aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorErik Martin-Dorel2019-02-25 02:58:45 +0100
committerErik Martin-Dorel2019-04-23 12:54:43 +0200
commitd9db4dec813a18b205f1cd9bccca54aa23524706 (patch)
tree39901a8197d4e22396bd58427d917b1642277e92
parentd8b8893f7700e17700ca40c52b69a0a554b2da2f (diff)
[ssr] under: Change the style of a few tests (over tactic vs. lemma)
-rw-r--r--plugins/ssr/ssreflect.v2
-rw-r--r--test-suite/ssr/under.v14
2 files changed, 6 insertions, 10 deletions
diff --git a/plugins/ssr/ssreflect.v b/plugins/ssr/ssreflect.v
index f8d761b088..c78381d3cc 100644
--- a/plugins/ssr/ssreflect.v
+++ b/plugins/ssr/ssreflect.v
@@ -519,7 +519,7 @@ Parameter over_done :
forall (T : Type) (x : T), @Over T x x.
(* We need both hints below, otherwise the test-suite does not pass *)
Hint Extern 0 (@Over _ _ _) => solve [ apply over_done ] : core.
-(* => for [test-suite/ssr/under.v:test_big_nested_1] *)
+(* => for [test-suite/ssr/under.v:test_big_patt1] *)
Hint Resolve over_done : core.
(* => for [test-suite/ssr/over.v:test_over_1_1] *)
diff --git a/test-suite/ssr/under.v b/test-suite/ssr/under.v
index 190277aa31..7db2f2a982 100644
--- a/test-suite/ssr/under.v
+++ b/test-suite/ssr/under.v
@@ -88,8 +88,8 @@ Proof.
(* in interactive mode *)
under i Hi: eq_bigr.
under j Hj: eq_big.
- { by rewrite muln1 over. }
- { by rewrite addnC over. }
+ { rewrite muln1. over. }
+ { rewrite addnC. over. }
over.
done.
Qed.
@@ -107,8 +107,7 @@ Lemma test_big_patt1 (F G : nat -> nat) (n : nat) :
\sum_(0 <= i < n) (F i + G i) = \sum_(0 <= i < n) (G i + F i) + 0.
Proof.
under i Hi: [in RHS]eq_bigr.
- rewrite addnC.
- over.
+ by rewrite addnC over.
done.
Qed.
@@ -116,17 +115,14 @@ Lemma test_big_patt2 (F G : nat -> nat) (n : nat) :
\sum_(0 <= i < n) (F i + F i) =
\sum_(0 <= i < n) 0 + \sum_(0 <= i < n) (F i * 2).
Proof.
-under i Hi: [X in _ = _ + X]eq_bigr.
- rewrite mulnS muln1.
- over.
+under i Hi: [X in _ = _ + X]eq_bigr by rewrite mulnS muln1.
by rewrite big_const_nat iter_addn_0.
Qed.
Lemma test_big_occs (F G : nat -> nat) (n : nat) :
\sum_(0 <= i < n) (i * 0) = \sum_(0 <= i < n) (i * 0) + \sum_(0 <= i < n) (i * 0).
Proof.
-under i Hi: {2}[in RHS]eq_bigr.
- by rewrite muln0 /= over.
+under i Hi: {2}[in RHS]eq_bigr by rewrite muln0.
by rewrite big_const_nat iter_addn_0.
Qed.