diff options
| author | Théo Zimmermann | 2019-02-13 11:49:29 +0100 |
|---|---|---|
| committer | Théo Zimmermann | 2019-02-13 11:49:29 +0100 |
| commit | 90e2fa3344cff478a2ab23c0dbbb5eab5b4668e4 (patch) | |
| tree | 7ad437364d4998e8a95ee8c0d1a1827099bd8084 /doc/sphinx/proof-engine | |
| parent | 0b0fa735dc0da5660a870053a5a5f6fd1c5e22d1 (diff) | |
| parent | d638148dc3e0220ac99761cf9f2efa8284882c41 (diff) | |
Merge PR #9553: Sphinx various fixing of failing commands
Ack-by: Zimmi48
Diffstat (limited to 'doc/sphinx/proof-engine')
| -rw-r--r-- | doc/sphinx/proof-engine/ltac.rst | 8 | ||||
| -rw-r--r-- | doc/sphinx/proof-engine/ssreflect-proof-language.rst | 192 | ||||
| -rw-r--r-- | doc/sphinx/proof-engine/tactics.rst | 2 |
3 files changed, 106 insertions, 96 deletions
diff --git a/doc/sphinx/proof-engine/ltac.rst b/doc/sphinx/proof-engine/ltac.rst index 442077616f..4f486a777d 100644 --- a/doc/sphinx/proof-engine/ltac.rst +++ b/doc/sphinx/proof-engine/ltac.rst @@ -859,6 +859,10 @@ We can carry out pattern matching on terms with: Goal True. f (3+4). + .. coqtop:: none + + Abort. + .. _ltac-match-goal: Pattern matching on goals @@ -1026,6 +1030,10 @@ Counting the goals all:pr_numgoals. + .. coqtop:: none + + Abort. + Testing boolean expressions ~~~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/doc/sphinx/proof-engine/ssreflect-proof-language.rst b/doc/sphinx/proof-engine/ssreflect-proof-language.rst index 483dbd311d..ec97377128 100644 --- a/doc/sphinx/proof-engine/ssreflect-proof-language.rst +++ b/doc/sphinx/proof-engine/ssreflect-proof-language.rst @@ -233,7 +233,7 @@ construct differs from the latter in that .. coqtop:: reset all - Definition f u := let (m, n) := u in m + n. + Fail Definition f u := let (m, n) := u in m + n. The ``let:`` construct is just (more legible) notation for the primitive @@ -413,7 +413,7 @@ each point of use, e.g., the above definition can be written: Variable all : (T -> bool) -> list T -> bool. - .. coqtop:: all undo + .. coqtop:: all Prenex Implicits null. Definition all_null (s : list T) := all null s. @@ -436,7 +436,7 @@ The syntax of the new declaration is a ``Set Printing All`` command). All |SSR| library files thus start with the incantation - .. coqtop:: all undo + .. coqdoc:: Set Implicit Arguments. Unset Strict Implicit. @@ -505,7 +505,7 @@ Definitions |SSR| pose tactic supports *open syntax*: the body of the definition does not need surrounding parentheses. For instance: -.. coqtop:: in +.. coqdoc:: pose t := x + y. @@ -534,7 +534,7 @@ The |SSR| pose tactic also supports (co)fixpoints, by providing the local counterpart of the ``Fixpoint f := …`` and ``CoFixpoint f := …`` constructs. For instance, the following tactic: -.. coqtop:: in +.. coqdoc:: pose fix f (x y : nat) {struct x} : nat := if x is S p then S (f p y) else 0. @@ -544,7 +544,7 @@ on natural numbers. Similarly, local cofixpoints can be defined by a tactic of the form: -.. coqtop:: in +.. coqdoc:: pose cofix f (arg : T) := … . @@ -553,26 +553,26 @@ offers a smooth way of defining local abstractions. The type of “holes” is guessed by type inference, and the holes are abstracted. For instance the tactic: -.. coqtop:: in +.. coqdoc:: pose f := _ + 1. is shorthand for: -.. coqtop:: in +.. coqdoc:: pose f n := n + 1. When the local definition of a function involves both arguments and holes, hole abstractions appear first. For instance, the tactic: -.. coqtop:: in +.. coqdoc:: pose f x := x + _. is shorthand for: -.. coqtop:: in +.. coqdoc:: pose f n x := x + n. @@ -580,13 +580,13 @@ The interaction of the pose tactic with the interpretation of implicit arguments results in a powerful and concise syntax for local definitions involving dependent types. For instance, the tactic: -.. coqtop:: in +.. coqdoc:: pose f x y := (x, y). adds to the context the local definition: -.. coqtop:: in +.. coqdoc:: pose f (Tx Ty : Type) (x : Tx) (y : Ty) := (x, y). @@ -766,7 +766,7 @@ Moreover: .. coqtop:: all Lemma test : forall x : nat, x + 1 = 0. - set t := _ + 1. + Fail set t := _ + 1. + Typeclass inference should fill in any residual hole, but matching should never assign a value to a global existential variable. @@ -889,7 +889,7 @@ only one occurrence of the selected term. .. coqtop:: all Lemma test x y z : (x + y) + (z + z) = z + z. - set a := {2}(_ + _). + Fail set a := {2}(_ + _). .. _basic_localization_ssr: @@ -1079,7 +1079,7 @@ constants to the goal. Because they are tacticals, ``:`` and ``=>`` can be combined, as in -.. coqtop:: in +.. coqdoc:: move: m le_n_m => p le_n_p. @@ -1139,7 +1139,7 @@ Basic tactics like apply and elim can also be used without the ’:’ tactical: for example we can directly start a proof of ``subnK`` by induction on the top variable ``m`` with -.. coqtop:: in +.. coqdoc:: elim=> [|m IHm] n le_n. @@ -1150,7 +1150,7 @@ explained in terms of the goal stack:: is basically equivalent to -.. coqtop:: in +.. coqdoc:: move: a H1 H2; tactic => a H1 H2. @@ -1163,13 +1163,13 @@ temporary abbreviation to hide the statement of the goal from The general form of the in tactical can be used directly with the ``move``, ``case`` and ``elim`` tactics, so that one can write -.. coqtop:: in +.. coqdoc:: elim: n => [|n IHn] in m le_n_m *. instead of -.. coqtop:: in +.. coqdoc:: elim: n m le_n_m => [|n IHn] m le_n_m. @@ -1398,7 +1398,7 @@ Switches affect the discharging of a :token:`d_item` as follows: For example, the tactic: -.. coqtop:: in +.. coqdoc:: move: n {2}n (refl_equal n). @@ -1409,7 +1409,7 @@ For example, the tactic: Therefore this tactic changes any goal ``G`` into -.. coqtop:: +.. coqdoc:: forall n n0 : nat, n = n0 -> G. @@ -1843,7 +1843,7 @@ Generation of equations The generation of named equations option stores the definition of a new constant as an equation. The tactic: -.. coqtop:: in +.. coqdoc:: move En: (size l) => n. @@ -1851,7 +1851,7 @@ where ``l`` is a list, replaces ``size l`` by ``n`` in the goal and adds the fact ``En : size l = n`` to the context. This is quite different from: -.. coqtop:: in +.. coqdoc:: pose n := (size l). @@ -1936,7 +1936,7 @@ be substituted. inferred looking at the type of the top assumption. This allows for the compact syntax: - .. coqtop:: in + .. coqdoc:: case: {2}_ / eqP. @@ -2112,7 +2112,7 @@ In the script provided as example in section :ref:`indentation_ssr`, the paragraph corresponding to each sub-case ends with a tactic line prefixed with a ``by``, like in: -.. coqtop:: in +.. coqdoc:: by apply/eqP; rewrite -dvdn1. @@ -2147,13 +2147,13 @@ A natural and common way of closing a goal is to apply a lemma which is the exact one needed for the goal to be solved. The defective form of the tactic: -.. coqtop:: in +.. coqdoc:: exact. is equivalent to: -.. coqtop:: in +.. coqdoc:: do [done | by move=> top; apply top]. @@ -2161,13 +2161,13 @@ where ``top`` is a fresh name assigned to the top assumption of the goal. This applied form is supported by the ``:`` discharge tactical, and the tactic: -.. coqtop:: in +.. coqdoc:: exact: MyLemma. is equivalent to: -.. coqtop:: in +.. coqdoc:: by apply: MyLemma. @@ -2179,19 +2179,19 @@ is equivalent to: follows the ``by`` keyword is considered to be a parenthesized block applied to the current goal. Hence for example if the tactic: - .. coqtop:: in + .. coqdoc:: by rewrite my_lemma1. succeeds, then the tactic: - .. coqtop:: in + .. coqdoc:: by rewrite my_lemma1; apply my_lemma2. usually fails since it is equivalent to: - .. coqtop:: in + .. coqdoc:: by (rewrite my_lemma1; apply my_lemma2). @@ -2247,7 +2247,7 @@ Finally, the tactics ``last`` and ``first`` combine with the branching syntax of Ltac: if the tactic generates n subgoals on a given goal, then the tactic -.. coqtop:: in +.. coqdoc:: tactic ; last k [ tactic1 |…| tacticm ] || tacticn. @@ -2262,7 +2262,6 @@ to the others. .. coqtop:: reset - Abort. From Coq Require Import ssreflect. Set Implicit Arguments. Unset Strict Implicit. @@ -2296,13 +2295,13 @@ Iteration A tactic of the form: -.. coqtop:: in +.. coqdoc:: do [ tactic 1 | … | tactic n ]. is equivalent to the standard Ltac expression: -.. coqtop:: in +.. coqdoc:: first [ tactic 1 | … | tactic n ]. @@ -2327,14 +2326,14 @@ Their meaning is: For instance, the tactic: -.. coqtop:: in +.. coqdoc:: tactic; do 1? rewrite mult_comm. rewrites at most one time the lemma ``mult_comm`` in all the subgoals generated by tactic , whereas the tactic: -.. coqtop:: in +.. coqdoc:: tactic; do 2! rewrite mult_comm. @@ -2518,7 +2517,7 @@ tactics of the form: which behave like: -.. coqtop:: in +.. coqdoc:: have: term ; first by tactic. move=> clear_switch i_item. @@ -2531,7 +2530,7 @@ to introduce the new assumption itself. The ``by`` feature is especially convenient when the proof script of the statement is very short, basically when it fits in one line like in: -.. coqtop:: in +.. coqdoc:: have H23 : 3 + 2 = 2 + 3 by rewrite addnC. @@ -2559,7 +2558,7 @@ the further use of the intermediate step. For instance, Thanks to the deferred execution of clears, the following idiom is also supported (assuming x occurs in the goal only): -.. coqtop:: in +.. coqdoc:: have {x} -> : x = y. @@ -2635,7 +2634,7 @@ Since the :token:`i_pattern` can be omitted, to avoid ambiguity, bound variables can be surrounded with parentheses even if no type is specified: -.. coqtop:: in +.. coqdoc:: have (x) : 2 * x = x + x by omega. @@ -2816,7 +2815,7 @@ The + but the optional clear item is still performed in the *second* branch. This means that the tactic: - .. coqtop:: in + .. coqdoc:: suff {H} H : forall x : nat, x >= 0. @@ -2888,7 +2887,7 @@ name of the local definition with the ``@`` character. In the second subgoal, the tactic: -.. coqtop:: in +.. coqdoc:: move=> clear_switch i_item. @@ -2995,10 +2994,13 @@ illustrated in the following example. the pattern ``id (addx x)``, that would produce the following first subgoal - .. coqtop:: none + .. coqtop:: none reset + + From Coq Require Import ssreflect Omega. + Set Implicit Arguments. + Unset Strict Implicit. + Unset Printing Implicit Defensive. - Abort All. - From Coq Require Import Omega. Section Test. Variable x : nat. Definition addx z := z + x. @@ -3153,7 +3155,7 @@ An :token:`r_item` can be: Definition f := fun x y => x + y. Lemma test x y : x + y = f y x. - rewrite -[f y]/(y + _). + Fail rewrite -[f y]/(y + _). but the following script succeeds @@ -3192,7 +3194,7 @@ tactics. In a rewrite tactic of the form: -.. coqtop:: in +.. coqdoc:: rewrite occ_switch [term1]term2. @@ -3235,7 +3237,7 @@ Performing rewrite and simplification operations in a single tactic enhances significantly the concision of scripts. For instance the tactic: -.. coqtop:: in +.. coqdoc:: rewrite /my_def {2}[f _]/= my_eq //=. @@ -3316,7 +3318,7 @@ the equality. .. coqtop:: all Lemma test (H : forall t u, t + u * 0 = t) x y : x + y * 4 + 2 * 0 = x + 2 * 0. - rewrite [x + _]H. + Fail rewrite [x + _]H. Indeed the left hand side of ``H`` does not match the redex identified by the pattern ``x + y * 4``. @@ -3498,7 +3500,7 @@ reasoning purposes. The library also provides one lemma per such operation, stating that both versions return the same values when applied to the same arguments: -.. coqtop:: in +.. coqdoc:: Lemma addE : add =2 addn. Lemma doubleE : double =1 doublen. @@ -3514,7 +3516,7 @@ hand side. In order to reason conveniently on expressions involving the efficient operations, we gather all these rules in the definition ``trecE``: -.. coqtop:: in +.. coqdoc:: Definition trecE := (addE, (doubleE, oddE), (mulE, add_mulE, (expE, mul_expE))). @@ -3572,14 +3574,14 @@ cases: + |SSR| never accepts to rewrite indeterminate patterns like: - .. coqtop:: in + .. coqdoc:: Lemma foo (x : unit) : x = tt. |SSR| will however accept the ηζ expansion of this rule: - .. coqtop:: in + .. coqdoc:: Lemma fubar (x : unit) : (let u := x in u) = tt. @@ -3617,7 +3619,7 @@ cases: .. coqtop:: all - rewrite H. + Fail rewrite H. Rewriting with ``H`` first requires unfolding the occurrences of ``f`` @@ -3729,7 +3731,7 @@ copy of any term t. However this copy is (on purpose) *not convertible* to t in the |Coq| system [#8]_. The job is done by the following construction: -.. coqtop:: in +.. coqdoc:: Lemma master_key : unit. Proof. exact tt. Qed. Definition locked A := let: tt := master_key in fun x : A => x. @@ -3793,14 +3795,14 @@ some functions by the partial evaluation switch ``/=``, unless this allowed the evaluation of a condition. This is possible thanks to another mechanism of term tagging, resting on the following *Notation*: -.. coqtop:: in +.. coqdoc:: Notation "'nosimpl' t" := (let: tt := tt in t). The term ``(nosimpl t)`` simplifies to ``t`` *except* in a definition. More precisely, given: -.. coqtop:: in +.. coqdoc:: Definition foo := (nosimpl bar). @@ -3816,7 +3818,7 @@ Note that ``nosimpl bar`` is simply notation for a term that reduces to The ``nosimpl`` trick only works if no reduction is apparent in ``t``; in particular, the declaration: - .. coqtop:: in + .. coqdoc:: Definition foo x := nosimpl (bar x). @@ -3824,14 +3826,14 @@ Note that ``nosimpl bar`` is simply notation for a term that reduces to function, and to use the following definition, which blocks the reduction as expected: - .. coqtop:: in + .. coqdoc:: Definition foo x := nosimpl bar x. A standard example making this technique shine is the case of arithmetic operations. We define for instance: -.. coqtop:: in +.. coqdoc:: Definition addn := nosimpl plus. @@ -3851,7 +3853,7 @@ Congruence Because of the way matching interferes with parameters of type families, the tactic: -.. coqtop:: in +.. coqdoc:: apply: my_congr_property. @@ -4047,7 +4049,7 @@ For a quick glance at what can be expressed with the last :token:`r_pattern` consider the goal ``a = b`` and the tactic -.. coqtop:: in +.. coqdoc:: rewrite [in X in _ = X]rule. @@ -4148,14 +4150,14 @@ patterns over simple terms, but to interpret a pattern with double parentheses as a simple term. For example, the following tactic would capture any occurrence of the term ``a in A``. -.. coqtop:: in +.. coqdoc:: set t := ((a in A)). Contextual patterns can also be used as arguments of the ``:`` tactical. For example: -.. coqtop:: in +.. coqdoc:: elim: n (n in _ = n) (refl_equal n). @@ -4246,7 +4248,7 @@ context shortcuts. The following example is taken from ``ssreflect.v`` where the ``LHS`` and ``RHS`` shortcuts are defined. -.. coqtop:: in +.. coqdoc:: Notation RHS := (X in _ = X)%pattern. Notation LHS := (X in X = _)%pattern. @@ -4254,7 +4256,7 @@ The following example is taken from ``ssreflect.v`` where the Shortcuts defined this way can be freely used in place of the trailing ``ident in term`` part of any contextual pattern. Some examples follow: -.. coqtop:: in +.. coqdoc:: set rhs := RHS. rewrite [in RHS]rule. @@ -4287,13 +4289,13 @@ The view syntax combined with the ``elim`` tactic specifies an elimination scheme to be used instead of the default, generated, one. Hence the |SSR| tactic: -.. coqtop:: in +.. coqdoc:: elim/V. is a synonym for: -.. coqtop:: in +.. coqdoc:: intro top; elim top using V; clear top. @@ -4303,13 +4305,13 @@ Since an elimination view supports the two bookkeeping tacticals of discharge and introduction (see section :ref:`basic_tactics_ssr`), the |SSR| tactic: -.. coqtop:: in +.. coqdoc:: elim/V: x => y. is a synonym for: -.. coqtop:: in +.. coqdoc:: elim x using V; clear x; intro y. @@ -4367,13 +4369,13 @@ command) can be combined with the type family switches described in section :ref:`type_families_ssr`. Consider an eliminator ``foo_ind`` of type: -.. coqtop:: in +.. coqdoc:: foo_ind : forall …, forall x : T, P p1 … pm. and consider the tactic: -.. coqtop:: in +.. coqdoc:: elim/foo_ind: e1 … / en. @@ -4424,7 +4426,7 @@ Here is an example of a regular, but nontrivial, eliminator. The following tactics are all valid and perform the same elimination on this goal. - .. coqtop:: in + .. coqdoc:: elim/plus_ind: z / (plus _ z). elim/plus_ind: {z}(plus _ z). @@ -4473,7 +4475,7 @@ Here is an example of a regular, but nontrivial, eliminator. .. coqtop:: all - elim/plus_ind: y / _. + Fail elim/plus_ind: y / _. triggers an error: in the conclusion of the ``plus_ind`` eliminator, the first argument of the predicate @@ -4494,7 +4496,7 @@ Here is an example of a truncated eliminator: Unset Printing Implicit Defensive. Section Test. - .. coqtop:: in + .. coqdoc:: Lemma test p n (n_gt0 : 0 < n) (pr_p : prime p) : p %| \prod_(i <- prime_decomp n | i \in prime_decomp n) i.1 ^ i.2 -> @@ -4505,7 +4507,7 @@ Here is an example of a truncated eliminator: where the type of the ``big_prop`` eliminator is - .. coqtop:: in + .. coqdoc:: big_prop: forall (R : Type) (Pb : R -> Type) (idx : R) (op1 : R -> R -> R), Pb idx -> @@ -4518,7 +4520,7 @@ Here is an example of a truncated eliminator: inferred one is used instead: ``big[_/_]_(i <- _ | _ i) _ i``, and after the introductions, the following goals are generated: - .. coqtop:: in + .. coqdoc:: subgoal 1 is: p %| 1 -> exists2 x : nat * nat, x \in prime_decomp n & p = x.1 @@ -4624,7 +4626,7 @@ equation name generation mechanism (see section :ref:`generation_of_equations_ss This view tactic performs: - .. coqtop:: in + .. coqdoc:: move=> HQ; case: {HQ}(Q2P HQ) => [HPa | HPb]. @@ -4661,14 +4663,14 @@ relevant for the current goal. the double implication into the expected simple implication. The last script is in fact equivalent to: - .. coqtop:: in + .. coqdoc:: Lemma test a b : P (a || b) -> True. move/(iffLR (PQequiv _ _)). where: - .. coqtop:: in + .. coqdoc:: Lemma iffLR P Q : (P <-> Q) -> P -> Q. @@ -4810,7 +4812,7 @@ decidable predicate to its boolean version. First, booleans are injected into propositions using the coercion mechanism: -.. coqtop:: in +.. coqdoc:: Coercion is_true (b : bool) := b = true. @@ -4827,7 +4829,7 @@ To get all the benefits of the boolean reflection, it is in fact convenient to introduce the following inductive predicate ``reflect`` to relate propositions and booleans: -.. coqtop:: in +.. coqdoc:: Inductive reflect (P: Prop): bool -> Type := | Reflect_true : P -> reflect P true @@ -4838,7 +4840,7 @@ logically equivalent propositions. For instance, the following lemma: -.. coqtop:: in +.. coqdoc:: Lemma andP: forall b1 b2, reflect (b1 /\ b2) (b1 && b2). @@ -4853,20 +4855,20 @@ to the case analysis of |Coq|’s inductive types. Since the equivalence predicate is defined in |Coq| as: -.. coqtop:: in +.. coqdoc:: Definition iff (A B:Prop) := (A -> B) /\ (B -> A). where ``/\`` is a notation for ``and``: -.. coqtop:: in +.. coqdoc:: Inductive and (A B:Prop) : Prop := conj : A -> B -> and A B. This make case analysis very different according to the way an equivalence property has been defined. -.. coqtop:: in +.. coqdoc:: Lemma andE (b1 b2 : bool) : (b1 /\ b2) <-> (b1 && b2). @@ -4950,13 +4952,13 @@ Specializing assumptions The |SSR| tactic: -.. coqtop:: in +.. coqdoc:: move/(_ term1 … termn). is equivalent to the tactic: -.. coqtop:: in +.. coqdoc:: intro top; generalize (top term1 … termn); clear top. @@ -5013,13 +5015,13 @@ If ``term`` is a double implication, then the view hint will be one of the defined view hints for implication. These hints are by default the ones present in the file ``ssreflect.v``: -.. coqtop:: in +.. coqdoc:: Lemma iffLR : forall P Q, (P <-> Q) -> P -> Q. which transforms a double implication into the left-to-right one, or: -.. coqtop:: in +.. coqdoc:: Lemma iffRL : forall P Q, (P <-> Q) -> Q -> P. @@ -5123,7 +5125,7 @@ equality, while the second term is the one applied to the right hand side. In this context, the identity view can be used when no view has to be applied: -.. coqtop:: in +.. coqdoc:: Lemma idP : reflect b1 b1. @@ -5198,7 +5200,7 @@ in sequence. Both move and apply can be followed by an arbitrary number of ``/term``. The main difference between the following two tactics -.. coqtop:: in +.. coqdoc:: apply/v1/v2/v3. apply/v1; apply/v2; apply/v3. @@ -5210,7 +5212,7 @@ line would apply the view ``v2`` to all the goals generated by ``apply/v1``. Note that the NO-OP intro pattern ``-`` can be used to separate two views, making the two following examples equivalent: -.. coqtop:: in +.. coqdoc:: move=> /v1; move=> /v2. move=> /v1 - /v2. diff --git a/doc/sphinx/proof-engine/tactics.rst b/doc/sphinx/proof-engine/tactics.rst index 66d510bc0e..0bcfce2322 100644 --- a/doc/sphinx/proof-engine/tactics.rst +++ b/doc/sphinx/proof-engine/tactics.rst @@ -2493,7 +2493,7 @@ and an explanation of the underlying technique. Let us consider the relation Le over natural numbers and the following variables: - .. coqtop:: all + .. coqtop:: all reset Inductive Le : nat -> nat -> Set := | LeO : forall n:nat, Le 0 n |
