aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorherbelin2011-07-16 20:35:19 +0000
committerherbelin2011-07-16 20:35:19 +0000
commitfae8ea1520b03578aff7de10d6e59f08bb85ecb6 (patch)
treea0f3794c30bd006ba0a95177ce542a7e7afdfb93
parent1a924bc1c68ec72cc2f165d8bdb0e98869532f82 (diff)
Some facts about functional extensionality (especially alternative
formulations). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14283 85f007b7-540e-0410-9357-904b9bb8a0f7
-rw-r--r--theories/Logic/ExtensionalityFacts.v172
1 files changed, 172 insertions, 0 deletions
diff --git a/theories/Logic/ExtensionalityFacts.v b/theories/Logic/ExtensionalityFacts.v
new file mode 100644
index 0000000000..631177bebb
--- /dev/null
+++ b/theories/Logic/ExtensionalityFacts.v
@@ -0,0 +1,172 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** Some facts and definitions about extensionality
+
+We investigate the relations between the following extensionality principles
+
+- Functional extensionality
+- Equality of projections from diagonal
+- Unicity of inverse bijections
+- Bijectivity of bijective composition
+
+Table of contents
+
+1. Definitions
+
+2. Functional extensionality <-> Equality of projections from diagonal
+
+3. Functional extensionality <-> Unicity of inverse bijections
+
+4. Functional extensionality <-> Bijectivity of bijective composition
+
+*)
+
+Set Implicit Arguments.
+
+(**********************************************************************)
+(** * Definitions *)
+
+(** Being an inverse *)
+
+Definition is_inverse A B f g := (forall a:A, g (f a) = a) /\ (forall b:B, f (g b) = b).
+
+Definition iscontr (X:Type) := {x:X| forall y, x=y}.
+Definition hfiber X Y (f:X -> Y) (y:Y) := {x:X| f x=y}.
+Definition isweq X Y (f:X -> Y) := forall y, iscontr (hfiber f y).
+
+Goal forall X Y (f:X->Y), isweq f -> {g|is_inverse f g}.
+Proof.
+ intros * Hweq.
+ set (g:=fun y => proj1_sig (proj1_sig (Hweq y))).
+ exists g. split.
+ - intro x. unfold g. destruct (Hweq (f x)) as ((x0,Hx0),Hxy). simpl.
+ set (fiber0 := exist (fun x0 => f x0 = f x) x0 Hx0) in *.
+ set (fiber := exist (fun x0 => f x0 = f x) x eq_refl).
+ change (proj1_sig fiber0 = proj1_sig fiber).
+ specialize Hxy with fiber.
+ destruct Hxy.
+ reflexivity.
+ - intro y.
+ unfold g.
+ destruct (Hweq y) as ((x,Hxy),Hyuniq). simpl. assumption.
+Qed.
+
+Goal forall X Y (f:X->Y), {g|is_inverse f g} -> isweq f.
+Proof.
+ destruct 1 as (g,(Hgf,Hfg)).
+ intro y.
+ set (fiber := exist (fun x => f x = y) (g y) (Hfg y)).
+ exists fiber.
+ destruct y0 as (y0,Hfy0).
+ unfold fiber.
+ rewrite <- Hfy0 in *.
+ assert (forall y, f_equal f (Hgf y) = Hfg (f y)). admit.
+ rewrite <- H.
+ rewrite Hgf.
+ reflexivity.
+Qed.
+
+(** The diagonal over A and the one-one correspondence with A *)
+
+Record Delta A := { pi1:A; pi2:A; eq:pi1=pi2 }.
+
+Definition delta {A} (a:A) := {|pi1 := a; pi2 := a; eq := eq_refl a |}.
+
+Implicit Arguments pi1 [[A]].
+Implicit Arguments pi2 [[A]].
+
+Lemma diagonal_projs_same_behavior : forall A (x:Delta A), pi1 x = pi2 x.
+Proof.
+ destruct x as (a1,a2,Heq); assumption.
+Qed.
+
+Lemma diagonal_inverse1 : forall A, is_inverse (A:=A) delta pi1.
+Proof.
+ split; [trivial|]; destruct b as (a1,a2,[]); reflexivity.
+Qed.
+
+Lemma diagonal_inverse2 : forall A, is_inverse (A:=A) delta pi2.
+Proof.
+ split; [trivial|]; destruct b as (a1,a2,[]); reflexivity.
+Qed.
+
+(** Functional extensionality *)
+
+Local Notation FunctionalExtensionality :=
+ (forall A B (f g : A -> B), (forall x, f x = g x) -> f = g).
+
+(** Equality of projections from diagonal *)
+
+Local Notation EqDeltaProjs := (forall A, pi1 = pi2 :> (Delta A -> A)).
+
+(** Unicity of bijection inverse *)
+
+Local Notation UniqueInverse := (forall A B (f:A->B) g1 g2, is_inverse f g1 -> is_inverse f g2 -> g1 = g2).
+
+(** Bijectivity of bijective composition *)
+
+Definition action A B C (f:A->B) := (fun h:B->C => fun x => h (f x)).
+
+Local Notation BijectivityBijectiveComp := (forall A B C (f:A->B) g,
+ is_inverse f g -> is_inverse (A:=B->C) (action f) (action g)).
+
+(**********************************************************************)
+(** * Functional extensionality <-> Equality of projections from diagonal *)
+
+Theorem FunctExt_iff_EqDeltaProjs : FunctionalExtensionality <-> EqDeltaProjs.
+Proof.
+ split.
+ - intros FunExt *; apply FunExt, diagonal_projs_same_behavior.
+ - intros EqProjs **; change f with (fun x => pi1 {|pi1:=f x; pi2:=g x; eq:=H x|}).
+ rewrite EqProjs; reflexivity.
+Qed.
+
+(**********************************************************************)
+(** * Functional extensionality <-> Unicity of bijection inverse *)
+
+Lemma FunctExt_UniqInverse : FunctionalExtensionality -> UniqueInverse.
+Proof.
+ intros FunExt * (Hg1f,Hfg1) (Hg2f,Hfg2).
+ apply FunExt. intros; congruence.
+Qed.
+
+Lemma UniqInverse_EqDeltaProjs : UniqueInverse -> EqDeltaProjs.
+Proof.
+ intros UniqInv *.
+ apply UniqInv with delta; [apply diagonal_inverse1 | apply diagonal_inverse2].
+Qed.
+
+Theorem FunctExt_iff_UniqInverse : FunctionalExtensionality <-> UniqueInverse.
+Proof.
+ split.
+ - apply FunctExt_UniqInverse.
+ - intro; apply FunctExt_iff_EqDeltaProjs, UniqInverse_EqDeltaProjs; trivial.
+Qed.
+
+(**********************************************************************)
+(** * Functional extensionality <-> Bijectivity of bijective composition *)
+
+Lemma FunctExt_BijComp : FunctionalExtensionality -> BijectivityBijectiveComp.
+Proof.
+ intros FunExt * (Hgf,Hfg). split; unfold action.
+ - intros h; apply FunExt; intro b; rewrite Hfg; reflexivity.
+ - intros h; apply FunExt; intro a; rewrite Hgf; reflexivity.
+Qed.
+
+Lemma BijComp_FunctExt : BijectivityBijectiveComp -> FunctionalExtensionality.
+Proof.
+ intros BijComp.
+ apply FunctExt_iff_UniqInverse. intros * H1 H2.
+ destruct BijComp with (C:=A) (1:=H2) as (Hg2f,_).
+ destruct BijComp with (C:=A) (1:=H1) as (_,Hfg1).
+ rewrite <- (Hg2f g1).
+ change g1 with (action g1 (fun x => x)).
+ rewrite -> (Hfg1 (fun x => x)).
+ reflexivity.
+Qed.