diff options
| author | narboux | 2004-03-26 16:29:23 +0000 |
|---|---|---|
| committer | narboux | 2004-03-26 16:29:23 +0000 |
| commit | f28fa4a684f767ccc3c49e319f35bd12c7a9ad00 (patch) | |
| tree | 837cd5cf43c0300813364eba310fba96ea55abd8 | |
| parent | 4768b58f2dad970b0d8b5984842de06df4139a71 (diff) | |
*** empty log message ***
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@8512 85f007b7-540e-0410-9357-904b9bb8a0f7
| -rw-r--r-- | doc/newfaq/main.tex | 35 |
1 files changed, 34 insertions, 1 deletions
diff --git a/doc/newfaq/main.tex b/doc/newfaq/main.tex index d13ce7b8bb..b86a4ffade 100644 --- a/doc/newfaq/main.tex +++ b/doc/newfaq/main.tex @@ -268,18 +268,40 @@ Use some theorem or assumption or exhibits the witness using {\tt exists} tactic \Question[taut]{My goal is a propositional tautology, how can I prove it ?} Just use the {\tt tauto} tactic. +\begin{coq_example*} +Goal forall A B:Prop, A-> A\/B. +intros. +tauto. +Qed. +\end{coq_example*} \Question[firstorder]{My goal is a first order formula, how can I prove it ?} Just use the {\tt firstorder} tactic. + + \Question[cong]{My goal is solvable by a sequence of rewrites, how can I prove it ?} Just use the {\tt congruence} tactic. +\begin{coq_example*} +Goal forall a b c d e, a=d -> b=e -> c+b=d -> c+e=a. +intros. +congruence. +Qed. +\end{coq_example*} + \Question[congnot]{My goal is disequality solvable by a sequence of rewrites, how can I prove it ?} Just use the {\tt congruence} tactic. +%\begin{coq_example*} +%Goal forall a b c d, a<>d -> b=a -> d=c+b -> b<>c+b. +%intros. +%congruence. +%Qed. +%\end{coq_example*} + \Question[ring]{My goal is an equality on some ring (e.g. natural numbers), how can I prove it ?} @@ -311,9 +333,20 @@ Qed. \end{coq_example*} - \Question[omega]{My goal is an inequality on R, how can I prove it ?} + +%\begin{coq_example*} +%Require Import ZArith. +%Require Omega. +%Open Local Scope Z_scope. +%Goal forall a : Z, a*a>0. +%intros. +%omega. +%Qed. +%\end{coq_example*} + + \Question[gb]{My goal is an equation solvable using equational hypothesis on some ring (e.g. natural numbers), how can I prove it ?} Just use the {\tt gb} tactic. |
