diff options
| author | Gaëtan Gilbert | 2019-02-07 12:39:42 +0100 |
|---|---|---|
| committer | Gaëtan Gilbert | 2019-02-12 17:16:39 +0100 |
| commit | d6f696465650cdbff0c8f09327e55d2013616a89 (patch) | |
| tree | f64315140a70cf2ff266b5f72953508fd0e07dcb | |
| parent | f4621cc6774571efed498c58962b50bcaec12793 (diff) | |
Fix failing coqtops in coq-library.rst
Mostly in the pattern
~~~
.. coqtop:: in
Theorem foo : bla.
Theorem bar : blah. (* nested proof error *)
~~~
| -rw-r--r-- | doc/sphinx/language/coq-library.rst | 26 |
1 files changed, 15 insertions, 11 deletions
diff --git a/doc/sphinx/language/coq-library.rst b/doc/sphinx/language/coq-library.rst index b82b3b0e80..963242ea72 100644 --- a/doc/sphinx/language/coq-library.rst +++ b/doc/sphinx/language/coq-library.rst @@ -146,7 +146,7 @@ Propositional Connectives First, we find propositional calculus connectives: -.. coqtop:: in +.. coqdoc:: Inductive True : Prop := I. Inductive False : Prop := . @@ -236,7 +236,7 @@ Finally, a few easy lemmas are provided. single: eq_rect (term) single: eq_rect_r (term) -.. coqtop:: in +.. coqdoc:: Theorem absurd : forall A C:Prop, A -> ~ A -> C. Section equality. @@ -271,6 +271,10 @@ For instance ``f_equal3`` is defined the following way. (x1 y1:A1) (x2 y2:A2) (x3 y3:A3), x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3. +.. coqtop:: none + + Abort. + .. _datatypes: Datatypes @@ -465,7 +469,7 @@ Intuitionistic Type Theory. single: Choice2 (term) single: bool_choice (term) -.. coqtop:: in +.. coqdoc:: Lemma Choice : forall (S S':Set) (R:S -> S' -> Prop), @@ -506,7 +510,7 @@ realizability interpretation. single: absurd_set (term) single: and_rect (term) -.. coqtop:: in +.. coqdoc:: Definition except := False_rec. Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C. @@ -531,7 +535,7 @@ section :tacn:`refine`). This scope is opened by default. The following example is not part of the standard library, but it shows the usage of the notations: - .. coqtop:: in + .. coqtop:: in reset Fixpoint even (n:nat) : bool := match n with @@ -558,7 +562,7 @@ section :tacn:`refine`). This scope is opened by default. Now comes the content of module ``Peano``: -.. coqtop:: in +.. coqdoc:: Theorem eq_S : forall x y:nat, x = y -> S x = S y. Definition pred (n:nat) : nat := @@ -610,7 +614,7 @@ Finally, it gives the definition of the usual orderings ``le``, Inductive le (n:nat) : nat -> Prop := | le_n : le n n - | le_S : forall m:nat, n <= m -> n <= (S m). + | le_S : forall m:nat, n <= m -> n <= (S m) where "n <= m" := (le n m) : nat_scope. Definition lt (n m:nat) := S n <= m. Definition ge (n m:nat) := m <= n. @@ -625,7 +629,7 @@ induction principle. single: nat_case (term) single: nat_double_ind (term) -.. coqtop:: in +.. coqdoc:: Theorem nat_case : forall (n:nat) (P:nat -> Prop), @@ -652,7 +656,7 @@ well-founded induction, in module ``Wf.v``. single: Acc_rect (term) single: well_founded (term) -.. coqtop:: in +.. coqdoc:: Section Well_founded. Variable A : Type. @@ -681,7 +685,7 @@ fixpoint equation can be proved. single: Fix_F_inv (term) single: Fix_F_eq (term) -.. coqtop:: in +.. coqdoc:: Section FixPoint. Variable P : A -> Type. @@ -715,7 +719,7 @@ of equality: .. coqtop:: in Inductive identity (A:Type) (a:A) : A -> Type := - identity_refl : identity a a. + identity_refl : identity A a a. Some properties of ``identity`` are proved in the module ``Logic_Type``, which also provides the definition of ``Type`` level negation: |
