diff options
| author | Jasper Hugunin | 2020-09-09 10:36:17 -0700 |
|---|---|---|
| committer | Jasper Hugunin | 2020-09-16 12:46:57 -0700 |
| commit | ffd6a5de785071485cf5b4623aa43defe614b083 (patch) | |
| tree | 7589e1b1422988719655b056857eb62abd04ee6b | |
| parent | fd20085f6d073338b8c547f810f70baa9e414b28 (diff) | |
Modify Numbers/Natural/Abstract/NMaxMin.v to compile with -mangle-names
| -rw-r--r-- | theories/Numbers/Natural/Abstract/NMaxMin.v | 56 |
1 files changed, 28 insertions, 28 deletions
diff --git a/theories/Numbers/Natural/Abstract/NMaxMin.v b/theories/Numbers/Natural/Abstract/NMaxMin.v index ad6e2d65f0..3a41a2a560 100644 --- a/theories/Numbers/Natural/Abstract/NMaxMin.v +++ b/theories/Numbers/Natural/Abstract/NMaxMin.v @@ -42,95 +42,95 @@ Qed. (** Succ *) -Lemma succ_max_distr : forall n m, S (max n m) == max (S n) (S m). +Lemma succ_max_distr n m : S (max n m) == max (S n) (S m). Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?succ_le_mono. Qed. -Lemma succ_min_distr : forall n m, S (min n m) == min (S n) (S m). +Lemma succ_min_distr n m : S (min n m) == min (S n) (S m). Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?succ_le_mono. Qed. (** Add *) -Lemma add_max_distr_l : forall n m p, max (p + n) (p + m) == p + max n m. +Lemma add_max_distr_l n m p : max (p + n) (p + m) == p + max n m. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?add_le_mono_l. Qed. -Lemma add_max_distr_r : forall n m p, max (n + p) (m + p) == max n m + p. +Lemma add_max_distr_r n m p : max (n + p) (m + p) == max n m + p. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?add_le_mono_r. Qed. -Lemma add_min_distr_l : forall n m p, min (p + n) (p + m) == p + min n m. +Lemma add_min_distr_l n m p : min (p + n) (p + m) == p + min n m. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?add_le_mono_l. Qed. -Lemma add_min_distr_r : forall n m p, min (n + p) (m + p) == min n m + p. +Lemma add_min_distr_r n m p : min (n + p) (m + p) == min n m + p. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?add_le_mono_r. Qed. (** Mul *) -Lemma mul_max_distr_l : forall n m p, max (p * n) (p * m) == p * max n m. +Lemma mul_max_distr_l n m p : max (p * n) (p * m) == p * max n m. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; try order; now apply mul_le_mono_l. Qed. -Lemma mul_max_distr_r : forall n m p, max (n * p) (m * p) == max n m * p. +Lemma mul_max_distr_r n m p : max (n * p) (m * p) == max n m * p. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; try order; now apply mul_le_mono_r. Qed. -Lemma mul_min_distr_l : forall n m p, min (p * n) (p * m) == p * min n m. +Lemma mul_min_distr_l n m p : min (p * n) (p * m) == p * min n m. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; try order; now apply mul_le_mono_l. Qed. -Lemma mul_min_distr_r : forall n m p, min (n * p) (m * p) == min n m * p. +Lemma mul_min_distr_r n m p : min (n * p) (m * p) == min n m * p. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; try order; now apply mul_le_mono_r. Qed. (** Sub *) -Lemma sub_max_distr_l : forall n m p, max (p - n) (p - m) == p - min n m. +Lemma sub_max_distr_l n m p : max (p - n) (p - m) == p - min n m. Proof. - intros. destruct (le_ge_cases n m). + destruct (le_ge_cases n m). rewrite min_l by trivial. apply max_l. now apply sub_le_mono_l. rewrite min_r by trivial. apply max_r. now apply sub_le_mono_l. Qed. -Lemma sub_max_distr_r : forall n m p, max (n - p) (m - p) == max n m - p. +Lemma sub_max_distr_r n m p : max (n - p) (m - p) == max n m - p. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; try order; now apply sub_le_mono_r. Qed. -Lemma sub_min_distr_l : forall n m p, min (p - n) (p - m) == p - max n m. +Lemma sub_min_distr_l n m p : min (p - n) (p - m) == p - max n m. Proof. - intros. destruct (le_ge_cases n m). + destruct (le_ge_cases n m). rewrite max_r by trivial. apply min_r. now apply sub_le_mono_l. rewrite max_l by trivial. apply min_l. now apply sub_le_mono_l. Qed. -Lemma sub_min_distr_r : forall n m p, min (n - p) (m - p) == min n m - p. +Lemma sub_min_distr_r n m p : min (n - p) (m - p) == min n m - p. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; try order; now apply sub_le_mono_r. Qed. |
