diff options
| author | Jasper Hugunin | 2020-08-25 12:58:44 -0700 |
|---|---|---|
| committer | Jasper Hugunin | 2020-08-25 13:53:32 -0700 |
| commit | d5f04bd6baf88cc24ac29fa955a123e013e14bce (patch) | |
| tree | 3cf707693233413e7945f45131ad10dad40b8f5a | |
| parent | 59d99ebd3f6f9e14e2e018140bedbac50be4518a (diff) | |
Modify Relations/Operators_Properties.v to compile with -mangle-names
| -rw-r--r-- | theories/Relations/Operators_Properties.v | 69 |
1 files changed, 34 insertions, 35 deletions
diff --git a/theories/Relations/Operators_Properties.v b/theories/Relations/Operators_Properties.v index 72183f76e6..51be2bd956 100644 --- a/theories/Relations/Operators_Properties.v +++ b/theories/Relations/Operators_Properties.v @@ -54,8 +54,7 @@ Section Properties. Lemma clos_rt_idempotent : inclusion (R*)* R*. Proof. red. - induction 1; auto with sets. - intros. + induction 1 as [x y H|x|x y z H IH H0 IH0]; auto with sets. apply rt_trans with y; auto with sets. Qed. @@ -70,7 +69,7 @@ Section Properties. inclusion (clos_refl_trans R) (clos_refl_sym_trans R). Proof. red. - induction 1; auto with sets. + induction 1 as [x y H|x|x y z H IH H0 IH0]; auto with sets. apply rst_trans with y; auto with sets. Qed. @@ -90,7 +89,7 @@ Section Properties. clos_trans R x z. Proof. induction 1 as [b d H1|b|a b d H1 H2 IH1 IH2]; auto. - intro H. apply t_trans with (y:=d); auto. + intro H. apply (t_trans _ _ _ d); auto. constructor. auto. Qed. @@ -111,7 +110,7 @@ Section Properties. (clos_refl_sym_trans R). Proof. red. - induction 1; auto with sets. + induction 1 as [x y H|x|x y H IH|x y z H IH H0 IH0]; auto with sets. apply rst_trans with y; auto with sets. Qed. @@ -128,7 +127,7 @@ Section Properties. Lemma clos_t1n_trans : forall x y, clos_trans_1n R x y -> clos_trans R x y. Proof. - induction 1. + induction 1 as [x y H|x y z H H0 IH0]. - left; assumption. - right with y; auto. left; auto. @@ -136,9 +135,10 @@ Section Properties. Lemma clos_trans_t1n : forall x y, clos_trans R x y -> clos_trans_1n R x y. Proof. - induction 1. + induction 1 as [x y H|x y z H IHclos_trans1 H0 IHclos_trans2]. - left; assumption. - - generalize IHclos_trans2; clear IHclos_trans2; induction IHclos_trans1. + - generalize IHclos_trans2; clear IHclos_trans2. + induction IHclos_trans1 as [x y H1|x y z0 H1 ? IHIHclos_trans1]. + right with y; auto. + right with y; auto. eapply IHIHclos_trans1; auto. @@ -157,7 +157,7 @@ Section Properties. Lemma clos_tn1_trans : forall x y, clos_trans_n1 R x y -> clos_trans R x y. Proof. - induction 1. + induction 1 as [y H|y z H H0 ?]. - left; assumption. - right with y; auto. left; assumption. @@ -165,13 +165,13 @@ Section Properties. Lemma clos_trans_tn1 : forall x y, clos_trans R x y -> clos_trans_n1 R x y. Proof. - induction 1. + induction 1 as [x y H|x y z H IHclos_trans1 H0 IHclos_trans2]. - left; assumption. - elim IHclos_trans2. + intro y0; right with y. * auto. * auto. - + intros. + + intro y0; intros. right with y0; auto. Qed. @@ -201,7 +201,7 @@ Section Properties. Lemma clos_rt1n_rt : forall x y, clos_refl_trans_1n R x y -> clos_refl_trans R x y. Proof. - induction 1. + induction 1 as [|x y z]. - constructor 2. - constructor 3 with y; auto. constructor 1; auto. @@ -210,14 +210,14 @@ Section Properties. Lemma clos_rt_rt1n : forall x y, clos_refl_trans R x y -> clos_refl_trans_1n R x y. Proof. - induction 1. + induction 1 as [| |x y z H IHclos_refl_trans1 H0 IHclos_refl_trans2]. - apply clos_rt1n_step; assumption. - left. - generalize IHclos_refl_trans2; clear IHclos_refl_trans2; - induction IHclos_refl_trans1; auto. + induction IHclos_refl_trans1 as [|x y z0 H1 ? IH]; auto. right with y; auto. - eapply IHIHclos_refl_trans1; auto. + eapply IH; auto. apply clos_rt1n_rt; auto. Qed. @@ -235,7 +235,7 @@ Section Properties. Lemma clos_rtn1_rt : forall x y, clos_refl_trans_n1 R x y -> clos_refl_trans R x y. Proof. - induction 1. + induction 1 as [|y z]. - constructor 2. - constructor 3 with y; auto. constructor 1; assumption. @@ -244,11 +244,11 @@ Section Properties. Lemma clos_rt_rtn1 : forall x y, clos_refl_trans R x y -> clos_refl_trans_n1 R x y. Proof. - induction 1. + induction 1 as [| |x y z H1 IH1 H2 IH2]. - apply clos_rtn1_step; auto. - left. - - elim IHclos_refl_trans2; auto. - intros. + - elim IH2; auto. + intro y0; intros. right with y0; auto. Qed. @@ -267,16 +267,16 @@ Section Properties. (forall y z:A, clos_refl_trans R x y -> P y -> R y z -> P z) -> forall z:A, clos_refl_trans R x z -> P z. Proof. - intros. + intros x P H H0 z H1. revert H H0. - induction H1; intros; auto with sets. - - apply H1 with x; auto with sets. + induction H1 as [x| |x y z H1 IH1 H2 IH2]; intros HP HIS; auto with sets. + - apply HIS with x; auto with sets. - - apply IHclos_refl_trans2. - + apply IHclos_refl_trans1; auto with sets. + - apply IH2. + + apply IH1; auto with sets. - + intros. - apply H0 with y0; auto with sets. + + intro y0; intros; + apply HIS with y0; auto with sets. apply rt_trans with y; auto with sets. Qed. @@ -286,7 +286,7 @@ Section Properties. P z -> (forall x y, R x y -> clos_refl_trans_1n R y z -> P y -> P x) -> forall x, clos_refl_trans_1n R x z -> P x. - induction 3; auto. + intros P z H H0 x; induction 1 as [|x y z]; auto. apply H0 with y; auto. Qed. @@ -309,7 +309,7 @@ Section Properties. Lemma clos_rst1n_rst : forall x y, clos_refl_sym_trans_1n R x y -> clos_refl_sym_trans R x y. Proof. - induction 1. + induction 1 as [|x y z H]. - constructor 2. - constructor 4 with y; auto. case H;[constructor 1|constructor 3; constructor 1]; auto. @@ -317,7 +317,7 @@ Section Properties. Lemma clos_rst1n_trans : forall x y z, clos_refl_sym_trans_1n R x y -> clos_refl_sym_trans_1n R y z -> clos_refl_sym_trans_1n R x z. - induction 1. + induction 1 as [|x y z0]. - auto. - intros; right with y; eauto. Qed. @@ -335,7 +335,7 @@ Section Properties. Lemma clos_rst_rst1n : forall x y, clos_refl_sym_trans R x y -> clos_refl_sym_trans_1n R x y. - induction 1. + induction 1 as [x y| | |]. - constructor 2 with y; auto. constructor 1. - constructor 1. @@ -357,7 +357,7 @@ Section Properties. Lemma clos_rstn1_rst : forall x y, clos_refl_sym_trans_n1 R x y -> clos_refl_sym_trans R x y. Proof. - induction 1. + induction 1 as [|y z H]. - constructor 2. - constructor 4 with y; auto. case H;[constructor 1|constructor 3; constructor 1]; auto. @@ -367,10 +367,9 @@ Section Properties. clos_refl_sym_trans_n1 R y z -> clos_refl_sym_trans_n1 R x z. Proof. intros x y z H1 H2. - induction H2. + induction H2 as [|y0 z]. - auto. - - intros. - right with y0; eauto. + - right with y0; eauto. Qed. Lemma clos_rstn1_sym : forall x y, clos_refl_sym_trans_n1 R x y -> @@ -387,7 +386,7 @@ Section Properties. Lemma clos_rst_rstn1 : forall x y, clos_refl_sym_trans R x y -> clos_refl_sym_trans_n1 R x y. Proof. - induction 1. + induction 1 as [x| | |]. - constructor 2 with x; auto. constructor 1. - constructor 1. |
