aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJasper Hugunin2020-10-08 17:10:19 -0700
committerJasper Hugunin2020-10-08 17:10:19 -0700
commitf02b3e573447a299aa9a2f142703b1ca60fc651b (patch)
tree98a9d781e57f680ef101d52727db08e76082e1bc
parentf96047484333b0b3d37b601abb56a51e56522754 (diff)
Modify Numbers/Integer/Abstract/ZMaxMin.v to compile with -mangle-names
-rw-r--r--theories/Numbers/Integer/Abstract/ZMaxMin.v72
1 files changed, 36 insertions, 36 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZMaxMin.v b/theories/Numbers/Integer/Abstract/ZMaxMin.v
index ed0b0c69a0..4af24b7754 100644
--- a/theories/Numbers/Integer/Abstract/ZMaxMin.v
+++ b/theories/Numbers/Integer/Abstract/ZMaxMin.v
@@ -20,133 +20,133 @@ Include ZMulOrderProp Z.
(** Succ *)
-Lemma succ_max_distr : forall n m, S (max n m) == max (S n) (S m).
+Lemma succ_max_distr n m : S (max n m) == max (S n) (S m).
Proof.
- intros. destruct (le_ge_cases n m);
+ destruct (le_ge_cases n m);
[rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?succ_le_mono.
Qed.
-Lemma succ_min_distr : forall n m, S (min n m) == min (S n) (S m).
+Lemma succ_min_distr n m : S (min n m) == min (S n) (S m).
Proof.
- intros. destruct (le_ge_cases n m);
+ destruct (le_ge_cases n m);
[rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?succ_le_mono.
Qed.
(** Pred *)
-Lemma pred_max_distr : forall n m, P (max n m) == max (P n) (P m).
+Lemma pred_max_distr n m : P (max n m) == max (P n) (P m).
Proof.
- intros. destruct (le_ge_cases n m);
+ destruct (le_ge_cases n m);
[rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?pred_le_mono.
Qed.
-Lemma pred_min_distr : forall n m, P (min n m) == min (P n) (P m).
+Lemma pred_min_distr n m : P (min n m) == min (P n) (P m).
Proof.
- intros. destruct (le_ge_cases n m);
+ destruct (le_ge_cases n m);
[rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?pred_le_mono.
Qed.
(** Add *)
-Lemma add_max_distr_l : forall n m p, max (p + n) (p + m) == p + max n m.
+Lemma add_max_distr_l n m p : max (p + n) (p + m) == p + max n m.
Proof.
- intros. destruct (le_ge_cases n m);
+ destruct (le_ge_cases n m);
[rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?add_le_mono_l.
Qed.
-Lemma add_max_distr_r : forall n m p, max (n + p) (m + p) == max n m + p.
+Lemma add_max_distr_r n m p : max (n + p) (m + p) == max n m + p.
Proof.
- intros. destruct (le_ge_cases n m);
+ destruct (le_ge_cases n m);
[rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?add_le_mono_r.
Qed.
-Lemma add_min_distr_l : forall n m p, min (p + n) (p + m) == p + min n m.
+Lemma add_min_distr_l n m p : min (p + n) (p + m) == p + min n m.
Proof.
- intros. destruct (le_ge_cases n m);
+ destruct (le_ge_cases n m);
[rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?add_le_mono_l.
Qed.
-Lemma add_min_distr_r : forall n m p, min (n + p) (m + p) == min n m + p.
+Lemma add_min_distr_r n m p : min (n + p) (m + p) == min n m + p.
Proof.
- intros. destruct (le_ge_cases n m);
+ destruct (le_ge_cases n m);
[rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?add_le_mono_r.
Qed.
(** Opp *)
-Lemma opp_max_distr : forall n m, -(max n m) == min (-n) (-m).
+Lemma opp_max_distr n m : -(max n m) == min (-n) (-m).
Proof.
- intros. destruct (le_ge_cases n m).
+ destruct (le_ge_cases n m).
rewrite max_r by trivial. symmetry. apply min_r. now rewrite <- opp_le_mono.
rewrite max_l by trivial. symmetry. apply min_l. now rewrite <- opp_le_mono.
Qed.
-Lemma opp_min_distr : forall n m, -(min n m) == max (-n) (-m).
+Lemma opp_min_distr n m : -(min n m) == max (-n) (-m).
Proof.
- intros. destruct (le_ge_cases n m).
+ destruct (le_ge_cases n m).
rewrite min_l by trivial. symmetry. apply max_l. now rewrite <- opp_le_mono.
rewrite min_r by trivial. symmetry. apply max_r. now rewrite <- opp_le_mono.
Qed.
(** Sub *)
-Lemma sub_max_distr_l : forall n m p, max (p - n) (p - m) == p - min n m.
+Lemma sub_max_distr_l n m p : max (p - n) (p - m) == p - min n m.
Proof.
- intros. destruct (le_ge_cases n m).
+ destruct (le_ge_cases n m).
rewrite min_l by trivial. apply max_l. now rewrite <- sub_le_mono_l.
rewrite min_r by trivial. apply max_r. now rewrite <- sub_le_mono_l.
Qed.
-Lemma sub_max_distr_r : forall n m p, max (n - p) (m - p) == max n m - p.
+Lemma sub_max_distr_r n m p : max (n - p) (m - p) == max n m - p.
Proof.
- intros. destruct (le_ge_cases n m);
+ destruct (le_ge_cases n m);
[rewrite 2 max_r | rewrite 2 max_l]; try order; now apply sub_le_mono_r.
Qed.
-Lemma sub_min_distr_l : forall n m p, min (p - n) (p - m) == p - max n m.
+Lemma sub_min_distr_l n m p : min (p - n) (p - m) == p - max n m.
Proof.
- intros. destruct (le_ge_cases n m).
+ destruct (le_ge_cases n m).
rewrite max_r by trivial. apply min_r. now rewrite <- sub_le_mono_l.
rewrite max_l by trivial. apply min_l. now rewrite <- sub_le_mono_l.
Qed.
-Lemma sub_min_distr_r : forall n m p, min (n - p) (m - p) == min n m - p.
+Lemma sub_min_distr_r n m p : min (n - p) (m - p) == min n m - p.
Proof.
- intros. destruct (le_ge_cases n m);
+ destruct (le_ge_cases n m);
[rewrite 2 min_l | rewrite 2 min_r]; try order; now apply sub_le_mono_r.
Qed.
(** Mul *)
-Lemma mul_max_distr_nonneg_l : forall n m p, 0 <= p ->
+Lemma mul_max_distr_nonneg_l n m p : 0 <= p ->
max (p * n) (p * m) == p * max n m.
Proof.
intros. destruct (le_ge_cases n m);
[rewrite 2 max_r | rewrite 2 max_l]; try order; now apply mul_le_mono_nonneg_l.
Qed.
-Lemma mul_max_distr_nonneg_r : forall n m p, 0 <= p ->
+Lemma mul_max_distr_nonneg_r n m p : 0 <= p ->
max (n * p) (m * p) == max n m * p.
Proof.
intros. destruct (le_ge_cases n m);
[rewrite 2 max_r | rewrite 2 max_l]; try order; now apply mul_le_mono_nonneg_r.
Qed.
-Lemma mul_min_distr_nonneg_l : forall n m p, 0 <= p ->
+Lemma mul_min_distr_nonneg_l n m p : 0 <= p ->
min (p * n) (p * m) == p * min n m.
Proof.
intros. destruct (le_ge_cases n m);
[rewrite 2 min_l | rewrite 2 min_r]; try order; now apply mul_le_mono_nonneg_l.
Qed.
-Lemma mul_min_distr_nonneg_r : forall n m p, 0 <= p ->
+Lemma mul_min_distr_nonneg_r n m p : 0 <= p ->
min (n * p) (m * p) == min n m * p.
Proof.
intros. destruct (le_ge_cases n m);
[rewrite 2 min_l | rewrite 2 min_r]; try order; now apply mul_le_mono_nonneg_r.
Qed.
-Lemma mul_max_distr_nonpos_l : forall n m p, p <= 0 ->
+Lemma mul_max_distr_nonpos_l n m p : p <= 0 ->
max (p * n) (p * m) == p * min n m.
Proof.
intros. destruct (le_ge_cases n m).
@@ -154,7 +154,7 @@ Proof.
rewrite min_r by trivial. rewrite max_r. reflexivity. now apply mul_le_mono_nonpos_l.
Qed.
-Lemma mul_max_distr_nonpos_r : forall n m p, p <= 0 ->
+Lemma mul_max_distr_nonpos_r n m p : p <= 0 ->
max (n * p) (m * p) == min n m * p.
Proof.
intros. destruct (le_ge_cases n m).
@@ -162,7 +162,7 @@ Proof.
rewrite min_r by trivial. rewrite max_r. reflexivity. now apply mul_le_mono_nonpos_r.
Qed.
-Lemma mul_min_distr_nonpos_l : forall n m p, p <= 0 ->
+Lemma mul_min_distr_nonpos_l n m p : p <= 0 ->
min (p * n) (p * m) == p * max n m.
Proof.
intros. destruct (le_ge_cases n m).
@@ -170,7 +170,7 @@ Proof.
rewrite max_l by trivial. rewrite min_l. reflexivity. now apply mul_le_mono_nonpos_l.
Qed.
-Lemma mul_min_distr_nonpos_r : forall n m p, p <= 0 ->
+Lemma mul_min_distr_nonpos_r n m p : p <= 0 ->
min (n * p) (m * p) == max n m * p.
Proof.
intros. destruct (le_ge_cases n m).