diff options
| author | herbelin | 2011-07-16 20:35:19 +0000 |
|---|---|---|
| committer | herbelin | 2011-07-16 20:35:19 +0000 |
| commit | fae8ea1520b03578aff7de10d6e59f08bb85ecb6 (patch) | |
| tree | a0f3794c30bd006ba0a95177ce542a7e7afdfb93 | |
| parent | 1a924bc1c68ec72cc2f165d8bdb0e98869532f82 (diff) | |
Some facts about functional extensionality (especially alternative
formulations).
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14283 85f007b7-540e-0410-9357-904b9bb8a0f7
| -rw-r--r-- | theories/Logic/ExtensionalityFacts.v | 172 |
1 files changed, 172 insertions, 0 deletions
diff --git a/theories/Logic/ExtensionalityFacts.v b/theories/Logic/ExtensionalityFacts.v new file mode 100644 index 0000000000..631177bebb --- /dev/null +++ b/theories/Logic/ExtensionalityFacts.v @@ -0,0 +1,172 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(** Some facts and definitions about extensionality + +We investigate the relations between the following extensionality principles + +- Functional extensionality +- Equality of projections from diagonal +- Unicity of inverse bijections +- Bijectivity of bijective composition + +Table of contents + +1. Definitions + +2. Functional extensionality <-> Equality of projections from diagonal + +3. Functional extensionality <-> Unicity of inverse bijections + +4. Functional extensionality <-> Bijectivity of bijective composition + +*) + +Set Implicit Arguments. + +(**********************************************************************) +(** * Definitions *) + +(** Being an inverse *) + +Definition is_inverse A B f g := (forall a:A, g (f a) = a) /\ (forall b:B, f (g b) = b). + +Definition iscontr (X:Type) := {x:X| forall y, x=y}. +Definition hfiber X Y (f:X -> Y) (y:Y) := {x:X| f x=y}. +Definition isweq X Y (f:X -> Y) := forall y, iscontr (hfiber f y). + +Goal forall X Y (f:X->Y), isweq f -> {g|is_inverse f g}. +Proof. + intros * Hweq. + set (g:=fun y => proj1_sig (proj1_sig (Hweq y))). + exists g. split. + - intro x. unfold g. destruct (Hweq (f x)) as ((x0,Hx0),Hxy). simpl. + set (fiber0 := exist (fun x0 => f x0 = f x) x0 Hx0) in *. + set (fiber := exist (fun x0 => f x0 = f x) x eq_refl). + change (proj1_sig fiber0 = proj1_sig fiber). + specialize Hxy with fiber. + destruct Hxy. + reflexivity. + - intro y. + unfold g. + destruct (Hweq y) as ((x,Hxy),Hyuniq). simpl. assumption. +Qed. + +Goal forall X Y (f:X->Y), {g|is_inverse f g} -> isweq f. +Proof. + destruct 1 as (g,(Hgf,Hfg)). + intro y. + set (fiber := exist (fun x => f x = y) (g y) (Hfg y)). + exists fiber. + destruct y0 as (y0,Hfy0). + unfold fiber. + rewrite <- Hfy0 in *. + assert (forall y, f_equal f (Hgf y) = Hfg (f y)). admit. + rewrite <- H. + rewrite Hgf. + reflexivity. +Qed. + +(** The diagonal over A and the one-one correspondence with A *) + +Record Delta A := { pi1:A; pi2:A; eq:pi1=pi2 }. + +Definition delta {A} (a:A) := {|pi1 := a; pi2 := a; eq := eq_refl a |}. + +Implicit Arguments pi1 [[A]]. +Implicit Arguments pi2 [[A]]. + +Lemma diagonal_projs_same_behavior : forall A (x:Delta A), pi1 x = pi2 x. +Proof. + destruct x as (a1,a2,Heq); assumption. +Qed. + +Lemma diagonal_inverse1 : forall A, is_inverse (A:=A) delta pi1. +Proof. + split; [trivial|]; destruct b as (a1,a2,[]); reflexivity. +Qed. + +Lemma diagonal_inverse2 : forall A, is_inverse (A:=A) delta pi2. +Proof. + split; [trivial|]; destruct b as (a1,a2,[]); reflexivity. +Qed. + +(** Functional extensionality *) + +Local Notation FunctionalExtensionality := + (forall A B (f g : A -> B), (forall x, f x = g x) -> f = g). + +(** Equality of projections from diagonal *) + +Local Notation EqDeltaProjs := (forall A, pi1 = pi2 :> (Delta A -> A)). + +(** Unicity of bijection inverse *) + +Local Notation UniqueInverse := (forall A B (f:A->B) g1 g2, is_inverse f g1 -> is_inverse f g2 -> g1 = g2). + +(** Bijectivity of bijective composition *) + +Definition action A B C (f:A->B) := (fun h:B->C => fun x => h (f x)). + +Local Notation BijectivityBijectiveComp := (forall A B C (f:A->B) g, + is_inverse f g -> is_inverse (A:=B->C) (action f) (action g)). + +(**********************************************************************) +(** * Functional extensionality <-> Equality of projections from diagonal *) + +Theorem FunctExt_iff_EqDeltaProjs : FunctionalExtensionality <-> EqDeltaProjs. +Proof. + split. + - intros FunExt *; apply FunExt, diagonal_projs_same_behavior. + - intros EqProjs **; change f with (fun x => pi1 {|pi1:=f x; pi2:=g x; eq:=H x|}). + rewrite EqProjs; reflexivity. +Qed. + +(**********************************************************************) +(** * Functional extensionality <-> Unicity of bijection inverse *) + +Lemma FunctExt_UniqInverse : FunctionalExtensionality -> UniqueInverse. +Proof. + intros FunExt * (Hg1f,Hfg1) (Hg2f,Hfg2). + apply FunExt. intros; congruence. +Qed. + +Lemma UniqInverse_EqDeltaProjs : UniqueInverse -> EqDeltaProjs. +Proof. + intros UniqInv *. + apply UniqInv with delta; [apply diagonal_inverse1 | apply diagonal_inverse2]. +Qed. + +Theorem FunctExt_iff_UniqInverse : FunctionalExtensionality <-> UniqueInverse. +Proof. + split. + - apply FunctExt_UniqInverse. + - intro; apply FunctExt_iff_EqDeltaProjs, UniqInverse_EqDeltaProjs; trivial. +Qed. + +(**********************************************************************) +(** * Functional extensionality <-> Bijectivity of bijective composition *) + +Lemma FunctExt_BijComp : FunctionalExtensionality -> BijectivityBijectiveComp. +Proof. + intros FunExt * (Hgf,Hfg). split; unfold action. + - intros h; apply FunExt; intro b; rewrite Hfg; reflexivity. + - intros h; apply FunExt; intro a; rewrite Hgf; reflexivity. +Qed. + +Lemma BijComp_FunctExt : BijectivityBijectiveComp -> FunctionalExtensionality. +Proof. + intros BijComp. + apply FunctExt_iff_UniqInverse. intros * H1 H2. + destruct BijComp with (C:=A) (1:=H2) as (Hg2f,_). + destruct BijComp with (C:=A) (1:=H1) as (_,Hfg1). + rewrite <- (Hg2f g1). + change g1 with (action g1 (fun x => x)). + rewrite -> (Hfg1 (fun x => x)). + reflexivity. +Qed. |
