aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorHugo Herbelin2018-09-10 20:08:07 +0200
committerHugo Herbelin2018-09-10 20:08:07 +0200
commitdc8f73016a6306f2da8859340e07b83aca1012d4 (patch)
tree66c5e740d2aa6afe5ef647675696ebf8348bd822
parent087588553d31752fadbb65ade9d377176412f316 (diff)
parent8be0a95911d2d042e5aff31373b9812cc299db87 (diff)
Merge PR #8230: fix formulation of the Euclid Theorem in comment
-rw-r--r--theories/Numbers/Integer/Abstract/ZDivEucl.v2
1 files changed, 1 insertions, 1 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZDivEucl.v b/theories/Numbers/Integer/Abstract/ZDivEucl.v
index d7f25a6613..5a7bd9ab30 100644
--- a/theories/Numbers/Integer/Abstract/ZDivEucl.v
+++ b/theories/Numbers/Integer/Abstract/ZDivEucl.v
@@ -13,7 +13,7 @@ Require Import ZAxioms ZMulOrder ZSgnAbs NZDiv.
(** * Euclidean Division for integers, Euclid convention
We use here the "usual" formulation of the Euclid Theorem
- [forall a b, b<>0 -> exists b q, a = b*q+r /\ 0 < r < |b| ]
+ [forall a b, b<>0 -> exists r q, a = b*q+r /\ 0 <= r < |b| ]
The outcome of the modulo function is hence always positive.
This corresponds to convention "E" in the following paper: