diff options
| author | Hugo Herbelin | 2018-09-10 20:08:07 +0200 |
|---|---|---|
| committer | Hugo Herbelin | 2018-09-10 20:08:07 +0200 |
| commit | dc8f73016a6306f2da8859340e07b83aca1012d4 (patch) | |
| tree | 66c5e740d2aa6afe5ef647675696ebf8348bd822 | |
| parent | 087588553d31752fadbb65ade9d377176412f316 (diff) | |
| parent | 8be0a95911d2d042e5aff31373b9812cc299db87 (diff) | |
Merge PR #8230: fix formulation of the Euclid Theorem in comment
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZDivEucl.v | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZDivEucl.v b/theories/Numbers/Integer/Abstract/ZDivEucl.v index d7f25a6613..5a7bd9ab30 100644 --- a/theories/Numbers/Integer/Abstract/ZDivEucl.v +++ b/theories/Numbers/Integer/Abstract/ZDivEucl.v @@ -13,7 +13,7 @@ Require Import ZAxioms ZMulOrder ZSgnAbs NZDiv. (** * Euclidean Division for integers, Euclid convention We use here the "usual" formulation of the Euclid Theorem - [forall a b, b<>0 -> exists b q, a = b*q+r /\ 0 < r < |b| ] + [forall a b, b<>0 -> exists r q, a = b*q+r /\ 0 <= r < |b| ] The outcome of the modulo function is hence always positive. This corresponds to convention "E" in the following paper: |
