diff options
| author | letouzey | 2010-01-05 15:24:33 +0000 |
|---|---|---|
| committer | letouzey | 2010-01-05 15:24:33 +0000 |
| commit | f4ceaf2ce34c5cec168275dee3e7a99710bf835f (patch) | |
| tree | 0719203b3f4aef9940d98c0b5da511eabf1f86cd | |
| parent | 9332ed8f53f544c0dccac637a88d09a252c3c653 (diff) | |
Division in Numbers: proofs with less auto (less sensitive to hints, in particular about eq)
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12625 85f007b7-540e-0410-9357-904b9bb8a0f7
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZDivEucl.v | 179 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZDivFloor.v | 133 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZDivTrunc.v | 144 | ||||
| -rw-r--r-- | theories/Numbers/NatInt/NZDiv.v | 50 |
4 files changed, 251 insertions, 255 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZDivEucl.v b/theories/Numbers/Integer/Abstract/ZDivEucl.v index e6af6f16f7..ad8e24cfb1 100644 --- a/theories/Numbers/Integer/Abstract/ZDivEucl.v +++ b/theories/Numbers/Integer/Abstract/ZDivEucl.v @@ -57,7 +57,7 @@ Lemma mod_eq : Proof. intros. rewrite <- add_move_l. -symmetry. apply div_mod; auto. +symmetry. now apply div_mod. Qed. Ltac pos_or_neg a := @@ -68,24 +68,30 @@ Ltac pos_or_neg a := (*TODO: To migrate later ... *) Lemma abs_pos : forall z, 0<=z -> abs z == z. Proof. -intros; apply max_l. apply le_trans with 0; auto. -rewrite opp_nonpos_nonneg; auto. +intros; apply max_l. apply le_trans with 0; trivial. +now rewrite opp_nonpos_nonneg. Qed. Lemma abs_neg : forall z, 0<=-z -> abs z == -z. Proof. -intros; apply max_r. apply le_trans with 0; auto. -rewrite <- opp_nonneg_nonpos; auto. +intros; apply max_r. apply le_trans with 0; trivial. +now rewrite <- opp_nonneg_nonpos. +Qed. +Instance abs_wd : Proper (eq==>eq) abs. +Proof. +intros x y EQ. pos_or_neg x. +rewrite 2 abs_pos; trivial. now rewrite <- EQ. +rewrite 2 abs_neg; try order. now rewrite opp_inj_wd. rewrite <- EQ; order. Qed. Lemma abs_opp : forall z, abs (-z) == abs z. Proof. intros. pos_or_neg z. -rewrite (abs_pos z), (abs_neg (-z)); try rewrite opp_involutive; auto. +rewrite (abs_pos z), (abs_neg (-z)); rewrite ? opp_involutive; order. rewrite (abs_pos (-z)), (abs_neg z); order. Qed. Lemma abs_nonneg : forall z, 0<=abs z. Proof. intros. pos_or_neg z. -rewrite abs_pos; auto. +rewrite abs_pos; trivial. rewrite <-abs_opp, abs_pos; order. Qed. Lemma abs_nz : forall z, z~=0 -> 0<abs z. @@ -96,17 +102,13 @@ rewrite <-abs_opp, abs_pos; order. Qed. Lemma abs_mul : forall a b, abs (a*b) == abs a * abs b. Proof. -intros. pos_or_neg a; pos_or_neg b. -rewrite 3 abs_pos; auto using mul_nonneg_nonneg. -rewrite (abs_pos a), 2 abs_neg; try order. - rewrite mul_opp_r; auto. - rewrite <-mul_opp_r; apply mul_nonneg_nonneg; order. -rewrite (abs_pos b), 2 abs_neg; try order. - rewrite mul_opp_l; auto. - rewrite <-mul_opp_l; apply mul_nonneg_nonneg; order. -rewrite (abs_pos (a*b)), 2 abs_neg; try order. - rewrite mul_opp_opp; auto. - rewrite <-mul_opp_opp; apply mul_nonneg_nonneg; order. +assert (Aux1 : forall a b, 0<=a -> abs (a*b) == a * abs b). + intros. pos_or_neg b. + rewrite 2 abs_pos; try order. now apply mul_nonneg_nonneg. + rewrite 2 abs_neg; try order. now rewrite mul_opp_r. + rewrite <-mul_opp_r; apply mul_nonneg_nonneg; order. +intros. pos_or_neg a. rewrite Aux1, (abs_pos a); order. +rewrite <- mul_opp_opp, Aux1, abs_opp, (abs_neg a); order. Qed. (*/TODO *) @@ -118,15 +120,15 @@ Theorem div_mod_unique : forall b q1 q2 r1 r2 : t, Proof. intros b q1 q2 r1 r2 Hr1 Hr2 EQ. pos_or_neg b. -rewrite abs_pos in *; auto. -apply div_mod_unique with b; auto. +rewrite abs_pos in * by trivial. +apply div_mod_unique with b; trivial. rewrite abs_neg in *; try order. -rewrite eq_sym_iff. apply div_mod_unique with (-b); auto. +rewrite eq_sym_iff. apply div_mod_unique with (-b); trivial. rewrite 2 mul_opp_l. rewrite add_move_l, sub_opp_r. rewrite <-add_assoc. symmetry. rewrite add_move_l, sub_opp_r. -rewrite (add_comm r2), (add_comm r1); auto. +now rewrite (add_comm r2), (add_comm r1). Qed. Theorem div_unique: @@ -137,9 +139,9 @@ assert (Hb : b~=0). pos_or_neg b. rewrite abs_pos in Hr; intuition; order. rewrite <- opp_0, eq_opp_r. rewrite abs_neg in Hr; intuition; order. -rewrite (div_mod a b Hb) in EQ. -destruct (div_mod_unique b (a/b) q (a mod b) r); auto. -apply mod_always_pos. +destruct (div_mod_unique b q (a/b) r (a mod b)); trivial. +now apply mod_always_pos. +now rewrite <- div_mod. Qed. Theorem mod_unique: @@ -150,9 +152,9 @@ assert (Hb : b~=0). pos_or_neg b. rewrite abs_pos in Hr; intuition; order. rewrite <- opp_0, eq_opp_r. rewrite abs_neg in Hr; intuition; order. -rewrite (div_mod a b Hb) in EQ. -destruct (div_mod_unique b (a/b) q (a mod b) r); auto. -apply mod_always_pos. +destruct (div_mod_unique b q (a/b) r (a mod b)); trivial. +now apply mod_always_pos. +now rewrite <- div_mod. Qed. (** TODO: Provide a [sign] function *) @@ -171,7 +173,7 @@ Proof. intros. symmetry. apply div_unique with (a mod b). rewrite abs_opp; apply mod_always_pos. -rewrite mul_opp_opp; apply div_mod; auto. +rewrite mul_opp_opp; now apply div_mod. Qed. Lemma mod_opp_r : forall a b, b~=0 -> a mod (-b) == a mod b. @@ -179,7 +181,7 @@ Proof. intros. symmetry. apply mod_unique with (-(a/b)). rewrite abs_opp; apply mod_always_pos. -rewrite mul_opp_opp; apply div_mod; auto. +rewrite mul_opp_opp; now apply div_mod. Qed. Lemma div_opp_l_z : forall a b, b~=0 -> a mod b == 0 -> @@ -189,7 +191,7 @@ intros a b Hb Hab. symmetry. apply div_unique with (-(a mod b)). rewrite Hab, opp_0. split; [order|]. pos_or_neg b; [rewrite abs_pos | rewrite abs_neg]; order. -rewrite mul_opp_r, <-opp_add_distr, <-div_mod; auto. +now rewrite mul_opp_r, <-opp_add_distr, <-div_mod. Qed. Lemma div_opp_l_nz : forall a b, b~=0 -> a mod b ~= 0 -> @@ -213,8 +215,8 @@ Lemma mod_opp_l_z : forall a b, b~=0 -> a mod b == 0 -> Proof. intros a b Hb Hab. symmetry. apply mod_unique with (-(a/b)). -split; [order|apply abs_nz; auto]. -rewrite <-opp_0, <-Hab, mul_opp_r, <-opp_add_distr, <-div_mod; auto. +split; [order|now apply abs_nz]. +now rewrite <-opp_0, <-Hab, mul_opp_r, <-opp_add_distr, <-div_mod. Qed. Lemma mod_opp_l_nz : forall a b, b~=0 -> a mod b ~= 0 -> @@ -236,26 +238,26 @@ Qed. Lemma div_opp_opp_z : forall a b, b~=0 -> a mod b == 0 -> (-a)/(-b) == a/b. Proof. -intros. rewrite div_opp_r, div_opp_l_z, opp_involutive; auto. +intros. now rewrite div_opp_r, div_opp_l_z, opp_involutive. Qed. Lemma div_opp_opp_nz : forall a b, b~=0 -> a mod b ~= 0 -> (-a)/(-b) == a/b + sign(b). Proof. -intros. rewrite div_opp_r, div_opp_l_nz; auto. -rewrite opp_sub_distr, opp_involutive; auto. +intros. rewrite div_opp_r, div_opp_l_nz by trivial. +now rewrite opp_sub_distr, opp_involutive. Qed. Lemma mod_opp_opp_z : forall a b, b~=0 -> a mod b == 0 -> (-a) mod (-b) == 0. Proof. -intros. rewrite mod_opp_r, mod_opp_l_z; auto. +intros. now rewrite mod_opp_r, mod_opp_l_z. Qed. Lemma mod_opp_opp_nz : forall a b, b~=0 -> a mod b ~= 0 -> (-a) mod (-b) == abs b - a mod b. Proof. -intros. rewrite mod_opp_r, mod_opp_l_nz; auto. +intros. now rewrite mod_opp_r, mod_opp_l_nz. Qed. (** A division by itself returns 1 *) @@ -263,14 +265,14 @@ Qed. Lemma div_same : forall a, a~=0 -> a/a == 1. Proof. intros. symmetry. apply div_unique with 0. -split; [order|apply abs_nz; auto]. -nzsimpl; auto. +split; [order|now apply abs_nz]. +now nzsimpl. Qed. Lemma mod_same : forall a, a~=0 -> a mod a == 0. Proof. intros. -rewrite mod_eq, div_same; auto. nzsimpl. apply sub_diag. +rewrite mod_eq, div_same by trivial. nzsimpl. apply sub_diag. Qed. (** A division of a small number by a bigger one yields zero. *) @@ -288,19 +290,19 @@ Proof. exact mod_small. Qed. Lemma div_0_l: forall a, a~=0 -> 0/a == 0. Proof. intros. pos_or_neg a. apply div_0_l; order. -apply opp_inj. rewrite <- div_opp_r, opp_0; auto. apply div_0_l; auto. +apply opp_inj. rewrite <- div_opp_r, opp_0 by trivial. now apply div_0_l. Qed. Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0. Proof. -intros; rewrite mod_eq, div_0_l; nzsimpl; auto. +intros; rewrite mod_eq, div_0_l; now nzsimpl. Qed. Lemma div_1_r: forall a, a/1 == a. Proof. intros. symmetry. apply div_unique with 0. assert (H:=lt_0_1); rewrite abs_pos; intuition; order. -nzsimpl; auto. +now nzsimpl. Qed. Lemma mod_1_r: forall a, a mod 1 == 0. @@ -318,13 +320,13 @@ Proof. exact mod_1_l. Qed. Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a. Proof. intros. symmetry. apply div_unique with 0. -split; [order|apply abs_nz; auto]. +split; [order|now apply abs_nz]. nzsimpl; apply mul_comm. Qed. Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0. Proof. -intros. rewrite mod_eq, div_mul; auto. rewrite mul_comm; apply sub_diag. +intros. rewrite mod_eq, div_mul by trivial. rewrite mul_comm; apply sub_diag. Qed. (** * Order results about mod and div *) @@ -334,7 +336,7 @@ Qed. Theorem mod_le: forall a b, 0<=a -> b~=0 -> a mod b <= a. Proof. intros. pos_or_neg b. apply mod_le; order. -rewrite <- mod_opp_r; auto. apply mod_le; order. +rewrite <- mod_opp_r by trivial. apply mod_le; order. Qed. Theorem div_pos : forall a b, 0<=a -> 0<b -> 0<= a/b. @@ -349,22 +351,21 @@ intros a b Hb. split. intros EQ. rewrite (div_mod a b Hb), EQ; nzsimpl. -apply mod_always_pos; auto. +apply mod_always_pos. intros. pos_or_neg b. -apply div_small; auto. -rewrite <- (abs_pos b); auto. -apply opp_inj; rewrite opp_0, <- div_opp_r; auto. -apply div_small; auto. -rewrite <- (abs_neg b); auto. -rewrite <-opp_0 in Hb. rewrite eq_opp_r in Hb. order. +apply div_small. +now rewrite <- (abs_pos b). +apply opp_inj; rewrite opp_0, <- div_opp_r by trivial. +apply div_small. +rewrite <- (abs_neg b) by order. trivial. Qed. Lemma mod_small_iff : forall a b, b~=0 -> (a mod b == a <-> 0<=a<abs b). Proof. intros. -rewrite <- div_small_iff, mod_eq; auto. +rewrite <- div_small_iff, mod_eq by trivial. rewrite sub_move_r, <- (add_0_r a) at 1. rewrite add_cancel_l. -rewrite eq_sym_iff, eq_mul_0. intuition. +rewrite eq_sym_iff, eq_mul_0. tauto. Qed. (** As soon as the divisor is strictly greater than 1, @@ -385,7 +386,7 @@ rewrite (mul_lt_mono_pos_l c) by order. nzsimpl. rewrite (add_lt_mono_r _ _ (a mod c)). rewrite <- div_mod by order. -apply lt_le_trans with b; auto. +apply lt_le_trans with b; trivial. rewrite (div_mod b c) at 1; [| order]. rewrite <- add_assoc, <- add_le_mono_l. apply le_trans with (c+0). @@ -405,10 +406,10 @@ Qed. Lemma mul_div_le : forall a b, b~=0 -> b*(a/b) <= a. Proof. intros. -rewrite (div_mod a b) at 2; auto. +rewrite (div_mod a b) at 2; trivial. rewrite <- (add_0_r (b*(a/b))) at 1. rewrite <- add_le_mono_l. -destruct (mod_always_pos a b); auto. +now destruct (mod_always_pos a b). Qed. (** Giving a reversed bound is slightly more complex *) @@ -452,8 +453,8 @@ Theorem div_lt_upper_bound: forall a b q, 0<b -> a < b*q -> a/b < q. Proof. intros. -rewrite (mul_lt_mono_pos_l b); auto. -apply le_lt_trans with a; auto. +rewrite (mul_lt_mono_pos_l b) by trivial. +apply le_lt_trans with a; trivial. apply mul_div_le; order. Qed. @@ -462,7 +463,7 @@ Theorem div_le_upper_bound: Proof. intros. rewrite <- (div_mul q b) by order. -apply div_le_mono; auto. rewrite mul_comm; auto. +apply div_le_mono; trivial. now rewrite mul_comm. Qed. Theorem div_le_lower_bound: @@ -470,7 +471,7 @@ Theorem div_le_lower_bound: Proof. intros. rewrite <- (div_mul q b) by order. -apply div_le_mono; auto. rewrite mul_comm; auto. +apply div_le_mono; trivial. now rewrite mul_comm. Qed. (** A division respects opposite monotonicity for the divisor *) @@ -485,10 +486,10 @@ Lemma mod_add : forall a b c, c~=0 -> Proof. intros. symmetry. -apply mod_unique with (a/c+b); auto. -apply mod_always_pos; auto. +apply mod_unique with (a/c+b); trivial. +now apply mod_always_pos. rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order. -rewrite mul_comm; auto. +now rewrite mul_comm. Qed. Lemma div_add : forall a b c, c~=0 -> @@ -499,14 +500,14 @@ apply (mul_cancel_l _ _ c); try order. apply (add_cancel_r _ _ ((a+b*c) mod c)). rewrite <- div_mod, mod_add by order. rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order. -rewrite mul_comm; auto. +now rewrite mul_comm. Qed. Lemma div_add_l: forall a b c, b~=0 -> (a * b + c) / b == a + c / b. Proof. intros a b c. rewrite (add_comm _ c), (add_comm a). - intros. apply div_add; auto. + now apply div_add. Qed. (** Cancellations. *) @@ -522,19 +523,19 @@ symmetry. apply div_unique with ((a mod b)*c). (* ineqs *) rewrite abs_mul, (abs_pos c) by order. -rewrite <-(mul_0_l c), <-mul_lt_mono_pos_r, <-mul_le_mono_pos_r; auto. +rewrite <-(mul_0_l c), <-mul_lt_mono_pos_r, <-mul_le_mono_pos_r by trivial. apply mod_always_pos. (* equation *) rewrite (div_mod a b) at 1; [|order]. rewrite mul_add_distr_r. rewrite add_cancel_r. -rewrite <- 2 mul_assoc. rewrite (mul_comm c); auto. +rewrite <- 2 mul_assoc. now rewrite (mul_comm c). Qed. Lemma div_mul_cancel_l : forall a b c, b~=0 -> 0<c -> (c*a)/(c*b) == a/b. Proof. -intros. rewrite !(mul_comm c); apply div_mul_cancel_r; auto. +intros. rewrite !(mul_comm c); now apply div_mul_cancel_r. Qed. Lemma mul_mod_distr_l: forall a b c, b~=0 -> 0<c -> @@ -543,7 +544,7 @@ Proof. intros. rewrite <- (add_cancel_l _ _ ((c*b)* ((c*a)/(c*b)))). rewrite <- div_mod. -rewrite div_mul_cancel_l; auto. +rewrite div_mul_cancel_l by trivial. rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order. apply div_mod; order. rewrite <- neq_mul_0; intuition; order. @@ -552,7 +553,7 @@ Qed. Lemma mul_mod_distr_r: forall a b c, b~=0 -> 0<c -> (a*c) mod (b*c) == (a mod b) * c. Proof. - intros. rewrite !(mul_comm _ c); rewrite mul_mod_distr_l; auto. + intros. rewrite !(mul_comm _ c); now rewrite mul_mod_distr_l. Qed. @@ -561,8 +562,8 @@ Qed. Theorem mod_mod: forall a n, n~=0 -> (a mod n) mod n == a mod n. Proof. -intros. rewrite mod_small_iff; auto. -apply mod_always_pos; auto. +intros. rewrite mod_small_iff by trivial. +now apply mod_always_pos. Qed. Lemma mul_mod_idemp_l : forall a b n, n~=0 -> @@ -572,20 +573,20 @@ Proof. rewrite (div_mod a n) at 1; [|order]. rewrite add_comm, (mul_comm n), (mul_comm _ b). rewrite mul_add_distr_l, mul_assoc. - intros. rewrite mod_add; auto. - rewrite mul_comm; auto. + rewrite mod_add by trivial. + now rewrite mul_comm. Qed. Lemma mul_mod_idemp_r : forall a b n, n~=0 -> (a*(b mod n)) mod n == (a*b) mod n. Proof. - intros. rewrite !(mul_comm a). apply mul_mod_idemp_l; auto. + intros. rewrite !(mul_comm a). now apply mul_mod_idemp_l. Qed. Theorem mul_mod: forall a b n, n~=0 -> (a * b) mod n == ((a mod n) * (b mod n)) mod n. Proof. - intros. rewrite mul_mod_idemp_l, mul_mod_idemp_r; auto. + intros. now rewrite mul_mod_idemp_l, mul_mod_idemp_r. Qed. Lemma add_mod_idemp_l : forall a b n, n~=0 -> @@ -594,19 +595,19 @@ Proof. intros a b n Hn. symmetry. rewrite (div_mod a n) at 1; [|order]. rewrite <- add_assoc, add_comm, mul_comm. - intros. rewrite mod_add; auto. + now rewrite mod_add. Qed. Lemma add_mod_idemp_r : forall a b n, n~=0 -> (a+(b mod n)) mod n == (a+b) mod n. Proof. - intros. rewrite !(add_comm a). apply add_mod_idemp_l; auto. + intros. rewrite !(add_comm a). now apply add_mod_idemp_l. Qed. Theorem add_mod: forall a b n, n~=0 -> (a+b) mod n == (a mod n + b mod n) mod n. Proof. - intros. rewrite add_mod_idemp_l, add_mod_idemp_r; auto. + intros. now rewrite add_mod_idemp_l, add_mod_idemp_r. Qed. (** With the current convention, the following result isn't always @@ -617,17 +618,17 @@ Lemma div_div : forall a b c, 0<b -> 0<c -> (a/b)/c == a/(b*c). Proof. intros a b c Hb Hc. - apply div_unique with (b*((a/b) mod c) + a mod b); auto. + apply div_unique with (b*((a/b) mod c) + a mod b). (* begin 0<= ... <abs(b*c) *) rewrite abs_mul. - destruct (mod_always_pos (a/b) c), (mod_always_pos a b); auto using div_pos. + destruct (mod_always_pos (a/b) c), (mod_always_pos a b). split. - apply add_nonneg_nonneg; auto. + apply add_nonneg_nonneg; trivial. apply mul_nonneg_nonneg; order. apply lt_le_trans with (b*((a/b) mod c) + abs b). - rewrite <- add_lt_mono_l; auto. + now rewrite <- add_lt_mono_l. rewrite (abs_pos b) by order. - rewrite <- mul_succ_r, <- mul_le_mono_pos_l, le_succ_l; auto. + now rewrite <- mul_succ_r, <- mul_le_mono_pos_l, le_succ_l. (* end 0<= ... < abs(b*c) *) rewrite (div_mod a b) at 1; [|order]. rewrite add_assoc, add_cancel_r. @@ -648,10 +649,10 @@ Lemma mod_divides : forall a b, b~=0 -> Proof. intros a b Hb. split. intros Hab. exists (a/b). rewrite (div_mod a b Hb) at 1. - rewrite Hab; nzsimpl; auto. + rewrite Hab; now nzsimpl. intros (c,Hc). rewrite Hc, mul_comm. -apply mod_mul; auto. +now apply mod_mul. Qed. diff --git a/theories/Numbers/Integer/Abstract/ZDivFloor.v b/theories/Numbers/Integer/Abstract/ZDivFloor.v index c152fa83ea..fe695907d2 100644 --- a/theories/Numbers/Integer/Abstract/ZDivFloor.v +++ b/theories/Numbers/Integer/Abstract/ZDivFloor.v @@ -45,7 +45,7 @@ Module ZDivPropFunct (Import Z : ZDivSig). Module Z' <: NZDivSig. Include Z. Lemma mod_bound : forall a b, 0<=a -> 0<b -> 0 <= a mod b < b. - Proof. intros; apply mod_pos_bound; auto. Qed. + Proof. intros. now apply mod_pos_bound. Qed. End Z'. Module Import NZDivP := NZDivPropFunct Z'. @@ -56,7 +56,7 @@ Lemma mod_eq : Proof. intros. rewrite <- add_move_l. -symmetry. apply div_mod; auto. +symmetry. now apply div_mod. Qed. (** Uniqueness theorems *) @@ -67,13 +67,12 @@ Theorem div_mod_unique : forall b q1 q2 r1 r2 : t, Proof. intros b q1 q2 r1 r2 Hr1 Hr2 EQ. destruct Hr1; destruct Hr2; try (intuition; order). -apply div_mod_unique with b; auto. -rewrite <- opp_inj_wd in EQ. -rewrite 2 opp_add_distr in EQ. rewrite <- 2 mul_opp_l in EQ. +apply div_mod_unique with b; trivial. rewrite <- (opp_inj_wd r1 r2). -apply div_mod_unique with (-b); auto. -rewrite <- opp_lt_mono, opp_nonneg_nonpos; intuition. -rewrite <- opp_lt_mono, opp_nonneg_nonpos; intuition. +apply div_mod_unique with (-b); trivial. +rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto. +rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto. +now rewrite 2 mul_opp_l, <- 2 opp_add_distr, opp_inj_wd. Qed. Theorem div_unique: @@ -81,10 +80,10 @@ Theorem div_unique: Proof. intros a b q r Hr EQ. assert (Hb : b~=0) by (destruct Hr; intuition; order). -rewrite (div_mod a b Hb) in EQ. -destruct (div_mod_unique b (a/b) q (a mod b) r); auto. +destruct (div_mod_unique b q (a/b) r (a mod b)); trivial. destruct Hr; [left; apply mod_pos_bound|right; apply mod_neg_bound]; intuition order. +now rewrite <- div_mod. Qed. Theorem div_unique_pos: @@ -100,10 +99,10 @@ Theorem mod_unique: Proof. intros a b q r Hr EQ. assert (Hb : b~=0) by (destruct Hr; intuition; order). -rewrite (div_mod a b Hb) in EQ. -destruct (div_mod_unique b (a/b) q (a mod b) r); auto. +destruct (div_mod_unique b q (a/b) r (a mod b)); trivial. destruct Hr; [left; apply mod_pos_bound|right; apply mod_neg_bound]; intuition order. +now rewrite <- div_mod. Qed. Theorem mod_unique_pos: @@ -125,7 +124,7 @@ Fact mod_bound_or : forall a b, b~=0 -> 0<=a mod b<b \/ b<a mod b<=0. Proof. intros. destruct (lt_ge_cases 0 b); [left|right]. - apply mod_pos_bound; auto. apply mod_neg_bound; order. + apply mod_pos_bound; trivial. apply mod_neg_bound; order. Qed. Fact opp_mod_bound_or : forall a b, b~=0 -> @@ -142,14 +141,14 @@ Qed. Lemma div_opp_opp : forall a b, b~=0 -> -a/-b == a/b. Proof. intros. symmetry. apply div_unique with (- (a mod b)). -apply opp_mod_bound_or; auto. +now apply opp_mod_bound_or. rewrite mul_opp_l, <- opp_add_distr, <- div_mod; order. Qed. Lemma mod_opp_opp : forall a b, b~=0 -> (-a) mod (-b) == - (a mod b). Proof. intros. symmetry. apply mod_unique with (a/b). -apply opp_mod_bound_or; auto. +now apply opp_mod_bound_or. rewrite mul_opp_l, <- opp_add_distr, <- div_mod; order. Qed. @@ -217,15 +216,15 @@ Lemma mod_opp_r_z : forall a b, b~=0 -> a mod b == 0 -> a mod (-b) == 0. Proof. intros. rewrite <- (opp_involutive a) at 1. -rewrite mod_opp_opp, mod_opp_l_z, opp_0; auto. +now rewrite mod_opp_opp, mod_opp_l_z, opp_0. Qed. Lemma mod_opp_r_nz : forall a b, b~=0 -> a mod b ~= 0 -> a mod (-b) == (a mod b) - b. Proof. intros. rewrite <- (opp_involutive a) at 1. -rewrite mod_opp_opp, mod_opp_l_nz; auto. -rewrite opp_sub_distr, add_comm, add_opp_r; auto. +rewrite mod_opp_opp, mod_opp_l_nz by trivial. +now rewrite opp_sub_distr, add_comm, add_opp_r. Qed. (** The sign of [a mod b] is the one of [b] *) @@ -244,12 +243,12 @@ Qed. Lemma div_same : forall a, a~=0 -> a/a == 1. Proof. intros. pos_or_neg a. apply div_same; order. -rewrite <- div_opp_opp; auto. apply div_same; auto. +rewrite <- div_opp_opp by trivial. now apply div_same. Qed. Lemma mod_same : forall a, a~=0 -> a mod a == 0. Proof. -intros. rewrite mod_eq, div_same; auto. nzsimpl. apply sub_diag. +intros. rewrite mod_eq, div_same by trivial. nzsimpl. apply sub_diag. Qed. (** A division of a small number by a bigger one yields zero. *) @@ -267,18 +266,18 @@ Proof. exact mod_small. Qed. Lemma div_0_l: forall a, a~=0 -> 0/a == 0. Proof. intros. pos_or_neg a. apply div_0_l; order. -rewrite <- div_opp_opp, opp_0; auto. apply div_0_l; auto. +rewrite <- div_opp_opp, opp_0 by trivial. now apply div_0_l. Qed. Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0. Proof. -intros; rewrite mod_eq, div_0_l; nzsimpl; auto. +intros; rewrite mod_eq, div_0_l; now nzsimpl. Qed. Lemma div_1_r: forall a, a/1 == a. Proof. intros. symmetry. apply div_unique with 0. left. split; order || apply lt_0_1. -nzsimpl; auto. +now nzsimpl. Qed. Lemma mod_1_r: forall a, a mod 1 == 0. @@ -302,7 +301,7 @@ Qed. Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0. Proof. -intros. rewrite mod_eq, div_mul; auto. rewrite mul_comm; apply sub_diag. +intros. rewrite mod_eq, div_mul by trivial. rewrite mul_comm; apply sub_diag. Qed. (** * Order results about mod and div *) @@ -324,18 +323,18 @@ intros a b Hb. split. intros EQ. rewrite (div_mod a b Hb), EQ; nzsimpl. -apply mod_bound_or; auto. -destruct 1. apply div_small; auto. -rewrite <- div_opp_opp; auto. apply div_small; auto. -rewrite <- opp_lt_mono, opp_nonneg_nonpos; intuition. +now apply mod_bound_or. +destruct 1. now apply div_small. +rewrite <- div_opp_opp by trivial. apply div_small; trivial. +rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto. Qed. Lemma mod_small_iff : forall a b, b~=0 -> (a mod b == a <-> 0<=a<b \/ b<a<=0). Proof. intros. -rewrite <- div_small_iff, mod_eq; auto. +rewrite <- div_small_iff, mod_eq by trivial. rewrite sub_move_r, <- (add_0_r a) at 1. rewrite add_cancel_l. -rewrite eq_sym_iff, eq_mul_0. intuition. +rewrite eq_sym_iff, eq_mul_0. tauto. Qed. (** As soon as the divisor is strictly greater than 1, @@ -356,7 +355,7 @@ rewrite (mul_lt_mono_pos_l c) by order. nzsimpl. rewrite (add_lt_mono_r _ _ (a mod c)). rewrite <- div_mod by order. -apply lt_le_trans with b; auto. +apply lt_le_trans with b; trivial. rewrite (div_mod b c) at 1; [| order]. rewrite <- add_assoc, <- add_le_mono_l. apply le_trans with (c+0). @@ -379,13 +378,13 @@ intros. rewrite (div_mod a b) at 2; try order. rewrite <- (add_0_r (b*(a/b))) at 1. rewrite <- add_le_mono_l. -destruct (mod_pos_bound a b); auto. +now destruct (mod_pos_bound a b). Qed. Lemma mul_div_ge : forall a b, b<0 -> a <= b*(a/b). Proof. intros. rewrite <- div_opp_opp, opp_le_mono, <-mul_opp_l by order. -apply mul_div_le. rewrite opp_pos_neg; auto. +apply mul_div_le. now rewrite opp_pos_neg. Qed. (** ... and moreover it is the larger such integer, since [S(a/b)] @@ -404,7 +403,7 @@ Qed. Lemma mul_succ_div_lt: forall a b, b<0 -> b*(S (a/b)) < a. Proof. intros. rewrite <- div_opp_opp, opp_lt_mono, <-mul_opp_l by order. -apply mul_succ_div_gt. rewrite opp_pos_neg; auto. +apply mul_succ_div_gt. now rewrite opp_pos_neg. Qed. (** NB: The four previous properties could be used as @@ -426,9 +425,9 @@ Theorem div_lt_upper_bound: forall a b q, 0<b -> a < b*q -> a/b < q. Proof. intros. -rewrite (mul_lt_mono_pos_l b); auto. -apply le_lt_trans with a; auto. -apply mul_div_le; auto. +rewrite (mul_lt_mono_pos_l b) by trivial. +apply le_lt_trans with a; trivial. +now apply mul_div_le. Qed. Theorem div_le_upper_bound: @@ -436,7 +435,7 @@ Theorem div_le_upper_bound: Proof. intros. rewrite <- (div_mul q b) by order. -apply div_le_mono; auto. rewrite mul_comm; auto. +apply div_le_mono; trivial. now rewrite mul_comm. Qed. Theorem div_le_lower_bound: @@ -444,7 +443,7 @@ Theorem div_le_lower_bound: Proof. intros. rewrite <- (div_mul q b) by order. -apply div_le_mono; auto. rewrite mul_comm; auto. +apply div_le_mono; trivial. now rewrite mul_comm. Qed. (** A division respects opposite monotonicity for the divisor *) @@ -459,10 +458,10 @@ Lemma mod_add : forall a b c, c~=0 -> Proof. intros. symmetry. -apply mod_unique with (a/c+b); auto. -apply mod_bound_or; auto. +apply mod_unique with (a/c+b); trivial. +now apply mod_bound_or. rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order. -rewrite mul_comm; auto. +now rewrite mul_comm. Qed. Lemma div_add : forall a b c, c~=0 -> @@ -473,14 +472,14 @@ apply (mul_cancel_l _ _ c); try order. apply (add_cancel_r _ _ ((a+b*c) mod c)). rewrite <- div_mod, mod_add by order. rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order. -rewrite mul_comm; auto. +now rewrite mul_comm. Qed. Lemma div_add_l: forall a b c, b~=0 -> (a * b + c) / b == a + c / b. Proof. intros a b c. rewrite (add_comm _ c), (add_comm a). - intros. apply div_add; auto. + now apply div_add. Qed. (** Cancellations. *) @@ -493,21 +492,21 @@ symmetry. apply div_unique with ((a mod b)*c). (* ineqs *) destruct (lt_ge_cases 0 c). -rewrite <-(mul_0_l c), <-2mul_lt_mono_pos_r, <-2mul_le_mono_pos_r; auto. -apply mod_bound_or; auto. +rewrite <-(mul_0_l c), <-2mul_lt_mono_pos_r, <-2mul_le_mono_pos_r by trivial. +now apply mod_bound_or. rewrite <-(mul_0_l c), <-2mul_lt_mono_neg_r, <-2mul_le_mono_neg_r by order. -destruct (mod_bound_or a b); intuition. +destruct (mod_bound_or a b); tauto. (* equation *) rewrite (div_mod a b) at 1; [|order]. rewrite mul_add_distr_r. rewrite add_cancel_r. -rewrite <- 2 mul_assoc. rewrite (mul_comm c); auto. +rewrite <- 2 mul_assoc. now rewrite (mul_comm c). Qed. Lemma div_mul_cancel_l : forall a b c, b~=0 -> c~=0 -> (c*a)/(c*b) == a/b. Proof. -intros. rewrite !(mul_comm c); apply div_mul_cancel_r; auto. +intros. rewrite !(mul_comm c); now apply div_mul_cancel_r. Qed. Lemma mul_mod_distr_l: forall a b c, b~=0 -> c~=0 -> @@ -516,7 +515,7 @@ Proof. intros. rewrite <- (add_cancel_l _ _ ((c*b)* ((c*a)/(c*b)))). rewrite <- div_mod. -rewrite div_mul_cancel_l; auto. +rewrite div_mul_cancel_l by trivial. rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order. apply div_mod; order. rewrite <- neq_mul_0; auto. @@ -525,7 +524,7 @@ Qed. Lemma mul_mod_distr_r: forall a b c, b~=0 -> c~=0 -> (a*c) mod (b*c) == (a mod b) * c. Proof. - intros. rewrite !(mul_comm _ c); rewrite mul_mod_distr_l; auto. + intros. rewrite !(mul_comm _ c); now rewrite mul_mod_distr_l. Qed. @@ -534,8 +533,8 @@ Qed. Theorem mod_mod: forall a n, n~=0 -> (a mod n) mod n == a mod n. Proof. -intros. rewrite mod_small_iff; auto. -apply mod_bound_or; auto. +intros. rewrite mod_small_iff by trivial. +now apply mod_bound_or. Qed. Lemma mul_mod_idemp_l : forall a b n, n~=0 -> @@ -545,20 +544,20 @@ Proof. rewrite (div_mod a n) at 1; [|order]. rewrite add_comm, (mul_comm n), (mul_comm _ b). rewrite mul_add_distr_l, mul_assoc. - intros. rewrite mod_add; auto. - rewrite mul_comm; auto. + intros. rewrite mod_add by trivial. + now rewrite mul_comm. Qed. Lemma mul_mod_idemp_r : forall a b n, n~=0 -> (a*(b mod n)) mod n == (a*b) mod n. Proof. - intros. rewrite !(mul_comm a). apply mul_mod_idemp_l; auto. + intros. rewrite !(mul_comm a). now apply mul_mod_idemp_l. Qed. Theorem mul_mod: forall a b n, n~=0 -> (a * b) mod n == ((a mod n) * (b mod n)) mod n. Proof. - intros. rewrite mul_mod_idemp_l, mul_mod_idemp_r; auto. + intros. now rewrite mul_mod_idemp_l, mul_mod_idemp_r. Qed. Lemma add_mod_idemp_l : forall a b n, n~=0 -> @@ -567,19 +566,19 @@ Proof. intros a b n Hn. symmetry. rewrite (div_mod a n) at 1; [|order]. rewrite <- add_assoc, add_comm, mul_comm. - intros. rewrite mod_add; auto. + intros. now rewrite mod_add. Qed. Lemma add_mod_idemp_r : forall a b n, n~=0 -> (a+(b mod n)) mod n == (a+b) mod n. Proof. - intros. rewrite !(add_comm a). apply add_mod_idemp_l; auto. + intros. rewrite !(add_comm a). now apply add_mod_idemp_l. Qed. Theorem add_mod: forall a b n, n~=0 -> (a+b) mod n == (a mod n + b mod n) mod n. Proof. - intros. rewrite add_mod_idemp_l, add_mod_idemp_r; auto. + intros. now rewrite add_mod_idemp_l, add_mod_idemp_r. Qed. (** With the current convention, the following result isn't always @@ -590,16 +589,16 @@ Lemma div_div : forall a b c, 0<b -> 0<c -> (a/b)/c == a/(b*c). Proof. intros a b c Hb Hc. - apply div_unique with (b*((a/b) mod c) + a mod b); auto. + apply div_unique with (b*((a/b) mod c) + a mod b). (* begin 0<= ... <b*c \/ ... *) left. - destruct (mod_pos_bound (a/b) c), (mod_pos_bound a b); auto using div_pos. + destruct (mod_pos_bound (a/b) c), (mod_pos_bound a b); trivial. split. - apply add_nonneg_nonneg; auto. + apply add_nonneg_nonneg; trivial. apply mul_nonneg_nonneg; order. apply lt_le_trans with (b*((a/b) mod c) + b). - rewrite <- add_lt_mono_l; auto. - rewrite <- mul_succ_r, <- mul_le_mono_pos_l, le_succ_l; auto. + now rewrite <- add_lt_mono_l. + now rewrite <- mul_succ_r, <- mul_le_mono_pos_l, le_succ_l. (* end 0<= ... < b*c \/ ... *) rewrite (div_mod a b) at 1; [|order]. rewrite add_assoc, add_cancel_r. @@ -620,10 +619,10 @@ Lemma mod_divides : forall a b, b~=0 -> Proof. intros a b Hb. split. intros Hab. exists (a/b). rewrite (div_mod a b Hb) at 1. - rewrite Hab; nzsimpl; auto. + rewrite Hab. now nzsimpl. intros (c,Hc). rewrite Hc, mul_comm. -apply mod_mul; auto. +now apply mod_mul. Qed. End ZDivPropFunct. diff --git a/theories/Numbers/Integer/Abstract/ZDivTrunc.v b/theories/Numbers/Integer/Abstract/ZDivTrunc.v index eca1e2ba17..15b8a9cd02 100644 --- a/theories/Numbers/Integer/Abstract/ZDivTrunc.v +++ b/theories/Numbers/Integer/Abstract/ZDivTrunc.v @@ -57,35 +57,33 @@ Lemma mod_eq : Proof. intros. rewrite <- add_move_l. -symmetry. apply div_mod; auto. +symmetry. now apply div_mod. Qed. (** A few sign rules (simple ones) *) Lemma mod_opp_opp : forall a b, b ~= 0 -> (-a) mod (-b) == - (a mod b). -Proof. intros. rewrite mod_opp_r, mod_opp_l; auto. Qed. +Proof. intros. now rewrite mod_opp_r, mod_opp_l. Qed. Lemma div_opp_l : forall a b, b ~= 0 -> (-a)/b == -(a/b). Proof. intros. -rewrite <- (mul_cancel_l _ _ b); auto. -rewrite <- (add_cancel_r _ _ ((-a) mod b)); auto. -rewrite <- div_mod; auto. -rewrite mod_opp_l, mul_opp_r, <- opp_add_distr, <- div_mod; auto. +rewrite <- (mul_cancel_l _ _ b) by trivial. +rewrite <- (add_cancel_r _ _ ((-a) mod b)). +now rewrite <- div_mod, mod_opp_l, mul_opp_r, <- opp_add_distr, <- div_mod. Qed. Lemma div_opp_r : forall a b, b ~= 0 -> a/(-b) == -(a/b). Proof. intros. -assert (-b ~= 0) by (rewrite eq_opp_l, opp_0; auto). -rewrite <- (mul_cancel_l _ _ (-b)); auto. -rewrite <- (add_cancel_r _ _ (a mod (-b))); auto. -rewrite <- div_mod; auto. -rewrite mod_opp_r, mul_opp_opp, <- div_mod; auto. +assert (-b ~= 0) by (now rewrite eq_opp_l, opp_0). +rewrite <- (mul_cancel_l _ _ (-b)) by trivial. +rewrite <- (add_cancel_r _ _ (a mod (-b))). +now rewrite <- div_mod, mod_opp_r, mul_opp_opp, <- div_mod. Qed. Lemma div_opp_opp : forall a b, b ~= 0 -> (-a)/(-b) == a/b. -Proof. intros. rewrite div_opp_r, div_opp_l, opp_involutive; auto. Qed. +Proof. intros. now rewrite div_opp_r, div_opp_l, opp_involutive. Qed. (** The sign of [a mod b] is the one of [a] *) @@ -95,9 +93,9 @@ Lemma mod_sign : forall a b, b~=0 -> 0 <= (a mod b) * a. Proof. assert (Aux : forall a b, 0<b -> 0 <= (a mod b) * a). intros. pos_or_neg a. - apply mul_nonneg_nonneg; auto. destruct (mod_bound a b); auto. + apply mul_nonneg_nonneg; trivial. now destruct (mod_bound a b). rewrite <- mul_opp_opp, <- mod_opp_l by order. - apply mul_nonneg_nonneg; try order. destruct (mod_bound (-a) b); try order. + apply mul_nonneg_nonneg; try order. destruct (mod_bound (-a) b); order. intros. pos_or_neg b. apply Aux; order. rewrite <- mod_opp_r by order. apply Aux; order. Qed. @@ -111,34 +109,33 @@ Theorem div_mod_unique : forall b q1 q2 r1 r2 : t, Proof. intros b q1 q2 r1 r2 Hr1 Hr2 EQ. destruct Hr1; destruct Hr2; try (intuition; order). -apply div_mod_unique with b; auto. -rewrite <- opp_inj_wd in EQ. -rewrite 2 opp_add_distr in EQ. rewrite <- 2 mul_opp_l in EQ. +apply div_mod_unique with b; trivial. rewrite <- (opp_inj_wd r1 r2). -apply div_mod_unique with (-b); auto. -rewrite <- opp_lt_mono, opp_nonneg_nonpos; intuition. -rewrite <- opp_lt_mono, opp_nonneg_nonpos; intuition. +apply div_mod_unique with (-b); trivial. +rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto. +rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto. +now rewrite 2 mul_opp_l, <- 2 opp_add_distr, opp_inj_wd. Qed. Theorem div_unique: forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> q == a/b. -Proof. intros; apply div_unique with r; auto. Qed. +Proof. intros; now apply div_unique with r. Qed. Theorem mod_unique: forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> r == a mod b. -Proof. intros; apply mod_unique with q; auto. Qed. +Proof. intros; now apply mod_unique with q. Qed. (** A division by itself returns 1 *) Lemma div_same : forall a, a~=0 -> a/a == 1. Proof. intros. pos_or_neg a. apply div_same; order. -rewrite <- div_opp_opp; auto. apply div_same; auto. +rewrite <- div_opp_opp by trivial. now apply div_same. Qed. Lemma mod_same : forall a, a~=0 -> a mod a == 0. Proof. -intros. rewrite mod_eq, div_same; auto. nzsimpl. apply sub_diag. +intros. rewrite mod_eq, div_same by trivial. nzsimpl. apply sub_diag. Qed. (** A division of a small number by a bigger one yields zero. *) @@ -156,17 +153,17 @@ Proof. exact mod_small. Qed. Lemma div_0_l: forall a, a~=0 -> 0/a == 0. Proof. intros. pos_or_neg a. apply div_0_l; order. -rewrite <- div_opp_opp, opp_0; auto. apply div_0_l; auto. +rewrite <- div_opp_opp, opp_0 by trivial. now apply div_0_l. Qed. Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0. Proof. -intros; rewrite mod_eq, div_0_l; nzsimpl; auto. +intros; rewrite mod_eq, div_0_l; now nzsimpl. Qed. Lemma div_1_r: forall a, a/1 == a. Proof. -intros. pos_or_neg a. apply div_1_r; auto. +intros. pos_or_neg a. now apply div_1_r. apply opp_inj. rewrite <- div_opp_l. apply div_1_r; order. intro EQ; symmetry in EQ; revert EQ; apply lt_neq, lt_0_1. Qed. @@ -193,7 +190,7 @@ Qed. Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0. Proof. -intros. rewrite mod_eq, div_mul; auto. rewrite mul_comm; apply sub_diag. +intros. rewrite mod_eq, div_mul by trivial. rewrite mul_comm; apply sub_diag. Qed. (** * Order results about mod and div *) @@ -213,13 +210,13 @@ Proof. exact div_str_pos. Qed. Definition abs z := max z (-z). Lemma abs_pos : forall z, 0<=z -> abs z == z. Proof. -intros; apply max_l. apply le_trans with 0; auto. -rewrite opp_nonpos_nonneg; auto. +intros; apply max_l. apply le_trans with 0; trivial. +now rewrite opp_nonpos_nonneg. Qed. Lemma abs_neg : forall z, 0<=-z -> abs z == -z. Proof. -intros; apply max_r. apply le_trans with 0; auto. -rewrite <- opp_nonneg_nonpos; auto. +intros; apply max_r. apply le_trans with 0; trivial. +now rewrite <- opp_nonneg_nonpos. Qed. (** END TODO *) @@ -240,7 +237,7 @@ Lemma mod_small_iff : forall a b, b~=0 -> (a mod b == a <-> abs a < abs b). Proof. intros. rewrite mod_eq, <- div_small_iff by order. rewrite sub_move_r, <- (add_0_r a) at 1. rewrite add_cancel_l. -rewrite eq_sym_iff, eq_mul_0. intuition. +rewrite eq_sym_iff, eq_mul_0. tauto. Qed. (** As soon as the divisor is strictly greater than 1, @@ -281,8 +278,8 @@ Lemma mul_div_ge : forall a b, a<=0 -> b~=0 -> a <= b*(a/b) <= 0. Proof. intros. rewrite <- opp_nonneg_nonpos, opp_le_mono, <-mul_opp_r, <-div_opp_l by order. -destruct (mul_div_le (-a) b); auto. -rewrite opp_nonneg_nonpos; auto. +rewrite <- opp_nonneg_nonpos in *. +destruct (mul_div_le (-a) b); tauto. Qed. (** For positive numbers, considering [S (a/b)] leads to an upper bound for [a] *) @@ -296,32 +293,31 @@ Lemma mul_pred_div_lt: forall a b, a<=0 -> 0<b -> b*(P (a/b)) < a. Proof. intros. rewrite opp_lt_mono, <- mul_opp_r, opp_pred, <- div_opp_l by order. -apply mul_succ_div_gt; auto. -rewrite opp_nonneg_nonpos; auto. +rewrite <- opp_nonneg_nonpos in *. +now apply mul_succ_div_gt. Qed. Lemma mul_pred_div_gt: forall a b, 0<=a -> b<0 -> a < b*(P (a/b)). Proof. intros. rewrite <- mul_opp_opp, opp_pred, <- div_opp_r by order. -apply mul_succ_div_gt; auto. -rewrite opp_pos_neg; auto. +rewrite <- opp_pos_neg in *. +now apply mul_succ_div_gt. Qed. Lemma mul_succ_div_lt: forall a b, a<=0 -> b<0 -> b*(S (a/b)) < a. Proof. intros. rewrite opp_lt_mono, <- mul_opp_l, <- div_opp_opp by order. -apply mul_succ_div_gt; auto. -rewrite opp_nonneg_nonpos; auto. -rewrite opp_pos_neg; auto. +rewrite <- opp_nonneg_nonpos, <- opp_pos_neg in *. +now apply mul_succ_div_gt. Qed. (** Inequality [mul_div_le] is exact iff the modulo is zero. *) Lemma div_exact : forall a b, b~=0 -> (a == b*(a/b) <-> a mod b == 0). Proof. -intros. rewrite mod_eq by order. rewrite sub_move_r; nzsimpl; intuition. +intros. rewrite mod_eq by order. rewrite sub_move_r; nzsimpl; tauto. Qed. (** Some additionnal inequalities about div. *) @@ -335,7 +331,7 @@ Theorem div_le_upper_bound: Proof. intros. rewrite <- (div_mul q b) by order. -apply div_le_mono; auto. rewrite mul_comm; auto. +apply div_le_mono; trivial. now rewrite mul_comm. Qed. Theorem div_le_lower_bound: @@ -343,7 +339,7 @@ Theorem div_le_lower_bound: Proof. intros. rewrite <- (div_mul q b) by order. -apply div_le_mono; auto. rewrite mul_comm; auto. +apply div_le_mono; trivial. now rewrite mul_comm. Qed. (** A division respects opposite monotonicity for the divisor *) @@ -366,27 +362,26 @@ assert (forall a b c, c~=0 -> 0<=a -> 0<=a+b*c -> (a+b*c) mod c == a mod c). rewrite <- mul_opp_opp in *. apply mod_add; order. intros a b c Hc Habc. -destruct (le_0_mul _ _ Habc) as [(Habc',Ha)|(Habc',Ha)]; auto. +destruct (le_0_mul _ _ Habc) as [(Habc',Ha)|(Habc',Ha)]. auto. apply opp_inj. revert Ha Habc'. rewrite <- 2 opp_nonneg_nonpos. -rewrite <- 2 mod_opp_l, opp_add_distr, <- mul_opp_l by order; auto. +rewrite <- 2 mod_opp_l, opp_add_distr, <- mul_opp_l by order. auto. Qed. Lemma div_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a -> (a + b * c) / c == a / c + b. Proof. intros. -rewrite <- (mul_cancel_l _ _ c) by auto. +rewrite <- (mul_cancel_l _ _ c) by trivial. rewrite <- (add_cancel_r _ _ ((a+b*c) mod c)). -rewrite <- div_mod; auto. -rewrite mod_add; auto. -rewrite mul_add_distr_l, add_shuffle0, <-div_mod, mul_comm; auto. +rewrite <- div_mod, mod_add by trivial. +now rewrite mul_add_distr_l, add_shuffle0, <-div_mod, mul_comm. Qed. Lemma div_add_l: forall a b c, b~=0 -> 0 <= (a*b+c)*c -> (a * b + c) / b == a + c / b. Proof. - intros a b c. rewrite add_comm, (add_comm a). intros; apply div_add; auto. + intros a b c. rewrite add_comm, (add_comm a). now apply div_add. Qed. (** Cancellations. *) @@ -410,23 +405,23 @@ Qed. Lemma div_mul_cancel_l : forall a b c, b~=0 -> c~=0 -> (c*a)/(c*b) == a/b. Proof. -intros. rewrite !(mul_comm c); apply div_mul_cancel_r; auto. +intros. rewrite !(mul_comm c); now apply div_mul_cancel_r. Qed. Lemma mul_mod_distr_r: forall a b c, b~=0 -> c~=0 -> (a*c) mod (b*c) == (a mod b) * c. Proof. intros. -assert (b*c ~= 0) by (rewrite <- neq_mul_0; intuition). -rewrite ! mod_eq by auto. +assert (b*c ~= 0) by (rewrite <- neq_mul_0; tauto). +rewrite ! mod_eq by trivial. rewrite div_mul_cancel_r by order. -rewrite mul_sub_distr_r, <- !mul_assoc, (mul_comm (a/b) c); auto. +now rewrite mul_sub_distr_r, <- !mul_assoc, (mul_comm (a/b) c). Qed. Lemma mul_mod_distr_l: forall a b c, b~=0 -> c~=0 -> (c*a) mod (c*b) == c * (a mod b). Proof. -intros; rewrite !(mul_comm c); apply mul_mod_distr_r; auto. +intros; rewrite !(mul_comm c); now apply mul_mod_distr_r. Qed. (** Operations modulo. *) @@ -435,7 +430,7 @@ Theorem mod_mod: forall a n, n~=0 -> (a mod n) mod n == a mod n. Proof. intros. pos_or_neg a; pos_or_neg n. apply mod_mod; order. -rewrite <- ! (mod_opp_r _ n) by auto. apply mod_mod; order. +rewrite <- ! (mod_opp_r _ n) by trivial. apply mod_mod; order. apply opp_inj. rewrite <- !mod_opp_l by order. apply mod_mod; order. apply opp_inj. rewrite <- !mod_opp_opp by order. apply mod_mod; order. Qed. @@ -449,10 +444,10 @@ assert (Aux1 : forall a b n, 0<=a -> 0<=b -> n~=0 -> rewrite <- ! (mod_opp_r _ n) by order. apply mul_mod_idemp_l; order. assert (Aux2 : forall a b n, 0<=a -> n~=0 -> ((a mod n)*b) mod n == (a*b) mod n). - intros. pos_or_neg b. apply Aux1; auto. + intros. pos_or_neg b. now apply Aux1. apply opp_inj. rewrite <-2 mod_opp_l, <-2 mul_opp_r by order. apply Aux1; order. -intros a b n Hn. pos_or_neg a. apply Aux2; auto. +intros a b n Hn. pos_or_neg a. now apply Aux2. apply opp_inj. rewrite <-2 mod_opp_l, <-2 mul_opp_l, <-mod_opp_l by order. apply Aux2; order. Qed. @@ -460,13 +455,13 @@ Qed. Lemma mul_mod_idemp_r : forall a b n, n~=0 -> (a*(b mod n)) mod n == (a*b) mod n. Proof. -intros. rewrite !(mul_comm a). apply mul_mod_idemp_l; auto. +intros. rewrite !(mul_comm a). now apply mul_mod_idemp_l. Qed. Theorem mul_mod: forall a b n, n~=0 -> (a * b) mod n == ((a mod n) * (b mod n)) mod n. Proof. -intros. rewrite mul_mod_idemp_l, mul_mod_idemp_r; auto. +intros. now rewrite mul_mod_idemp_l, mul_mod_idemp_r. Qed. (** addition and modulo @@ -486,24 +481,23 @@ assert (Aux : forall a b n, 0<=a -> 0<=b -> n~=0 -> intros. pos_or_neg n. apply add_mod_idemp_l; order. rewrite <- ! (mod_opp_r _ n) by order. apply add_mod_idemp_l; order. intros a b n Hn Hab. destruct (le_0_mul _ _ Hab) as [(Ha,Hb)|(Ha,Hb)]. -apply Aux; auto. +now apply Aux. apply opp_inj. rewrite <-2 mod_opp_l, 2 opp_add_distr, <-mod_opp_l by order. -apply Aux; auto. -rewrite opp_nonneg_nonpos; auto. -rewrite opp_nonneg_nonpos; auto. +rewrite <- opp_nonneg_nonpos in *. +now apply Aux. Qed. Lemma add_mod_idemp_r : forall a b n, n~=0 -> 0 <= a*b -> (a+(b mod n)) mod n == (a+b) mod n. Proof. -intros. rewrite !(add_comm a). apply add_mod_idemp_l; auto. -rewrite mul_comm; auto. +intros. rewrite !(add_comm a). apply add_mod_idemp_l; trivial. +now rewrite mul_comm. Qed. Theorem add_mod: forall a b n, n~=0 -> 0 <= a*b -> (a+b) mod n == (a mod n + b mod n) mod n. Proof. -intros a b n Hn Hab. rewrite add_mod_idemp_l, add_mod_idemp_r; auto. +intros a b n Hn Hab. rewrite add_mod_idemp_l, add_mod_idemp_r; trivial. destruct (le_0_mul _ _ Hab) as [(Ha,Hb)|(Ha,Hb)]; destruct (le_0_mul _ _ (mod_sign b n Hn)) as [(Hb',Hm)|(Hb',Hm)]; auto using mul_nonneg_nonneg, mul_nonpos_nonpos. @@ -519,15 +513,17 @@ Lemma div_div : forall a b c, b~=0 -> c~=0 -> Proof. assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a/b)/c == a/(b*c)). intros. pos_or_neg c. apply div_div; order. - apply opp_inj. rewrite <- 2 div_opp_r, <- mul_opp_r; auto. apply div_div; order. + apply opp_inj. rewrite <- 2 div_opp_r, <- mul_opp_r; trivial. + apply div_div; order. rewrite <- neq_mul_0; intuition order. assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a/b)/c == a/(b*c)). intros. pos_or_neg b. apply Aux1; order. - apply opp_inj. rewrite <- div_opp_l, <- 2 div_opp_r, <- mul_opp_l; auto. + apply opp_inj. rewrite <- div_opp_l, <- 2 div_opp_r, <- mul_opp_l; trivial. + apply Aux1; trivial. rewrite <- neq_mul_0; intuition order. intros. pos_or_neg a. apply Aux2; order. apply opp_inj. rewrite <- 3 div_opp_l; try order. apply Aux2; order. -rewrite <- neq_mul_0; intuition order. +rewrite <- neq_mul_0. tauto. Qed. (** A last inequality: *) @@ -543,8 +539,8 @@ Lemma mod_divides : forall a b, b~=0 -> Proof. intros a b Hb. split. intros Hab. exists (a/b). rewrite (div_mod a b Hb) at 1. - rewrite Hab; nzsimpl; auto. - intros (c,Hc). rewrite Hc, mul_comm. apply mod_mul; auto. + rewrite Hab; now nzsimpl. + intros (c,Hc). rewrite Hc, mul_comm. now apply mod_mul. Qed. End ZDivPropFunct. diff --git a/theories/Numbers/NatInt/NZDiv.v b/theories/Numbers/NatInt/NZDiv.v index bb63b420b3..12cf01cae8 100644 --- a/theories/Numbers/NatInt/NZDiv.v +++ b/theories/Numbers/NatInt/NZDiv.v @@ -55,13 +55,13 @@ assert (U : forall q1 q2 r1 r2, contradict EQ. apply lt_neq. apply lt_le_trans with (b*q1+b). - rewrite <- add_lt_mono_l; intuition. + rewrite <- add_lt_mono_l. tauto. apply le_trans with (b*q2). rewrite mul_comm, <- mul_succ_l, mul_comm. apply mul_le_mono_nonneg_l; intuition; try order. rewrite le_succ_l; auto. rewrite <- (add_0_r (b*q2)) at 1. - rewrite <- add_le_mono_l; intuition. + rewrite <- add_le_mono_l. tauto. intros q1 q2 r1 r2 Hr1 Hr2 EQ; destruct (lt_trichotomy q1 q2) as [LT|[EQ'|GT]]. elim (U q1 q2 r1 r2); intuition. @@ -74,9 +74,9 @@ Theorem div_unique: a == b*q + r -> q == a/b. Proof. intros a b q r Ha (Hb,Hr) EQ. -rewrite (div_mod a b) in EQ by order. -destruct (div_mod_unique b (a/b) q (a mod b) r); auto. +destruct (div_mod_unique b q (a/b) r (a mod b)); auto. apply mod_bound; order. +rewrite <- div_mod; order. Qed. Theorem mod_unique: @@ -84,9 +84,9 @@ Theorem mod_unique: a == b*q + r -> r == a mod b. Proof. intros a b q r Ha (Hb,Hr) EQ. -rewrite (div_mod a b) in EQ by order. -destruct (div_mod_unique b (a/b) q (a mod b) r); auto. +destruct (div_mod_unique b q (a/b) r (a mod b)); auto. apply mod_bound; order. +rewrite <- div_mod; order. Qed. @@ -96,14 +96,14 @@ Lemma div_same : forall a, 0<a -> a/a == 1. Proof. intros. symmetry. apply div_unique with 0; intuition; try order. -nzsimpl; auto. +now nzsimpl. Qed. Lemma mod_same : forall a, 0<a -> a mod a == 0. Proof. intros. symmetry. apply mod_unique with 1; intuition; try order. -nzsimpl; auto. +now nzsimpl. Qed. (** A division of a small number by a bigger one yields zero. *) @@ -112,7 +112,7 @@ Theorem div_small: forall a b, 0<=a<b -> a/b == 0. Proof. intros. symmetry. apply div_unique with a; intuition; try order. -nzsimpl; auto. +now nzsimpl. Qed. (** Same situation, in term of modulo: *) @@ -121,7 +121,7 @@ Theorem mod_small: forall a b, 0<=a<b -> a mod b == a. Proof. intros. symmetry. apply mod_unique with 0; intuition; try order. -nzsimpl; auto. +now nzsimpl. Qed. (** * Basic values of divisions and modulo. *) @@ -140,14 +140,14 @@ Lemma div_1_r: forall a, 0<=a -> a/1 == a. Proof. intros. symmetry. apply div_unique with 0; try split; try order; try apply lt_0_1. -nzsimpl; auto. +now nzsimpl. Qed. Lemma mod_1_r: forall a, 0<=a -> a mod 1 == 0. Proof. intros. symmetry. apply mod_unique with a; try split; try order; try apply lt_0_1. -nzsimpl; auto. +now nzsimpl. Qed. Lemma div_1_l: forall a, 1<a -> 1/a == 0. @@ -227,7 +227,7 @@ intros a b Ha Hb. split; intros H; auto using mod_small. rewrite <- div_small_iff; auto. rewrite <- (mul_cancel_l _ _ b) by order. rewrite <- (add_cancel_r _ _ (a mod b)). -rewrite <- div_mod, H by order. nzsimpl; auto. +rewrite <- div_mod, H by order. now nzsimpl. Qed. Lemma div_str_pos_iff : forall a b, 0<=a -> 0<b -> (0<a/b <-> b<=a). @@ -364,7 +364,7 @@ Proof. apply mod_unique with (a/c+b); auto. apply mod_bound; auto. rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order. - rewrite mul_comm; auto. + now rewrite mul_comm. Qed. Lemma div_add : forall a b c, 0<=a -> 0<=a+b*c -> 0<c -> @@ -375,7 +375,7 @@ Proof. apply (add_cancel_r _ _ ((a+b*c) mod c)). rewrite <- div_mod, mod_add by order. rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order. - rewrite mul_comm; auto. + now rewrite mul_comm. Qed. Lemma div_add_l: forall a b c, 0<=c -> 0<=a*b+c -> 0<b -> @@ -400,7 +400,7 @@ Proof. rewrite (div_mod a b) at 1; [|order]. rewrite mul_add_distr_r. rewrite add_cancel_r. - rewrite <- 2 mul_assoc. rewrite (mul_comm c); auto. + rewrite <- 2 mul_assoc. now rewrite (mul_comm c). Qed. Lemma div_mul_cancel_l : forall a b c, 0<=a -> 0<b -> 0<c -> @@ -424,7 +424,7 @@ Qed. Lemma mul_mod_distr_r: forall a b c, 0<=a -> 0<b -> 0<c -> (a*c) mod (b*c) == (a mod b) * c. Proof. - intros. rewrite !(mul_comm _ c); rewrite mul_mod_distr_l; auto. + intros. rewrite !(mul_comm _ c); now rewrite mul_mod_distr_l. Qed. (** Operations modulo. *) @@ -432,7 +432,7 @@ Qed. Theorem mod_mod: forall a n, 0<=a -> 0<n -> (a mod n) mod n == a mod n. Proof. - intros. destruct (mod_bound a n); auto. rewrite mod_small_iff; auto. + intros. destruct (mod_bound a n); auto. now rewrite mod_small_iff. Qed. Lemma mul_mod_idemp_l : forall a b n, 0<=a -> 0<=b -> 0<n -> @@ -444,7 +444,7 @@ Proof. rewrite add_comm, (mul_comm n), (mul_comm _ b). rewrite mul_add_distr_l, mul_assoc. intros. rewrite mod_add; auto. - rewrite mul_comm; auto. + now rewrite mul_comm. apply mul_nonneg_nonneg; destruct (mod_bound a n); auto. Qed. @@ -457,8 +457,8 @@ Qed. Theorem mul_mod: forall a b n, 0<=a -> 0<=b -> 0<n -> (a * b) mod n == ((a mod n) * (b mod n)) mod n. Proof. - intros. rewrite mul_mod_idemp_l, mul_mod_idemp_r; auto. - destruct (mod_bound b n); auto. + intros. rewrite mul_mod_idemp_l, mul_mod_idemp_r; trivial. + now destruct (mod_bound b n). Qed. Lemma add_mod_idemp_l : forall a b n, 0<=a -> 0<=b -> 0<n -> @@ -468,7 +468,7 @@ Proof. generalize (add_nonneg_nonneg _ _ Ha Hb). rewrite (div_mod a n) at 1 2; [|order]. rewrite <- add_assoc, add_comm, mul_comm. - intros. rewrite mod_add; auto. + intros. rewrite mod_add; trivial. apply add_nonneg_nonneg; auto. destruct (mod_bound a n); auto. Qed. @@ -481,15 +481,15 @@ Qed. Theorem add_mod: forall a b n, 0<=a -> 0<=b -> 0<n -> (a+b) mod n == (a mod n + b mod n) mod n. Proof. - intros. rewrite add_mod_idemp_l, add_mod_idemp_r; auto. - destruct (mod_bound b n); auto. + intros. rewrite add_mod_idemp_l, add_mod_idemp_r; trivial. + now destruct (mod_bound b n). Qed. Lemma div_div : forall a b c, 0<=a -> 0<b -> 0<c -> (a/b)/c == a/(b*c). Proof. intros a b c Ha Hb Hc. - apply div_unique with (b*((a/b) mod c) + a mod b); auto. + apply div_unique with (b*((a/b) mod c) + a mod b); trivial. (* begin 0<= ... <b*c *) destruct (mod_bound (a/b) c), (mod_bound a b); auto using div_pos. split. |
