searches for
+:math:`-1` within the cone. Upon success, the oracle returns a *cone
+expression* that is normalized by the ring tactic (see :ref:`theringandfieldtacticfamilies`)
+and checked to be :math:`-1`.
+
+.. _lra:
+
+`lra`: a decision procedure for linear real and rational arithmetic
+-------------------------------------------------------------------
+
+The `lra` tactic is searching for *linear* refutations using Fourier
+elimination [#]_. As a result, this tactic explores a subset of the *Cone*
+defined as
+
+ :math:`\mathit{LinCone}(S) =\left\{ \left. \sum_{p \in S} \alpha_p \times p~\right|~\alpha_p \mbox{ are positive constants} \right\}`
+
+The deductive power of `lra` is the combined deductive power of
+`ring_simplify` and `fourier`. There is also an overlap with the field
+tactic *e.g.*, :math:`x = 10 * x / 10` is solved by `lra`.
+
+
+.. _lia:
+
+`lia`: a tactic for linear integer arithmetic
+---------------------------------------------
+
+The tactic lia offers an alternative to the omega and romega tactic
+(see :ref:`omega`). Roughly speaking, the deductive power of lia is
+the combined deductive power of `ring_simplify` and `omega`. However, it
+solves linear goals that `omega` and `romega` do not solve, such as the
+following so-called *omega nightmare* :cite:`TheOmegaPaper`.
+
+.. coqtop:: in
+
+ Goal forall x y,
+ 27 <= 11 * x + 13 * y <= 45 ->
+ -10 <= 7 * x - 9 * y <= 4 -> False.
+
+The estimation of the relative efficiency of `lia` *vs* `omega` and `romega`
+is under evaluation.
+
+High level view of `lia`
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Over :math:`\mathbb{R}`, *positivstellensatz* refutations are a complete proof
+principle [#]_. However, this is not the case over :math:`\mathbb{Z}`. Actually,
+*positivstellensatz* refutations are not even sufficient to decide
+linear *integer* arithmetic. The canonical example is :math:`2 * x = 1 -> \mathtt{False}`
+which is a theorem of :math:`\mathbb{Z}` but not a theorem of :math:`{\mathbb{R}}`. To remedy this
+weakness, the `lia` tactic is using recursively a combination of:
+
++ linear *positivstellensatz* refutations;
++ cutting plane proofs;
++ case split.
+
+Cutting plane proofs
+~~~~~~~~~~~~~~~~~~~~~~
+
+are a way to take into account the discreteness of :math:`\mathbb{Z}` by rounding up
+(rational) constants up-to the closest integer.
+
+.. _ceil_thm:
+
+**Theorem**. Let :math:`p` be an integer and :math:`c` a rational constant. Then
+
+ :math:`p \ge c \rightarrow p \ge \lceil{c}\rceil`
+
+For instance, from 2 x = 1 we can deduce
+
++ :math:`x \ge 1/2` whose cut plane is :math:`x \ge \lceil{1/2}\rceil = 1`;
++ :math:`x \le 1/2` whose cut plane is :math:`x \le \lfloor{1/2}\rfloor = 0`.
+
+By combining these two facts (in normal form) :math:`x − 1 \ge 0` and
+:math:`-x \ge 0`, we conclude by exhibiting a *positivstellensatz* refutation:
+:math:`−1 \equiv x−1 + −x \in \mathit{Cone}({x−1,x})`.
+
+Cutting plane proofs and linear *positivstellensatz* refutations are a
+complete proof principle for integer linear arithmetic.
+
+Case split
+~~~~~~~~~~~
+
+enumerates over the possible values of an expression.
+
+.. _casesplit_thm:
+
+**Theorem**. Let :math:`p` be an integer and :math:`c_1` and :math:`c_2`
+integer constants. Then:
+
+ :math:`c_1 \le p \le c_2 \Rightarrow \bigvee_{x \in [c_1,c_2]} p = x`
+
+Our current oracle tries to find an expression :math:`e` with a small range
+:math:`[c_1,c_2]`. We generate :math:`c_2 − c_1` subgoals which contexts are enriched
+with an equation :math:`e = i` for :math:`i \in [c_1,c_2]` and recursively search for
+a proof.
+
+.. _nra:
+
+`nra`: a proof procedure for non-linear arithmetic
+--------------------------------------------------
+
+The `nra` tactic is an *experimental* proof procedure for non-linear
+arithmetic. The tactic performs a limited amount of non-linear
+reasoning before running the linear prover of `lra`. This pre-processing
+does the following:
+
+
++ If the context contains an arithmetic expression of the form
+ :math:`e[x^2]` where :math:`x` is a monomial, the context is enriched with
+ :math:`x^2 \ge 0`;
++ For all pairs of hypotheses :math:`e_1 \ge 0`, :math:`e_2 \ge 0`, the context is
+ enriched with :math:`e_1 \times e_2 \ge 0`.
+
+After this pre-processing, the linear prover of `lra` searches for a
+proof by abstracting monomials by variables.
+
+.. _nia:
+
+`nia`: a proof procedure for non-linear integer arithmetic
+----------------------------------------------------------
+
+The `nia` tactic is a proof procedure for non-linear integer arithmetic.
+It performs a pre-processing similar to `nra`. The obtained goal is
+solved using the linear integer prover `lia`.
+
+.. _psatz:
+
+`psatz`: a proof procedure for non-linear arithmetic
+----------------------------------------------------
+
+The `psatz` tactic explores the :math:`\mathit{Cone}` by increasing degrees – hence the
+depth parameter :math:`n`. In theory, such a proof search is complete – if the
+goal is provable the search eventually stops. Unfortunately, the
+external oracle is using numeric (approximate) optimization techniques
+that might miss a refutation.
+
+To illustrate the working of the tactic, consider we wish to prove the
+following Coq goal:
+
+.. coqtop:: all
+
+ Require Import ZArith Psatz.
+ Open Scope Z_scope.
+ Goal forall x, -x^2 >= 0 -> x - 1 >= 0 -> False.
+ intro x.
+ psatz Z 2.
+
+As shown, such a goal is solved by ``intro x. psatz Z 2.``. The oracle returns the
+cone expression :math:`2 \times (x-1) + (\mathbf{x-1}) \times (\mathbf{x−1}) + -x^2`
+(polynomial hypotheses are printed in bold). By construction, this expression
+belongs to :math:`\mathit{Cone}({−x^2,x -1})`. Moreover, by running `ring` we
+obtain :math:`-1`. By Theorem :ref:`Psatz <psatz_thm>`, the goal is valid.
+
+.. [#] Support for `nat` and :math:`\mathbb{N}` is obtained by pre-processing the goal with
+ the `zify` tactic.
+.. [#] Sources and binaries can be found at https://projects.coin-or.org/Csdp
+.. [#] Variants deal with equalities and strict inequalities.
+.. [#] More efficient linear programming techniques could equally be employed.
+.. [#] In practice, the oracle might fail to produce such a refutation.
+
+.. comment in original TeX:
+.. %% \paragraph{The {\tt sos} tactic} -- where {\tt sos} stands for \emph{sum of squares} -- tries to prove that a
+.. %% single polynomial $p$ is positive by expressing it as a sum of squares \emph{i.e.,} $\sum_{i\in S} p_i^2$.
+.. %% This amounts to searching for $p$ in the cone without generators \emph{i.e.}, $Cone(\{\})$.
diff --git a/doc/sphinx/index.rst b/doc/sphinx/index.rst
index d42e732177..c5d4936b18 100644
--- a/doc/sphinx/index.rst
+++ b/doc/sphinx/index.rst
@@ -46,6 +46,7 @@ Table of contents
addendum/extended-pattern-matching
addendum/canonical-structures
addendum/omega
+ addendum/micromega
.. toctree::
:caption: Reference