aboutsummaryrefslogtreecommitdiff
path: root/contrib/ring/Ring_abstract.v
diff options
context:
space:
mode:
authorherbelin2003-11-29 17:28:49 +0000
committerherbelin2003-11-29 17:28:49 +0000
commit9a6e3fe764dc2543dfa94de20fe5eec42d6be705 (patch)
tree77c0021911e3696a8c98e35a51840800db4be2a9 /contrib/ring/Ring_abstract.v
parent9058fb97426307536f56c3e7447be2f70798e081 (diff)
Remplacement des fichiers .v ancienne syntaxe de theories, contrib et states par les fichiers nouvelle syntaxe
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@5027 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'contrib/ring/Ring_abstract.v')
-rw-r--r--contrib/ring/Ring_abstract.v1063
1 files changed, 534 insertions, 529 deletions
diff --git a/contrib/ring/Ring_abstract.v b/contrib/ring/Ring_abstract.v
index 98b4cb858d..376cfb41f8 100644
--- a/contrib/ring/Ring_abstract.v
+++ b/contrib/ring/Ring_abstract.v
@@ -8,76 +8,75 @@
(* $Id$ *)
-Require Ring_theory.
-Require Quote.
-Require Ring_normalize.
+Require Import Ring_theory.
+Require Import Quote.
+Require Import Ring_normalize.
Section abstract_semi_rings.
-Inductive Type aspolynomial :=
- ASPvar : index -> aspolynomial
-| ASP0 : aspolynomial
-| ASP1 : aspolynomial
-| ASPplus : aspolynomial -> aspolynomial -> aspolynomial
-| ASPmult : aspolynomial -> aspolynomial -> aspolynomial
-.
-
-Inductive abstract_sum : Type :=
-| Nil_acs : abstract_sum
-| Cons_acs : varlist -> abstract_sum -> abstract_sum
-.
-
-Fixpoint abstract_sum_merge [s1:abstract_sum]
- : abstract_sum -> abstract_sum :=
-Cases s1 of
-| (Cons_acs l1 t1) =>
- Fix asm_aux{asm_aux[s2:abstract_sum] : abstract_sum :=
- Cases s2 of
- | (Cons_acs l2 t2) =>
- if (varlist_lt l1 l2)
- then (Cons_acs l1 (abstract_sum_merge t1 s2))
- else (Cons_acs l2 (asm_aux t2))
- | Nil_acs => s1
- end}
-| Nil_acs => [s2]s2
-end.
-
-Fixpoint abstract_varlist_insert [l1:varlist; s2:abstract_sum]
- : abstract_sum :=
- Cases s2 of
- | (Cons_acs l2 t2) =>
- if (varlist_lt l1 l2)
- then (Cons_acs l1 s2)
- else (Cons_acs l2 (abstract_varlist_insert l1 t2))
- | Nil_acs => (Cons_acs l1 Nil_acs)
+Inductive aspolynomial : Type :=
+ | ASPvar : index -> aspolynomial
+ | ASP0 : aspolynomial
+ | ASP1 : aspolynomial
+ | ASPplus : aspolynomial -> aspolynomial -> aspolynomial
+ | ASPmult : aspolynomial -> aspolynomial -> aspolynomial.
+
+Inductive abstract_sum : Type :=
+ | Nil_acs : abstract_sum
+ | Cons_acs : varlist -> abstract_sum -> abstract_sum.
+
+Fixpoint abstract_sum_merge (s1:abstract_sum) :
+ abstract_sum -> abstract_sum :=
+ match s1 with
+ | Cons_acs l1 t1 =>
+ (fix asm_aux (s2:abstract_sum) : abstract_sum :=
+ match s2 with
+ | Cons_acs l2 t2 =>
+ if varlist_lt l1 l2
+ then Cons_acs l1 (abstract_sum_merge t1 s2)
+ else Cons_acs l2 (asm_aux t2)
+ | Nil_acs => s1
+ end)
+ | Nil_acs => fun s2 => s2
end.
-Fixpoint abstract_sum_scalar [l1:varlist; s2:abstract_sum]
- : abstract_sum :=
- Cases s2 of
- | (Cons_acs l2 t2) => (abstract_varlist_insert (varlist_merge l1 l2)
- (abstract_sum_scalar l1 t2))
+Fixpoint abstract_varlist_insert (l1:varlist) (s2:abstract_sum) {struct s2} :
+ abstract_sum :=
+ match s2 with
+ | Cons_acs l2 t2 =>
+ if varlist_lt l1 l2
+ then Cons_acs l1 s2
+ else Cons_acs l2 (abstract_varlist_insert l1 t2)
+ | Nil_acs => Cons_acs l1 Nil_acs
+ end.
+
+Fixpoint abstract_sum_scalar (l1:varlist) (s2:abstract_sum) {struct s2} :
+ abstract_sum :=
+ match s2 with
+ | Cons_acs l2 t2 =>
+ abstract_varlist_insert (varlist_merge l1 l2)
+ (abstract_sum_scalar l1 t2)
+ | Nil_acs => Nil_acs
+ end.
+
+Fixpoint abstract_sum_prod (s1 s2:abstract_sum) {struct s1} : abstract_sum :=
+ match s1 with
+ | Cons_acs l1 t1 =>
+ abstract_sum_merge (abstract_sum_scalar l1 s2)
+ (abstract_sum_prod t1 s2)
| Nil_acs => Nil_acs
end.
-Fixpoint abstract_sum_prod [s1:abstract_sum]
- : abstract_sum -> abstract_sum :=
- [s2]Cases s1 of
- | (Cons_acs l1 t1) =>
- (abstract_sum_merge (abstract_sum_scalar l1 s2)
- (abstract_sum_prod t1 s2))
- | Nil_acs => Nil_acs
- end.
-
-Fixpoint aspolynomial_normalize[p:aspolynomial] : abstract_sum :=
- Cases p of
- | (ASPvar i) => (Cons_acs (Cons_var i Nil_var) Nil_acs)
- | ASP1 => (Cons_acs Nil_var Nil_acs)
+Fixpoint aspolynomial_normalize (p:aspolynomial) : abstract_sum :=
+ match p with
+ | ASPvar i => Cons_acs (Cons_var i Nil_var) Nil_acs
+ | ASP1 => Cons_acs Nil_var Nil_acs
| ASP0 => Nil_acs
- | (ASPplus l r) => (abstract_sum_merge (aspolynomial_normalize l)
- (aspolynomial_normalize r))
- | (ASPmult l r) => (abstract_sum_prod (aspolynomial_normalize l)
- (aspolynomial_normalize r))
+ | ASPplus l r =>
+ abstract_sum_merge (aspolynomial_normalize l)
+ (aspolynomial_normalize r)
+ | ASPmult l r =>
+ abstract_sum_prod (aspolynomial_normalize l) (aspolynomial_normalize r)
end.
@@ -88,147 +87,151 @@ Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aeq : A -> A -> bool.
-Variable vm : (varmap A).
-Variable T : (Semi_Ring_Theory Aplus Amult Aone Azero Aeq).
+Variable vm : varmap A.
+Variable T : Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
-Fixpoint interp_asp [p:aspolynomial] : A :=
- Cases p of
- | (ASPvar i) => (interp_var Azero vm i)
+Fixpoint interp_asp (p:aspolynomial) : A :=
+ match p with
+ | ASPvar i => interp_var Azero vm i
| ASP0 => Azero
| ASP1 => Aone
- | (ASPplus l r) => (Aplus (interp_asp l) (interp_asp r))
- | (ASPmult l r) => (Amult (interp_asp l) (interp_asp r))
+ | ASPplus l r => Aplus (interp_asp l) (interp_asp r)
+ | ASPmult l r => Amult (interp_asp l) (interp_asp r)
end.
-(* Local *) Definition iacs_aux := Fix iacs_aux{iacs_aux [a:A; s:abstract_sum] : A :=
- Cases s of
- | Nil_acs => a
- | (Cons_acs l t) => (Aplus a (iacs_aux (interp_vl Amult Aone Azero vm l) t))
- end}.
-
-Definition interp_acs [s:abstract_sum] : A :=
- Cases s of
- | (Cons_acs l t) => (iacs_aux (interp_vl Amult Aone Azero vm l) t)
+(* Local *) Definition iacs_aux :=
+ (fix iacs_aux (a:A) (s:abstract_sum) {struct s} : A :=
+ match s with
+ | Nil_acs => a
+ | Cons_acs l t =>
+ Aplus a (iacs_aux (interp_vl Amult Aone Azero vm l) t)
+ end).
+
+Definition interp_acs (s:abstract_sum) : A :=
+ match s with
+ | Cons_acs l t => iacs_aux (interp_vl Amult Aone Azero vm l) t
| Nil_acs => Azero
end.
-Hint SR_plus_sym_T := Resolve (SR_plus_sym T).
-Hint SR_plus_assoc_T := Resolve (SR_plus_assoc T).
-Hint SR_plus_assoc2_T := Resolve (SR_plus_assoc2 T).
-Hint SR_mult_sym_T := Resolve (SR_mult_sym T).
-Hint SR_mult_assoc_T := Resolve (SR_mult_assoc T).
-Hint SR_mult_assoc2_T := Resolve (SR_mult_assoc2 T).
-Hint SR_plus_zero_left_T := Resolve (SR_plus_zero_left T).
-Hint SR_plus_zero_left2_T := Resolve (SR_plus_zero_left2 T).
-Hint SR_mult_one_left_T := Resolve (SR_mult_one_left T).
-Hint SR_mult_one_left2_T := Resolve (SR_mult_one_left2 T).
-Hint SR_mult_zero_left_T := Resolve (SR_mult_zero_left T).
-Hint SR_mult_zero_left2_T := Resolve (SR_mult_zero_left2 T).
-Hint SR_distr_left_T := Resolve (SR_distr_left T).
-Hint SR_distr_left2_T := Resolve (SR_distr_left2 T).
-Hint SR_plus_reg_left_T := Resolve (SR_plus_reg_left T).
-Hint SR_plus_permute_T := Resolve (SR_plus_permute T).
-Hint SR_mult_permute_T := Resolve (SR_mult_permute T).
-Hint SR_distr_right_T := Resolve (SR_distr_right T).
-Hint SR_distr_right2_T := Resolve (SR_distr_right2 T).
-Hint SR_mult_zero_right_T := Resolve (SR_mult_zero_right T).
-Hint SR_mult_zero_right2_T := Resolve (SR_mult_zero_right2 T).
-Hint SR_plus_zero_right_T := Resolve (SR_plus_zero_right T).
-Hint SR_plus_zero_right2_T := Resolve (SR_plus_zero_right2 T).
-Hint SR_mult_one_right_T := Resolve (SR_mult_one_right T).
-Hint SR_mult_one_right2_T := Resolve (SR_mult_one_right2 T).
-Hint SR_plus_reg_right_T := Resolve (SR_plus_reg_right T).
-Hints Resolve refl_equal sym_equal trans_equal.
+Hint Resolve (SR_plus_comm T).
+Hint Resolve (SR_plus_assoc T).
+Hint Resolve (SR_plus_assoc2 T).
+Hint Resolve (SR_mult_comm T).
+Hint Resolve (SR_mult_assoc T).
+Hint Resolve (SR_mult_assoc2 T).
+Hint Resolve (SR_plus_zero_left T).
+Hint Resolve (SR_plus_zero_left2 T).
+Hint Resolve (SR_mult_one_left T).
+Hint Resolve (SR_mult_one_left2 T).
+Hint Resolve (SR_mult_zero_left T).
+Hint Resolve (SR_mult_zero_left2 T).
+Hint Resolve (SR_distr_left T).
+Hint Resolve (SR_distr_left2 T).
+Hint Resolve (SR_plus_reg_left T).
+Hint Resolve (SR_plus_permute T).
+Hint Resolve (SR_mult_permute T).
+Hint Resolve (SR_distr_right T).
+Hint Resolve (SR_distr_right2 T).
+Hint Resolve (SR_mult_zero_right T).
+Hint Resolve (SR_mult_zero_right2 T).
+Hint Resolve (SR_plus_zero_right T).
+Hint Resolve (SR_plus_zero_right2 T).
+Hint Resolve (SR_mult_one_right T).
+Hint Resolve (SR_mult_one_right2 T).
+Hint Resolve (SR_plus_reg_right T).
+Hint Resolve refl_equal sym_equal trans_equal.
(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
+Hint Immediate T.
-Remark iacs_aux_ok : (x:A)(s:abstract_sum)
- (iacs_aux x s)==(Aplus x (interp_acs s)).
+Remark iacs_aux_ok :
+ forall (x:A) (s:abstract_sum), iacs_aux x s = Aplus x (interp_acs s).
Proof.
- Induction s; Simpl; Intros.
- Trivial.
- Reflexivity.
-Save.
+ simple induction s; simpl in |- *; intros.
+ trivial.
+ reflexivity.
+Qed.
-Hint rew_iacs_aux : core := Extern 10 (eqT A ? ?) Rewrite iacs_aux_ok.
+Hint Extern 10 (_ = _ :>A) => rewrite iacs_aux_ok: core.
-Lemma abstract_varlist_insert_ok : (l:varlist)(s:abstract_sum)
- (interp_acs (abstract_varlist_insert l s))
- ==(Aplus (interp_vl Amult Aone Azero vm l) (interp_acs s)).
+Lemma abstract_varlist_insert_ok :
+ forall (l:varlist) (s:abstract_sum),
+ interp_acs (abstract_varlist_insert l s) =
+ Aplus (interp_vl Amult Aone Azero vm l) (interp_acs s).
- Induction s.
- Trivial.
+ simple induction s.
+ trivial.
- Simpl; Intros.
- Elim (varlist_lt l v); Simpl.
- EAuto.
- Rewrite iacs_aux_ok.
- Rewrite H; Auto.
+ simpl in |- *; intros.
+ elim (varlist_lt l v); simpl in |- *.
+ eauto.
+ rewrite iacs_aux_ok.
+ rewrite H; auto.
-Save.
+Qed.
-Lemma abstract_sum_merge_ok : (x,y:abstract_sum)
- (interp_acs (abstract_sum_merge x y))
- ==(Aplus (interp_acs x) (interp_acs y)).
+Lemma abstract_sum_merge_ok :
+ forall x y:abstract_sum,
+ interp_acs (abstract_sum_merge x y) = Aplus (interp_acs x) (interp_acs y).
Proof.
- Induction x.
- Trivial.
- Induction y; Intros.
+ simple induction x.
+ trivial.
+ simple induction y; intros.
- Auto.
+ auto.
- Simpl; Elim (varlist_lt v v0); Simpl.
- Repeat Rewrite iacs_aux_ok.
- Rewrite H; Simpl; Auto.
+ simpl in |- *; elim (varlist_lt v v0); simpl in |- *.
+ repeat rewrite iacs_aux_ok.
+ rewrite H; simpl in |- *; auto.
- Simpl in H0.
- Repeat Rewrite iacs_aux_ok.
- Rewrite H0. Simpl; Auto.
-Save.
+ simpl in H0.
+ repeat rewrite iacs_aux_ok.
+ rewrite H0. simpl in |- *; auto.
+Qed.
-Lemma abstract_sum_scalar_ok : (l:varlist)(s:abstract_sum)
- (interp_acs (abstract_sum_scalar l s))
- == (Amult (interp_vl Amult Aone Azero vm l) (interp_acs s)).
+Lemma abstract_sum_scalar_ok :
+ forall (l:varlist) (s:abstract_sum),
+ interp_acs (abstract_sum_scalar l s) =
+ Amult (interp_vl Amult Aone Azero vm l) (interp_acs s).
Proof.
- Induction s.
- Simpl; EAuto.
+ simple induction s.
+ simpl in |- *; eauto.
- Simpl; Intros.
- Rewrite iacs_aux_ok.
- Rewrite abstract_varlist_insert_ok.
- Rewrite H.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Auto.
-Save.
+ simpl in |- *; intros.
+ rewrite iacs_aux_ok.
+ rewrite abstract_varlist_insert_ok.
+ rewrite H.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ auto.
+Qed.
-Lemma abstract_sum_prod_ok : (x,y:abstract_sum)
- (interp_acs (abstract_sum_prod x y))
- == (Amult (interp_acs x) (interp_acs y)).
+Lemma abstract_sum_prod_ok :
+ forall x y:abstract_sum,
+ interp_acs (abstract_sum_prod x y) = Amult (interp_acs x) (interp_acs y).
Proof.
- Induction x.
- Intros; Simpl; EAuto.
+ simple induction x.
+ intros; simpl in |- *; eauto.
- NewDestruct y; Intros.
+ destruct y as [| v0 a0]; intros.
- Simpl; Rewrite H; EAuto.
+ simpl in |- *; rewrite H; eauto.
- Unfold abstract_sum_prod; Fold abstract_sum_prod.
- Rewrite abstract_sum_merge_ok.
- Rewrite abstract_sum_scalar_ok.
- Rewrite H; Simpl; Auto.
-Save.
+ unfold abstract_sum_prod in |- *; fold abstract_sum_prod in |- *.
+ rewrite abstract_sum_merge_ok.
+ rewrite abstract_sum_scalar_ok.
+ rewrite H; simpl in |- *; auto.
+Qed.
-Theorem aspolynomial_normalize_ok : (x:aspolynomial)
- (interp_asp x)==(interp_acs (aspolynomial_normalize x)).
+Theorem aspolynomial_normalize_ok :
+ forall x:aspolynomial, interp_asp x = interp_acs (aspolynomial_normalize x).
Proof.
- Induction x; Simpl; Intros; Trivial.
- Rewrite abstract_sum_merge_ok.
- Rewrite H; Rewrite H0; EAuto.
- Rewrite abstract_sum_prod_ok.
- Rewrite H; Rewrite H0; EAuto.
-Save.
+ simple induction x; simpl in |- *; intros; trivial.
+ rewrite abstract_sum_merge_ok.
+ rewrite H; rewrite H0; eauto.
+ rewrite abstract_sum_prod_ok.
+ rewrite H; rewrite H0; eauto.
+Qed.
End abstract_semi_rings.
@@ -244,143 +247,141 @@ Section abstract_rings.
Nevertheless, they are two different types for semi-rings and rings
and there will be 2 correction theorems *)
-Inductive Type apolynomial :=
- APvar : index -> apolynomial
-| AP0 : apolynomial
-| AP1 : apolynomial
-| APplus : apolynomial -> apolynomial -> apolynomial
-| APmult : apolynomial -> apolynomial -> apolynomial
-| APopp : apolynomial -> apolynomial
-.
+Inductive apolynomial : Type :=
+ | APvar : index -> apolynomial
+ | AP0 : apolynomial
+ | AP1 : apolynomial
+ | APplus : apolynomial -> apolynomial -> apolynomial
+ | APmult : apolynomial -> apolynomial -> apolynomial
+ | APopp : apolynomial -> apolynomial.
(* A canonical "abstract" sum is a list of varlist with the sign "+" or "-".
Invariant : the list is sorted and there is no varlist is present
with both signs. +x +x +x -x is forbidden => the canonical form is +x+x *)
-Inductive signed_sum : Type :=
-| Nil_varlist : signed_sum
-| Plus_varlist : varlist -> signed_sum -> signed_sum
-| Minus_varlist : varlist -> signed_sum -> signed_sum
-.
-
-Fixpoint signed_sum_merge [s1:signed_sum]
- : signed_sum -> signed_sum :=
-Cases s1 of
-| (Plus_varlist l1 t1) =>
- Fix ssm_aux{ssm_aux[s2:signed_sum] : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Plus_varlist l1 (signed_sum_merge t1 s2))
- else (Plus_varlist l2 (ssm_aux t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (signed_sum_merge t1 t2)
- else if (varlist_lt l1 l2)
- then (Plus_varlist l1 (signed_sum_merge t1 s2))
- else (Minus_varlist l2 (ssm_aux t2))
- | Nil_varlist => s1
- end}
-| (Minus_varlist l1 t1) =>
- Fix ssm_aux2{ssm_aux2[s2:signed_sum] : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (signed_sum_merge t1 t2)
- else if (varlist_lt l1 l2)
- then (Minus_varlist l1 (signed_sum_merge t1 s2))
- else (Plus_varlist l2 (ssm_aux2 t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Minus_varlist l1 (signed_sum_merge t1 s2))
- else (Minus_varlist l2 (ssm_aux2 t2))
- | Nil_varlist => s1
- end}
-| Nil_varlist => [s2]s2
-end.
-
-Fixpoint plus_varlist_insert [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Plus_varlist l1 s2)
- else (Plus_varlist l2 (plus_varlist_insert l1 t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then t2
- else if (varlist_lt l1 l2)
- then (Plus_varlist l1 s2)
- else (Minus_varlist l2 (plus_varlist_insert l1 t2))
- | Nil_varlist => (Plus_varlist l1 Nil_varlist)
+Inductive signed_sum : Type :=
+ | Nil_varlist : signed_sum
+ | Plus_varlist : varlist -> signed_sum -> signed_sum
+ | Minus_varlist : varlist -> signed_sum -> signed_sum.
+
+Fixpoint signed_sum_merge (s1:signed_sum) : signed_sum -> signed_sum :=
+ match s1 with
+ | Plus_varlist l1 t1 =>
+ (fix ssm_aux (s2:signed_sum) : signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ if varlist_lt l1 l2
+ then Plus_varlist l1 (signed_sum_merge t1 s2)
+ else Plus_varlist l2 (ssm_aux t2)
+ | Minus_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then signed_sum_merge t1 t2
+ else
+ if varlist_lt l1 l2
+ then Plus_varlist l1 (signed_sum_merge t1 s2)
+ else Minus_varlist l2 (ssm_aux t2)
+ | Nil_varlist => s1
+ end)
+ | Minus_varlist l1 t1 =>
+ (fix ssm_aux2 (s2:signed_sum) : signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then signed_sum_merge t1 t2
+ else
+ if varlist_lt l1 l2
+ then Minus_varlist l1 (signed_sum_merge t1 s2)
+ else Plus_varlist l2 (ssm_aux2 t2)
+ | Minus_varlist l2 t2 =>
+ if varlist_lt l1 l2
+ then Minus_varlist l1 (signed_sum_merge t1 s2)
+ else Minus_varlist l2 (ssm_aux2 t2)
+ | Nil_varlist => s1
+ end)
+ | Nil_varlist => fun s2 => s2
end.
-Fixpoint minus_varlist_insert [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then t2
- else if (varlist_lt l1 l2)
- then (Minus_varlist l1 s2)
- else (Plus_varlist l2 (minus_varlist_insert l1 t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Minus_varlist l1 s2)
- else (Minus_varlist l2 (minus_varlist_insert l1 t2))
- | Nil_varlist => (Minus_varlist l1 Nil_varlist)
+Fixpoint plus_varlist_insert (l1:varlist) (s2:signed_sum) {struct s2} :
+ signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ if varlist_lt l1 l2
+ then Plus_varlist l1 s2
+ else Plus_varlist l2 (plus_varlist_insert l1 t2)
+ | Minus_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then t2
+ else
+ if varlist_lt l1 l2
+ then Plus_varlist l1 s2
+ else Minus_varlist l2 (plus_varlist_insert l1 t2)
+ | Nil_varlist => Plus_varlist l1 Nil_varlist
end.
-Fixpoint signed_sum_opp [s:signed_sum] : signed_sum :=
- Cases s of
- | (Plus_varlist l2 t2) => (Minus_varlist l2 (signed_sum_opp t2))
- | (Minus_varlist l2 t2) => (Plus_varlist l2 (signed_sum_opp t2))
+Fixpoint minus_varlist_insert (l1:varlist) (s2:signed_sum) {struct s2} :
+ signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then t2
+ else
+ if varlist_lt l1 l2
+ then Minus_varlist l1 s2
+ else Plus_varlist l2 (minus_varlist_insert l1 t2)
+ | Minus_varlist l2 t2 =>
+ if varlist_lt l1 l2
+ then Minus_varlist l1 s2
+ else Minus_varlist l2 (minus_varlist_insert l1 t2)
+ | Nil_varlist => Minus_varlist l1 Nil_varlist
+ end.
+
+Fixpoint signed_sum_opp (s:signed_sum) : signed_sum :=
+ match s with
+ | Plus_varlist l2 t2 => Minus_varlist l2 (signed_sum_opp t2)
+ | Minus_varlist l2 t2 => Plus_varlist l2 (signed_sum_opp t2)
| Nil_varlist => Nil_varlist
end.
-Fixpoint plus_sum_scalar [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) => (plus_varlist_insert (varlist_merge l1 l2)
- (plus_sum_scalar l1 t2))
- | (Minus_varlist l2 t2) => (minus_varlist_insert (varlist_merge l1 l2)
- (plus_sum_scalar l1 t2))
+Fixpoint plus_sum_scalar (l1:varlist) (s2:signed_sum) {struct s2} :
+ signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ plus_varlist_insert (varlist_merge l1 l2) (plus_sum_scalar l1 t2)
+ | Minus_varlist l2 t2 =>
+ minus_varlist_insert (varlist_merge l1 l2) (plus_sum_scalar l1 t2)
+ | Nil_varlist => Nil_varlist
+ end.
+
+Fixpoint minus_sum_scalar (l1:varlist) (s2:signed_sum) {struct s2} :
+ signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ minus_varlist_insert (varlist_merge l1 l2) (minus_sum_scalar l1 t2)
+ | Minus_varlist l2 t2 =>
+ plus_varlist_insert (varlist_merge l1 l2) (minus_sum_scalar l1 t2)
| Nil_varlist => Nil_varlist
end.
-Fixpoint minus_sum_scalar [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) => (minus_varlist_insert (varlist_merge l1 l2)
- (minus_sum_scalar l1 t2))
- | (Minus_varlist l2 t2) => (plus_varlist_insert (varlist_merge l1 l2)
- (minus_sum_scalar l1 t2))
+Fixpoint signed_sum_prod (s1 s2:signed_sum) {struct s1} : signed_sum :=
+ match s1 with
+ | Plus_varlist l1 t1 =>
+ signed_sum_merge (plus_sum_scalar l1 s2) (signed_sum_prod t1 s2)
+ | Minus_varlist l1 t1 =>
+ signed_sum_merge (minus_sum_scalar l1 s2) (signed_sum_prod t1 s2)
| Nil_varlist => Nil_varlist
end.
-Fixpoint signed_sum_prod [s1:signed_sum]
- : signed_sum -> signed_sum :=
- [s2]Cases s1 of
- | (Plus_varlist l1 t1) =>
- (signed_sum_merge (plus_sum_scalar l1 s2)
- (signed_sum_prod t1 s2))
- | (Minus_varlist l1 t1) =>
- (signed_sum_merge (minus_sum_scalar l1 s2)
- (signed_sum_prod t1 s2))
- | Nil_varlist => Nil_varlist
- end.
-
-Fixpoint apolynomial_normalize[p:apolynomial] : signed_sum :=
- Cases p of
- | (APvar i) => (Plus_varlist (Cons_var i Nil_var) Nil_varlist)
- | AP1 => (Plus_varlist Nil_var Nil_varlist)
+Fixpoint apolynomial_normalize (p:apolynomial) : signed_sum :=
+ match p with
+ | APvar i => Plus_varlist (Cons_var i Nil_var) Nil_varlist
+ | AP1 => Plus_varlist Nil_var Nil_varlist
| AP0 => Nil_varlist
- | (APplus l r) => (signed_sum_merge (apolynomial_normalize l)
- (apolynomial_normalize r))
- | (APmult l r) => (signed_sum_prod (apolynomial_normalize l)
- (apolynomial_normalize r))
- | (APopp q) => (signed_sum_opp (apolynomial_normalize q))
+ | APplus l r =>
+ signed_sum_merge (apolynomial_normalize l) (apolynomial_normalize r)
+ | APmult l r =>
+ signed_sum_prod (apolynomial_normalize l) (apolynomial_normalize r)
+ | APopp q => signed_sum_opp (apolynomial_normalize q)
end.
@@ -389,311 +390,315 @@ Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
-Variable Aopp :A -> A.
+Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
-Variable vm : (varmap A).
-Variable T : (Ring_Theory Aplus Amult Aone Azero Aopp Aeq).
-
-(* Local *) Definition isacs_aux := Fix isacs_aux{isacs_aux [a:A; s:signed_sum] : A :=
- Cases s of
- | Nil_varlist => a
- | (Plus_varlist l t) =>
- (Aplus a (isacs_aux (interp_vl Amult Aone Azero vm l) t))
- | (Minus_varlist l t) =>
- (Aplus a (isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t))
- end}.
-
-Definition interp_sacs [s:signed_sum] : A :=
- Cases s of
- | (Plus_varlist l t) => (isacs_aux (interp_vl Amult Aone Azero vm l) t)
- | (Minus_varlist l t) =>
- (isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t)
+Variable vm : varmap A.
+Variable T : Ring_Theory Aplus Amult Aone Azero Aopp Aeq.
+
+(* Local *) Definition isacs_aux :=
+ (fix isacs_aux (a:A) (s:signed_sum) {struct s} : A :=
+ match s with
+ | Nil_varlist => a
+ | Plus_varlist l t =>
+ Aplus a (isacs_aux (interp_vl Amult Aone Azero vm l) t)
+ | Minus_varlist l t =>
+ Aplus a
+ (isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t)
+ end).
+
+Definition interp_sacs (s:signed_sum) : A :=
+ match s with
+ | Plus_varlist l t => isacs_aux (interp_vl Amult Aone Azero vm l) t
+ | Minus_varlist l t => isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t
| Nil_varlist => Azero
end.
-Fixpoint interp_ap [p:apolynomial] : A :=
- Cases p of
- | (APvar i) => (interp_var Azero vm i)
+Fixpoint interp_ap (p:apolynomial) : A :=
+ match p with
+ | APvar i => interp_var Azero vm i
| AP0 => Azero
| AP1 => Aone
- | (APplus l r) => (Aplus (interp_ap l) (interp_ap r))
- | (APmult l r) => (Amult (interp_ap l) (interp_ap r))
- | (APopp q) => (Aopp (interp_ap q))
+ | APplus l r => Aplus (interp_ap l) (interp_ap r)
+ | APmult l r => Amult (interp_ap l) (interp_ap r)
+ | APopp q => Aopp (interp_ap q)
end.
-Hint Th_plus_sym_T := Resolve (Th_plus_sym T).
-Hint Th_plus_assoc_T := Resolve (Th_plus_assoc T).
-Hint Th_plus_assoc2_T := Resolve (Th_plus_assoc2 T).
-Hint Th_mult_sym_T := Resolve (Th_mult_sym T).
-Hint Th_mult_assoc_T := Resolve (Th_mult_assoc T).
-Hint Th_mult_assoc2_T := Resolve (Th_mult_assoc2 T).
-Hint Th_plus_zero_left_T := Resolve (Th_plus_zero_left T).
-Hint Th_plus_zero_left2_T := Resolve (Th_plus_zero_left2 T).
-Hint Th_mult_one_left_T := Resolve (Th_mult_one_left T).
-Hint Th_mult_one_left2_T := Resolve (Th_mult_one_left2 T).
-Hint Th_mult_zero_left_T := Resolve (Th_mult_zero_left T).
-Hint Th_mult_zero_left2_T := Resolve (Th_mult_zero_left2 T).
-Hint Th_distr_left_T := Resolve (Th_distr_left T).
-Hint Th_distr_left2_T := Resolve (Th_distr_left2 T).
-Hint Th_plus_reg_left_T := Resolve (Th_plus_reg_left T).
-Hint Th_plus_permute_T := Resolve (Th_plus_permute T).
-Hint Th_mult_permute_T := Resolve (Th_mult_permute T).
-Hint Th_distr_right_T := Resolve (Th_distr_right T).
-Hint Th_distr_right2_T := Resolve (Th_distr_right2 T).
-Hint Th_mult_zero_right2_T := Resolve (Th_mult_zero_right2 T).
-Hint Th_plus_zero_right_T := Resolve (Th_plus_zero_right T).
-Hint Th_plus_zero_right2_T := Resolve (Th_plus_zero_right2 T).
-Hint Th_mult_one_right_T := Resolve (Th_mult_one_right T).
-Hint Th_mult_one_right2_T := Resolve (Th_mult_one_right2 T).
-Hint Th_plus_reg_right_T := Resolve (Th_plus_reg_right T).
-Hints Resolve refl_equal sym_equal trans_equal.
+Hint Resolve (Th_plus_comm T).
+Hint Resolve (Th_plus_assoc T).
+Hint Resolve (Th_plus_assoc2 T).
+Hint Resolve (Th_mult_sym T).
+Hint Resolve (Th_mult_assoc T).
+Hint Resolve (Th_mult_assoc2 T).
+Hint Resolve (Th_plus_zero_left T).
+Hint Resolve (Th_plus_zero_left2 T).
+Hint Resolve (Th_mult_one_left T).
+Hint Resolve (Th_mult_one_left2 T).
+Hint Resolve (Th_mult_zero_left T).
+Hint Resolve (Th_mult_zero_left2 T).
+Hint Resolve (Th_distr_left T).
+Hint Resolve (Th_distr_left2 T).
+Hint Resolve (Th_plus_reg_left T).
+Hint Resolve (Th_plus_permute T).
+Hint Resolve (Th_mult_permute T).
+Hint Resolve (Th_distr_right T).
+Hint Resolve (Th_distr_right2 T).
+Hint Resolve (Th_mult_zero_right2 T).
+Hint Resolve (Th_plus_zero_right T).
+Hint Resolve (Th_plus_zero_right2 T).
+Hint Resolve (Th_mult_one_right T).
+Hint Resolve (Th_mult_one_right2 T).
+Hint Resolve (Th_plus_reg_right T).
+Hint Resolve refl_equal sym_equal trans_equal.
(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
+Hint Immediate T.
-Lemma isacs_aux_ok : (x:A)(s:signed_sum)
- (isacs_aux x s)==(Aplus x (interp_sacs s)).
+Lemma isacs_aux_ok :
+ forall (x:A) (s:signed_sum), isacs_aux x s = Aplus x (interp_sacs s).
Proof.
- Induction s; Simpl; Intros.
- Trivial.
- Reflexivity.
- Reflexivity.
-Save.
+ simple induction s; simpl in |- *; intros.
+ trivial.
+ reflexivity.
+ reflexivity.
+Qed.
-Hint rew_isacs_aux : core := Extern 10 (eqT A ? ?) Rewrite isacs_aux_ok.
+Hint Extern 10 (_ = _ :>A) => rewrite isacs_aux_ok: core.
-Tactic Definition Solve1 v v0 H H0 :=
- Simpl; Elim (varlist_lt v v0); Simpl; Rewrite isacs_aux_ok;
- [Rewrite H; Simpl; Auto
- |Simpl in H0; Rewrite H0; Auto ].
+Ltac solve1 v v0 H H0 :=
+ simpl in |- *; elim (varlist_lt v v0); simpl in |- *; rewrite isacs_aux_ok;
+ [ rewrite H; simpl in |- *; auto | simpl in H0; rewrite H0; auto ].
-Lemma signed_sum_merge_ok : (x,y:signed_sum)
- (interp_sacs (signed_sum_merge x y))
- ==(Aplus (interp_sacs x) (interp_sacs y)).
+Lemma signed_sum_merge_ok :
+ forall x y:signed_sum,
+ interp_sacs (signed_sum_merge x y) = Aplus (interp_sacs x) (interp_sacs y).
- Induction x.
- Intro; Simpl; Auto.
+ simple induction x.
+ intro; simpl in |- *; auto.
- Induction y; Intros.
+ simple induction y; intros.
- Auto.
+ auto.
- Solve1 v v0 H H0.
+ solve1 v v0 H H0.
- Simpl; Generalize (varlist_eq_prop v v0).
- Elim (varlist_eq v v0); Simpl.
+ simpl in |- *; generalize (varlist_eq_prop v v0).
+ elim (varlist_eq v v0); simpl in |- *.
- Intro Heq; Rewrite (Heq I).
- Rewrite H.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (Th_plus_permute T).
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_plus_sym T (Aopp (interp_vl Amult Aone Azero vm v0))
- (interp_vl Amult Aone Azero vm v0)).
- Rewrite (Th_opp_def T).
- Rewrite (Th_plus_zero_left T).
- Reflexivity.
+ intro Heq; rewrite (Heq I).
+ rewrite H.
+ repeat rewrite isacs_aux_ok.
+ rewrite (Th_plus_permute T).
+ repeat rewrite (Th_plus_assoc T).
+ rewrite
+ (Th_plus_comm T (Aopp (interp_vl Amult Aone Azero vm v0))
+ (interp_vl Amult Aone Azero vm v0)).
+ rewrite (Th_opp_def T).
+ rewrite (Th_plus_zero_left T).
+ reflexivity.
- Solve1 v v0 H H0.
+ solve1 v v0 H H0.
- Induction y; Intros.
+ simple induction y; intros.
- Auto.
+ auto.
- Simpl; Generalize (varlist_eq_prop v v0).
- Elim (varlist_eq v v0); Simpl.
+ simpl in |- *; generalize (varlist_eq_prop v v0).
+ elim (varlist_eq v v0); simpl in |- *.
- Intro Heq; Rewrite (Heq I).
- Rewrite H.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (Th_plus_permute T).
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_opp_def T).
- Rewrite (Th_plus_zero_left T).
- Reflexivity.
+ intro Heq; rewrite (Heq I).
+ rewrite H.
+ repeat rewrite isacs_aux_ok.
+ rewrite (Th_plus_permute T).
+ repeat rewrite (Th_plus_assoc T).
+ rewrite (Th_opp_def T).
+ rewrite (Th_plus_zero_left T).
+ reflexivity.
- Solve1 v v0 H H0.
+ solve1 v v0 H H0.
- Solve1 v v0 H H0.
+ solve1 v v0 H H0.
-Save.
+Qed.
-Tactic Definition Solve2 l v H :=
- Elim (varlist_lt l v); Simpl; Rewrite isacs_aux_ok;
- [ Auto
- | Rewrite H; Auto ].
+Ltac solve2 l v H :=
+ elim (varlist_lt l v); simpl in |- *; rewrite isacs_aux_ok;
+ [ auto | rewrite H; auto ].
-Lemma plus_varlist_insert_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (plus_varlist_insert l s))
- == (Aplus (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
+Lemma plus_varlist_insert_ok :
+ forall (l:varlist) (s:signed_sum),
+ interp_sacs (plus_varlist_insert l s) =
+ Aplus (interp_vl Amult Aone Azero vm l) (interp_sacs s).
Proof.
- Induction s.
- Trivial.
+ simple induction s.
+ trivial.
- Simpl; Intros.
- Solve2 l v H.
+ simpl in |- *; intros.
+ solve2 l v H.
- Simpl; Intros.
- Generalize (varlist_eq_prop l v).
- Elim (varlist_eq l v); Simpl.
+ simpl in |- *; intros.
+ generalize (varlist_eq_prop l v).
+ elim (varlist_eq l v); simpl in |- *.
- Intro Heq; Rewrite (Heq I).
- Repeat Rewrite isacs_aux_ok.
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_opp_def T).
- Rewrite (Th_plus_zero_left T).
- Reflexivity.
+ intro Heq; rewrite (Heq I).
+ repeat rewrite isacs_aux_ok.
+ repeat rewrite (Th_plus_assoc T).
+ rewrite (Th_opp_def T).
+ rewrite (Th_plus_zero_left T).
+ reflexivity.
- Solve2 l v H.
+ solve2 l v H.
-Save.
+Qed.
-Lemma minus_varlist_insert_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (minus_varlist_insert l s))
- == (Aplus (Aopp (interp_vl Amult Aone Azero vm l)) (interp_sacs s)).
+Lemma minus_varlist_insert_ok :
+ forall (l:varlist) (s:signed_sum),
+ interp_sacs (minus_varlist_insert l s) =
+ Aplus (Aopp (interp_vl Amult Aone Azero vm l)) (interp_sacs s).
Proof.
- Induction s.
- Trivial.
+ simple induction s.
+ trivial.
- Simpl; Intros.
- Generalize (varlist_eq_prop l v).
- Elim (varlist_eq l v); Simpl.
+ simpl in |- *; intros.
+ generalize (varlist_eq_prop l v).
+ elim (varlist_eq l v); simpl in |- *.
- Intro Heq; Rewrite (Heq I).
- Repeat Rewrite isacs_aux_ok.
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_plus_sym T (Aopp (interp_vl Amult Aone Azero vm v))
- (interp_vl Amult Aone Azero vm v)).
- Rewrite (Th_opp_def T).
- Auto.
+ intro Heq; rewrite (Heq I).
+ repeat rewrite isacs_aux_ok.
+ repeat rewrite (Th_plus_assoc T).
+ rewrite
+ (Th_plus_comm T (Aopp (interp_vl Amult Aone Azero vm v))
+ (interp_vl Amult Aone Azero vm v)).
+ rewrite (Th_opp_def T).
+ auto.
- Simpl; Intros.
- Solve2 l v H.
+ simpl in |- *; intros.
+ solve2 l v H.
- Simpl; Intros; Solve2 l v H.
+ simpl in |- *; intros; solve2 l v H.
-Save.
+Qed.
-Lemma signed_sum_opp_ok : (s:signed_sum)
- (interp_sacs (signed_sum_opp s))
- == (Aopp (interp_sacs s)).
+Lemma signed_sum_opp_ok :
+ forall s:signed_sum, interp_sacs (signed_sum_opp s) = Aopp (interp_sacs s).
Proof.
- Induction s; Simpl; Intros.
+ simple induction s; simpl in |- *; intros.
- Symmetry; Apply (Th_opp_zero T).
+ symmetry in |- *; apply (Th_opp_zero T).
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Rewrite (Th_plus_opp_opp T).
- Reflexivity.
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ rewrite (Th_plus_opp_opp T).
+ reflexivity.
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Rewrite <- (Th_plus_opp_opp T).
- Rewrite (Th_opp_opp T).
- Reflexivity.
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ rewrite <- (Th_plus_opp_opp T).
+ rewrite (Th_opp_opp T).
+ reflexivity.
-Save.
+Qed.
-Lemma plus_sum_scalar_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (plus_sum_scalar l s))
- == (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
+Lemma plus_sum_scalar_ok :
+ forall (l:varlist) (s:signed_sum),
+ interp_sacs (plus_sum_scalar l s) =
+ Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s).
Proof.
- Induction s.
- Trivial.
-
- Simpl; Intros.
- Rewrite plus_varlist_insert_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Auto.
-
- Simpl; Intros.
- Rewrite minus_varlist_insert_ok.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Rewrite H.
- Rewrite (Th_distr_right T).
- Rewrite <- (Th_opp_mult_right T).
- Reflexivity.
-
-Save.
-
-Lemma minus_sum_scalar_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (minus_sum_scalar l s))
- == (Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s))).
+ simple induction s.
+ trivial.
+
+ simpl in |- *; intros.
+ rewrite plus_varlist_insert_ok.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ auto.
+
+ simpl in |- *; intros.
+ rewrite minus_varlist_insert_ok.
+ repeat rewrite isacs_aux_ok.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ rewrite H.
+ rewrite (Th_distr_right T).
+ rewrite <- (Th_opp_mult_right T).
+ reflexivity.
+
+Qed.
+
+Lemma minus_sum_scalar_ok :
+ forall (l:varlist) (s:signed_sum),
+ interp_sacs (minus_sum_scalar l s) =
+ Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
Proof.
- Induction s; Simpl; Intros.
-
- Rewrite (Th_mult_zero_right T); Symmetry; Apply (Th_opp_zero T).
-
- Simpl; Intros.
- Rewrite minus_varlist_insert_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Rewrite (Th_distr_right T).
- Rewrite (Th_plus_opp_opp T).
- Reflexivity.
-
- Simpl; Intros.
- Rewrite plus_varlist_insert_ok.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Rewrite H.
- Rewrite (Th_distr_right T).
- Rewrite <- (Th_opp_mult_right T).
- Rewrite <- (Th_plus_opp_opp T).
- Rewrite (Th_opp_opp T).
- Reflexivity.
-
-Save.
-
-Lemma signed_sum_prod_ok : (x,y:signed_sum)
- (interp_sacs (signed_sum_prod x y)) ==
- (Amult (interp_sacs x) (interp_sacs y)).
+ simple induction s; simpl in |- *; intros.
+
+ rewrite (Th_mult_zero_right T); symmetry in |- *; apply (Th_opp_zero T).
+
+ simpl in |- *; intros.
+ rewrite minus_varlist_insert_ok.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ rewrite (Th_distr_right T).
+ rewrite (Th_plus_opp_opp T).
+ reflexivity.
+
+ simpl in |- *; intros.
+ rewrite plus_varlist_insert_ok.
+ repeat rewrite isacs_aux_ok.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ rewrite H.
+ rewrite (Th_distr_right T).
+ rewrite <- (Th_opp_mult_right T).
+ rewrite <- (Th_plus_opp_opp T).
+ rewrite (Th_opp_opp T).
+ reflexivity.
+
+Qed.
+
+Lemma signed_sum_prod_ok :
+ forall x y:signed_sum,
+ interp_sacs (signed_sum_prod x y) = Amult (interp_sacs x) (interp_sacs y).
Proof.
- Induction x.
+ simple induction x.
- Simpl; EAuto 1.
+ simpl in |- *; eauto 1.
- Intros; Simpl.
- Rewrite signed_sum_merge_ok.
- Rewrite plus_sum_scalar_ok.
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Auto.
+ intros; simpl in |- *.
+ rewrite signed_sum_merge_ok.
+ rewrite plus_sum_scalar_ok.
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ auto.
- Intros; Simpl.
- Repeat Rewrite isacs_aux_ok.
- Rewrite signed_sum_merge_ok.
- Rewrite minus_sum_scalar_ok.
- Rewrite H.
- Rewrite (Th_distr_left T).
- Rewrite (Th_opp_mult_left T).
- Reflexivity.
+ intros; simpl in |- *.
+ repeat rewrite isacs_aux_ok.
+ rewrite signed_sum_merge_ok.
+ rewrite minus_sum_scalar_ok.
+ rewrite H.
+ rewrite (Th_distr_left T).
+ rewrite (Th_opp_mult_left T).
+ reflexivity.
-Save.
+Qed.
-Theorem apolynomial_normalize_ok : (p:apolynomial)
- (interp_sacs (apolynomial_normalize p))==(interp_ap p).
+Theorem apolynomial_normalize_ok :
+ forall p:apolynomial, interp_sacs (apolynomial_normalize p) = interp_ap p.
Proof.
- Induction p; Simpl; Auto 1.
- Intros.
- Rewrite signed_sum_merge_ok.
- Rewrite H; Rewrite H0; Reflexivity.
- Intros.
- Rewrite signed_sum_prod_ok.
- Rewrite H; Rewrite H0; Reflexivity.
- Intros.
- Rewrite signed_sum_opp_ok.
- Rewrite H; Reflexivity.
-Save.
-
-End abstract_rings.
+ simple induction p; simpl in |- *; auto 1.
+ intros.
+ rewrite signed_sum_merge_ok.
+ rewrite H; rewrite H0; reflexivity.
+ intros.
+ rewrite signed_sum_prod_ok.
+ rewrite H; rewrite H0; reflexivity.
+ intros.
+ rewrite signed_sum_opp_ok.
+ rewrite H; reflexivity.
+Qed.
+
+End abstract_rings. \ No newline at end of file