diff options
| author | Jasper Hugunin | 2020-10-08 17:10:19 -0700 |
|---|---|---|
| committer | Jasper Hugunin | 2020-10-08 17:10:19 -0700 |
| commit | f02b3e573447a299aa9a2f142703b1ca60fc651b (patch) | |
| tree | 98a9d781e57f680ef101d52727db08e76082e1bc | |
| parent | f96047484333b0b3d37b601abb56a51e56522754 (diff) | |
Modify Numbers/Integer/Abstract/ZMaxMin.v to compile with -mangle-names
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZMaxMin.v | 72 |
1 files changed, 36 insertions, 36 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZMaxMin.v b/theories/Numbers/Integer/Abstract/ZMaxMin.v index ed0b0c69a0..4af24b7754 100644 --- a/theories/Numbers/Integer/Abstract/ZMaxMin.v +++ b/theories/Numbers/Integer/Abstract/ZMaxMin.v @@ -20,133 +20,133 @@ Include ZMulOrderProp Z. (** Succ *) -Lemma succ_max_distr : forall n m, S (max n m) == max (S n) (S m). +Lemma succ_max_distr n m : S (max n m) == max (S n) (S m). Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?succ_le_mono. Qed. -Lemma succ_min_distr : forall n m, S (min n m) == min (S n) (S m). +Lemma succ_min_distr n m : S (min n m) == min (S n) (S m). Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?succ_le_mono. Qed. (** Pred *) -Lemma pred_max_distr : forall n m, P (max n m) == max (P n) (P m). +Lemma pred_max_distr n m : P (max n m) == max (P n) (P m). Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?pred_le_mono. Qed. -Lemma pred_min_distr : forall n m, P (min n m) == min (P n) (P m). +Lemma pred_min_distr n m : P (min n m) == min (P n) (P m). Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?pred_le_mono. Qed. (** Add *) -Lemma add_max_distr_l : forall n m p, max (p + n) (p + m) == p + max n m. +Lemma add_max_distr_l n m p : max (p + n) (p + m) == p + max n m. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?add_le_mono_l. Qed. -Lemma add_max_distr_r : forall n m p, max (n + p) (m + p) == max n m + p. +Lemma add_max_distr_r n m p : max (n + p) (m + p) == max n m + p. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?add_le_mono_r. Qed. -Lemma add_min_distr_l : forall n m p, min (p + n) (p + m) == p + min n m. +Lemma add_min_distr_l n m p : min (p + n) (p + m) == p + min n m. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?add_le_mono_l. Qed. -Lemma add_min_distr_r : forall n m p, min (n + p) (m + p) == min n m + p. +Lemma add_min_distr_r n m p : min (n + p) (m + p) == min n m + p. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?add_le_mono_r. Qed. (** Opp *) -Lemma opp_max_distr : forall n m, -(max n m) == min (-n) (-m). +Lemma opp_max_distr n m : -(max n m) == min (-n) (-m). Proof. - intros. destruct (le_ge_cases n m). + destruct (le_ge_cases n m). rewrite max_r by trivial. symmetry. apply min_r. now rewrite <- opp_le_mono. rewrite max_l by trivial. symmetry. apply min_l. now rewrite <- opp_le_mono. Qed. -Lemma opp_min_distr : forall n m, -(min n m) == max (-n) (-m). +Lemma opp_min_distr n m : -(min n m) == max (-n) (-m). Proof. - intros. destruct (le_ge_cases n m). + destruct (le_ge_cases n m). rewrite min_l by trivial. symmetry. apply max_l. now rewrite <- opp_le_mono. rewrite min_r by trivial. symmetry. apply max_r. now rewrite <- opp_le_mono. Qed. (** Sub *) -Lemma sub_max_distr_l : forall n m p, max (p - n) (p - m) == p - min n m. +Lemma sub_max_distr_l n m p : max (p - n) (p - m) == p - min n m. Proof. - intros. destruct (le_ge_cases n m). + destruct (le_ge_cases n m). rewrite min_l by trivial. apply max_l. now rewrite <- sub_le_mono_l. rewrite min_r by trivial. apply max_r. now rewrite <- sub_le_mono_l. Qed. -Lemma sub_max_distr_r : forall n m p, max (n - p) (m - p) == max n m - p. +Lemma sub_max_distr_r n m p : max (n - p) (m - p) == max n m - p. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; try order; now apply sub_le_mono_r. Qed. -Lemma sub_min_distr_l : forall n m p, min (p - n) (p - m) == p - max n m. +Lemma sub_min_distr_l n m p : min (p - n) (p - m) == p - max n m. Proof. - intros. destruct (le_ge_cases n m). + destruct (le_ge_cases n m). rewrite max_r by trivial. apply min_r. now rewrite <- sub_le_mono_l. rewrite max_l by trivial. apply min_l. now rewrite <- sub_le_mono_l. Qed. -Lemma sub_min_distr_r : forall n m p, min (n - p) (m - p) == min n m - p. +Lemma sub_min_distr_r n m p : min (n - p) (m - p) == min n m - p. Proof. - intros. destruct (le_ge_cases n m); + destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; try order; now apply sub_le_mono_r. Qed. (** Mul *) -Lemma mul_max_distr_nonneg_l : forall n m p, 0 <= p -> +Lemma mul_max_distr_nonneg_l n m p : 0 <= p -> max (p * n) (p * m) == p * max n m. Proof. intros. destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; try order; now apply mul_le_mono_nonneg_l. Qed. -Lemma mul_max_distr_nonneg_r : forall n m p, 0 <= p -> +Lemma mul_max_distr_nonneg_r n m p : 0 <= p -> max (n * p) (m * p) == max n m * p. Proof. intros. destruct (le_ge_cases n m); [rewrite 2 max_r | rewrite 2 max_l]; try order; now apply mul_le_mono_nonneg_r. Qed. -Lemma mul_min_distr_nonneg_l : forall n m p, 0 <= p -> +Lemma mul_min_distr_nonneg_l n m p : 0 <= p -> min (p * n) (p * m) == p * min n m. Proof. intros. destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; try order; now apply mul_le_mono_nonneg_l. Qed. -Lemma mul_min_distr_nonneg_r : forall n m p, 0 <= p -> +Lemma mul_min_distr_nonneg_r n m p : 0 <= p -> min (n * p) (m * p) == min n m * p. Proof. intros. destruct (le_ge_cases n m); [rewrite 2 min_l | rewrite 2 min_r]; try order; now apply mul_le_mono_nonneg_r. Qed. -Lemma mul_max_distr_nonpos_l : forall n m p, p <= 0 -> +Lemma mul_max_distr_nonpos_l n m p : p <= 0 -> max (p * n) (p * m) == p * min n m. Proof. intros. destruct (le_ge_cases n m). @@ -154,7 +154,7 @@ Proof. rewrite min_r by trivial. rewrite max_r. reflexivity. now apply mul_le_mono_nonpos_l. Qed. -Lemma mul_max_distr_nonpos_r : forall n m p, p <= 0 -> +Lemma mul_max_distr_nonpos_r n m p : p <= 0 -> max (n * p) (m * p) == min n m * p. Proof. intros. destruct (le_ge_cases n m). @@ -162,7 +162,7 @@ Proof. rewrite min_r by trivial. rewrite max_r. reflexivity. now apply mul_le_mono_nonpos_r. Qed. -Lemma mul_min_distr_nonpos_l : forall n m p, p <= 0 -> +Lemma mul_min_distr_nonpos_l n m p : p <= 0 -> min (p * n) (p * m) == p * max n m. Proof. intros. destruct (le_ge_cases n m). @@ -170,7 +170,7 @@ Proof. rewrite max_l by trivial. rewrite min_l. reflexivity. now apply mul_le_mono_nonpos_l. Qed. -Lemma mul_min_distr_nonpos_r : forall n m p, p <= 0 -> +Lemma mul_min_distr_nonpos_r n m p : p <= 0 -> min (n * p) (m * p) == max n m * p. Proof. intros. destruct (le_ge_cases n m). |
