aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGaëtan Gilbert2019-02-07 12:39:42 +0100
committerGaëtan Gilbert2019-02-12 17:16:39 +0100
commitd6f696465650cdbff0c8f09327e55d2013616a89 (patch)
treef64315140a70cf2ff266b5f72953508fd0e07dcb
parentf4621cc6774571efed498c58962b50bcaec12793 (diff)
Fix failing coqtops in coq-library.rst
Mostly in the pattern ~~~ .. coqtop:: in Theorem foo : bla. Theorem bar : blah. (* nested proof error *) ~~~
-rw-r--r--doc/sphinx/language/coq-library.rst26
1 files changed, 15 insertions, 11 deletions
diff --git a/doc/sphinx/language/coq-library.rst b/doc/sphinx/language/coq-library.rst
index b82b3b0e80..963242ea72 100644
--- a/doc/sphinx/language/coq-library.rst
+++ b/doc/sphinx/language/coq-library.rst
@@ -146,7 +146,7 @@ Propositional Connectives
First, we find propositional calculus connectives:
-.. coqtop:: in
+.. coqdoc::
Inductive True : Prop := I.
Inductive False : Prop := .
@@ -236,7 +236,7 @@ Finally, a few easy lemmas are provided.
single: eq_rect (term)
single: eq_rect_r (term)
-.. coqtop:: in
+.. coqdoc::
Theorem absurd : forall A C:Prop, A -> ~ A -> C.
Section equality.
@@ -271,6 +271,10 @@ For instance ``f_equal3`` is defined the following way.
(x1 y1:A1) (x2 y2:A2) (x3 y3:A3),
x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3.
+.. coqtop:: none
+
+ Abort.
+
.. _datatypes:
Datatypes
@@ -465,7 +469,7 @@ Intuitionistic Type Theory.
single: Choice2 (term)
single: bool_choice (term)
-.. coqtop:: in
+.. coqdoc::
Lemma Choice :
forall (S S':Set) (R:S -> S' -> Prop),
@@ -506,7 +510,7 @@ realizability interpretation.
single: absurd_set (term)
single: and_rect (term)
-.. coqtop:: in
+.. coqdoc::
Definition except := False_rec.
Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.
@@ -531,7 +535,7 @@ section :tacn:`refine`). This scope is opened by default.
The following example is not part of the standard library, but it
shows the usage of the notations:
- .. coqtop:: in
+ .. coqtop:: in reset
Fixpoint even (n:nat) : bool :=
match n with
@@ -558,7 +562,7 @@ section :tacn:`refine`). This scope is opened by default.
Now comes the content of module ``Peano``:
-.. coqtop:: in
+.. coqdoc::
Theorem eq_S : forall x y:nat, x = y -> S x = S y.
Definition pred (n:nat) : nat :=
@@ -610,7 +614,7 @@ Finally, it gives the definition of the usual orderings ``le``,
Inductive le (n:nat) : nat -> Prop :=
| le_n : le n n
- | le_S : forall m:nat, n <= m -> n <= (S m).
+ | le_S : forall m:nat, n <= m -> n <= (S m)
where "n <= m" := (le n m) : nat_scope.
Definition lt (n m:nat) := S n <= m.
Definition ge (n m:nat) := m <= n.
@@ -625,7 +629,7 @@ induction principle.
single: nat_case (term)
single: nat_double_ind (term)
-.. coqtop:: in
+.. coqdoc::
Theorem nat_case :
forall (n:nat) (P:nat -> Prop),
@@ -652,7 +656,7 @@ well-founded induction, in module ``Wf.v``.
single: Acc_rect (term)
single: well_founded (term)
-.. coqtop:: in
+.. coqdoc::
Section Well_founded.
Variable A : Type.
@@ -681,7 +685,7 @@ fixpoint equation can be proved.
single: Fix_F_inv (term)
single: Fix_F_eq (term)
-.. coqtop:: in
+.. coqdoc::
Section FixPoint.
Variable P : A -> Type.
@@ -715,7 +719,7 @@ of equality:
.. coqtop:: in
Inductive identity (A:Type) (a:A) : A -> Type :=
- identity_refl : identity a a.
+ identity_refl : identity A a a.
Some properties of ``identity`` are proved in the module ``Logic_Type``, which also
provides the definition of ``Type`` level negation: