diff options
| author | Erik Martin-Dorel | 2019-02-25 02:58:45 +0100 |
|---|---|---|
| committer | Erik Martin-Dorel | 2019-04-23 12:54:43 +0200 |
| commit | d9db4dec813a18b205f1cd9bccca54aa23524706 (patch) | |
| tree | 39901a8197d4e22396bd58427d917b1642277e92 | |
| parent | d8b8893f7700e17700ca40c52b69a0a554b2da2f (diff) | |
[ssr] under: Change the style of a few tests (over tactic vs. lemma)
| -rw-r--r-- | plugins/ssr/ssreflect.v | 2 | ||||
| -rw-r--r-- | test-suite/ssr/under.v | 14 |
2 files changed, 6 insertions, 10 deletions
diff --git a/plugins/ssr/ssreflect.v b/plugins/ssr/ssreflect.v index f8d761b088..c78381d3cc 100644 --- a/plugins/ssr/ssreflect.v +++ b/plugins/ssr/ssreflect.v @@ -519,7 +519,7 @@ Parameter over_done : forall (T : Type) (x : T), @Over T x x. (* We need both hints below, otherwise the test-suite does not pass *) Hint Extern 0 (@Over _ _ _) => solve [ apply over_done ] : core. -(* => for [test-suite/ssr/under.v:test_big_nested_1] *) +(* => for [test-suite/ssr/under.v:test_big_patt1] *) Hint Resolve over_done : core. (* => for [test-suite/ssr/over.v:test_over_1_1] *) diff --git a/test-suite/ssr/under.v b/test-suite/ssr/under.v index 190277aa31..7db2f2a982 100644 --- a/test-suite/ssr/under.v +++ b/test-suite/ssr/under.v @@ -88,8 +88,8 @@ Proof. (* in interactive mode *) under i Hi: eq_bigr. under j Hj: eq_big. - { by rewrite muln1 over. } - { by rewrite addnC over. } + { rewrite muln1. over. } + { rewrite addnC. over. } over. done. Qed. @@ -107,8 +107,7 @@ Lemma test_big_patt1 (F G : nat -> nat) (n : nat) : \sum_(0 <= i < n) (F i + G i) = \sum_(0 <= i < n) (G i + F i) + 0. Proof. under i Hi: [in RHS]eq_bigr. - rewrite addnC. - over. + by rewrite addnC over. done. Qed. @@ -116,17 +115,14 @@ Lemma test_big_patt2 (F G : nat -> nat) (n : nat) : \sum_(0 <= i < n) (F i + F i) = \sum_(0 <= i < n) 0 + \sum_(0 <= i < n) (F i * 2). Proof. -under i Hi: [X in _ = _ + X]eq_bigr. - rewrite mulnS muln1. - over. +under i Hi: [X in _ = _ + X]eq_bigr by rewrite mulnS muln1. by rewrite big_const_nat iter_addn_0. Qed. Lemma test_big_occs (F G : nat -> nat) (n : nat) : \sum_(0 <= i < n) (i * 0) = \sum_(0 <= i < n) (i * 0) + \sum_(0 <= i < n) (i * 0). Proof. -under i Hi: {2}[in RHS]eq_bigr. - by rewrite muln0 /= over. +under i Hi: {2}[in RHS]eq_bigr by rewrite muln0. by rewrite big_const_nat iter_addn_0. Qed. |
