aboutsummaryrefslogtreecommitdiff
path: root/doc/faq/FAQ.tex
diff options
context:
space:
mode:
authorGuillaume Melquiond2015-07-30 09:53:30 +0200
committerGuillaume Melquiond2015-07-30 09:53:30 +0200
commit35a743761478fffaaafd54368a5dcbcecd3133eb (patch)
tree780dfbc729c05dcb50421a2a0d0b4585deceb0eb /doc/faq/FAQ.tex
parenta9f3607ae72517156301570a4ffa05908609b7e0 (diff)
Fix some broken Coq scripts in the documentation.
Diffstat (limited to 'doc/faq/FAQ.tex')
-rw-r--r--doc/faq/FAQ.tex20
1 files changed, 12 insertions, 8 deletions
diff --git a/doc/faq/FAQ.tex b/doc/faq/FAQ.tex
index 899b196350..d75c3b8a62 100644
--- a/doc/faq/FAQ.tex
+++ b/doc/faq/FAQ.tex
@@ -1570,7 +1570,7 @@ If you type for instance the following ``definition'':
Reset Initial.
\end{coq_eval}
\begin{coq_example}
-Definition max (n p : nat) := if n <= p then p else n.
+Fail Definition max (n p : nat) := if n <= p then p else n.
\end{coq_example}
As \Coq~ says, the term ``~\texttt{n <= p}~'' is a proposition, i.e. a
@@ -1738,7 +1738,7 @@ mergesort} as an example).
the arguments of the loop.
\begin{coq_eval}
-Open Scope R_scope.
+Reset Initial.
Require Import List.
\end{coq_eval}
@@ -1751,21 +1751,25 @@ Definition R (a b:list nat) := length a < length b.
\begin{coq_example*}
Lemma Rwf : well_founded R.
\end{coq_example*}
+\begin{coq_eval}
+Admitted.
+\end{coq_eval}
\item Define the step function (which needs proofs that recursive
calls are on smaller arguments).
-\begin{verbatim}
-Definition split (l : list nat)
- : {l1: list nat | R l1 l} * {l2 : list nat | R l2 l}
- := (* ... *) .
-Definition concat (l1 l2 : list nat) : list nat := (* ... *) .
+\begin{coq_example*}
+Definition split (l : list nat)
+ : {l1: list nat | R l1 l} * {l2 : list nat | R l2 l}.
+Admitted.
+Definition concat (l1 l2 : list nat) : list nat.
+Admitted.
Definition merge_step (l : list nat) (f: forall l':list nat, R l' l -> list nat) :=
let (lH1,lH2) := (split l) in
let (l1,H1) := lH1 in
let (l2,H2) := lH2 in
concat (f l1 H1) (f l2 H2).
-\end{verbatim}
+\end{coq_example*}
\item Define the recursive function by fixpoint on the step function.