aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAnton Trunov2020-05-06 21:47:15 +0300
committerAnton Trunov2020-05-06 21:47:15 +0300
commited0803efd1c8418c54dcde1255db110e1f2e648d (patch)
tree2f25b3a249c4fd2287c9962cec236bc06fc9c1d2
parentbc79d319d38f766a6b7bbeb1f1071b046642089b (diff)
parent90b7d578afc59c6deb1666223659207fe226b725 (diff)
Merge PR #12018: Adding properties about implb in Bool.v
Ack-by: Blaisorblade Reviewed-by: anton-trunov
-rw-r--r--doc/changelog/10-standard-library/12018-master+implb-characterization.rst19
-rw-r--r--theories/Bool/Bool.v158
2 files changed, 144 insertions, 33 deletions
diff --git a/doc/changelog/10-standard-library/12018-master+implb-characterization.rst b/doc/changelog/10-standard-library/12018-master+implb-characterization.rst
new file mode 100644
index 0000000000..4b0abdfa3b
--- /dev/null
+++ b/doc/changelog/10-standard-library/12018-master+implb-characterization.rst
@@ -0,0 +1,19 @@
+- **Added:**
+ Added lemmas
+ :g:`orb_negb_l`,
+ :g:`andb_negb_l`,
+ :g:`implb_true_iff`,
+ :g:`implb_false_iff`,
+ :g:`implb_true_r`,
+ :g:`implb_false_r`,
+ :g:`implb_true_l`,
+ :g:`implb_false_l`,
+ :g:`implb_same`,
+ :g:`implb_contrapositive`,
+ :g:`implb_negb`,
+ :g:`implb_curry`,
+ :g:`implb_andb_distrib_r`,
+ :g:`implb_orb_distrib_r`,
+ :g:`implb_orb_distrib_l` in library :g:`Bool`
+ (`#12018 <https://github.com/coq/coq/pull/12018>`_,`
+ by Hugo Herbelin).`
diff --git a/theories/Bool/Bool.v b/theories/Bool/Bool.v
index 1d5e3e54ff..8708f5a2bf 100644
--- a/theories/Bool/Bool.v
+++ b/theories/Bool/Bool.v
@@ -9,9 +9,12 @@
(************************************************************************)
(** The type [bool] is defined in the prelude as
- [Inductive bool : Set := true : bool | false : bool] *)
+[[
+Inductive bool : Set := true : bool | false : bool
+]]
+ *)
-(** Most of the lemmas in this file are trivial after breaking all booleans *)
+(** Most of the lemmas in this file are trivial by case analysis *)
Ltac destr_bool :=
intros; destruct_all bool; simpl in *; trivial; try discriminate.
@@ -75,9 +78,9 @@ Proof.
destr_bool; intuition.
Qed.
-(**********************)
+(************************)
(** * Order on booleans *)
-(**********************)
+(************************)
Definition leb (b1 b2:bool) :=
match b1 with
@@ -93,9 +96,9 @@ Qed.
(* Infix "<=" := leb : bool_scope. *)
-(*************)
+(***************)
(** * Equality *)
-(*************)
+(***************)
Definition eqb (b1 b2:bool) : bool :=
match b1, b2 with
@@ -131,9 +134,9 @@ Proof.
destr_bool; intuition.
Qed.
-(************************)
+(**********************************)
(** * A synonym of [if] on [bool] *)
-(************************)
+(**********************************)
Definition ifb (b1 b2 b3:bool) : bool :=
match b1 with
@@ -143,9 +146,9 @@ Definition ifb (b1 b2 b3:bool) : bool :=
Open Scope bool_scope.
-(****************************)
-(** * De Morgan laws *)
-(****************************)
+(*********************)
+(** * De Morgan laws *)
+(*********************)
Lemma negb_orb : forall b1 b2:bool, negb (b1 || b2) = negb b1 && negb b2.
Proof.
@@ -157,9 +160,9 @@ Proof.
destr_bool.
Qed.
-(********************************)
-(** * Properties of [negb] *)
-(********************************)
+(***************************)
+(** * Properties of [negb] *)
+(***************************)
Lemma negb_involutive : forall b:bool, negb (negb b) = b.
Proof.
@@ -212,9 +215,9 @@ Proof.
Qed.
-(********************************)
-(** * Properties of [orb] *)
-(********************************)
+(**************************)
+(** * Properties of [orb] *)
+(**************************)
Lemma orb_true_iff :
forall b1 b2, b1 || b2 = true <-> b1 = true \/ b2 = true.
@@ -305,6 +308,11 @@ Proof.
Qed.
Hint Resolve orb_negb_r: bool.
+Lemma orb_negb_l : forall b:bool, negb b || b = true.
+Proof.
+ destr_bool.
+Qed.
+
Notation orb_neg_b := orb_negb_r (only parsing).
(** Commutativity *)
@@ -322,9 +330,9 @@ Proof.
Qed.
Hint Resolve orb_comm orb_assoc: bool.
-(*******************************)
-(** * Properties of [andb] *)
-(*******************************)
+(***************************)
+(** * Properties of [andb] *)
+(***************************)
Lemma andb_true_iff :
forall b1 b2:bool, b1 && b2 = true <-> b1 = true /\ b2 = true.
@@ -404,6 +412,11 @@ Proof.
Qed.
Hint Resolve andb_negb_r: bool.
+Lemma andb_negb_l : forall b:bool, negb b && b = false.
+Proof.
+ destr_bool.
+Qed.
+
Notation andb_neg_b := andb_negb_r (only parsing).
(** Commutativity *)
@@ -422,9 +435,9 @@ Qed.
Hint Resolve andb_comm andb_assoc: bool.
-(*******************************************)
+(*****************************************)
(** * Properties mixing [andb] and [orb] *)
-(*******************************************)
+(*****************************************)
(** Distributivity *)
@@ -476,9 +489,88 @@ Notation absoption_andb := absorption_andb (only parsing).
Notation absoption_orb := absorption_orb (only parsing).
(* end hide *)
-(*********************************)
-(** * Properties of [xorb] *)
-(*********************************)
+(****************************)
+(** * Properties of [implb] *)
+(****************************)
+
+Lemma implb_true_iff : forall b1 b2:bool, implb b1 b2 = true <-> (b1 = true -> b2 = true).
+Proof.
+ destr_bool; intuition.
+Qed.
+
+Lemma implb_false_iff : forall b1 b2:bool, implb b1 b2 = false <-> (b1 = true /\ b2 = false).
+Proof.
+ destr_bool; intuition.
+Qed.
+
+Lemma implb_orb : forall b1 b2:bool, implb b1 b2 = negb b1 || b2.
+Proof.
+ destr_bool.
+Qed.
+
+Lemma implb_negb_orb : forall b1 b2:bool, implb (negb b1) b2 = b1 || b2.
+Proof.
+ destr_bool.
+Qed.
+
+Lemma implb_true_r : forall b:bool, implb b true = true.
+Proof.
+ destr_bool.
+Qed.
+
+Lemma implb_false_r : forall b:bool, implb b false = negb b.
+Proof.
+ destr_bool.
+Qed.
+
+Lemma implb_true_l : forall b:bool, implb true b = b.
+Proof.
+ destr_bool.
+Qed.
+
+Lemma implb_false_l : forall b:bool, implb false b = true.
+Proof.
+ destr_bool.
+Qed.
+
+Lemma implb_same : forall b:bool, implb b b = true.
+Proof.
+ destr_bool.
+Qed.
+
+Lemma implb_contrapositive : forall b1 b2:bool, implb (negb b1) (negb b2) = implb b2 b1.
+Proof.
+ destr_bool.
+Qed.
+
+Lemma implb_negb : forall b1 b2:bool, implb (negb b1) b2 = implb (negb b2) b1.
+Proof.
+ destr_bool.
+Qed.
+
+Lemma implb_curry : forall b1 b2 b3:bool, implb (b1 && b2) b3 = implb b1 (implb b2 b3).
+Proof.
+ destr_bool.
+Qed.
+
+Lemma implb_andb_distrib_r : forall b1 b2 b3:bool, implb b1 (b2 && b3) = implb b1 b2 && implb b1 b3.
+Proof.
+ destr_bool.
+Qed.
+
+Lemma implb_orb_distrib_r : forall b1 b2 b3:bool, implb b1 (b2 || b3) = implb b1 b2 || implb b1 b3.
+Proof.
+ destr_bool.
+Qed.
+
+Lemma implb_orb_distrib_l : forall b1 b2 b3:bool, implb (b1 || b2) b3 = implb b1 b3 && implb b2 b3.
+Proof.
+ destr_bool.
+Qed.
+
+(***************************)
+(** * Properties of [xorb] *)
+(***************************)
(** [false] is neutral for [xorb] *)
@@ -632,9 +724,9 @@ Proof.
Qed.
Hint Resolve trans_eq_bool : core.
-(*****************************************)
+(***************************************)
(** * Reflection of [bool] into [Prop] *)
-(*****************************************)
+(***************************************)
(** [Is_true] and equality *)
@@ -752,10 +844,10 @@ Proof.
destr_bool.
Qed.
-(*****************************************)
+(***********************************************)
(** * Alternative versions of [andb] and [orb]
- with lazy behavior (for vm_compute) *)
-(*****************************************)
+ with lazy behavior (for vm_compute) *)
+(***********************************************)
Declare Scope lazy_bool_scope.
@@ -776,11 +868,11 @@ Proof.
reflexivity.
Qed.
-(*****************************************)
+(************************************************)
(** * Reflect: a specialized inductive type for
relating propositions and booleans,
- as popularized by the Ssreflect library. *)
-(*****************************************)
+ as popularized by the Ssreflect library. *)
+(************************************************)
Inductive reflect (P : Prop) : bool -> Set :=
| ReflectT : P -> reflect P true