aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJasper Hugunin2020-08-25 12:58:44 -0700
committerJasper Hugunin2020-08-25 13:53:32 -0700
commitd5f04bd6baf88cc24ac29fa955a123e013e14bce (patch)
tree3cf707693233413e7945f45131ad10dad40b8f5a
parent59d99ebd3f6f9e14e2e018140bedbac50be4518a (diff)
Modify Relations/Operators_Properties.v to compile with -mangle-names
-rw-r--r--theories/Relations/Operators_Properties.v69
1 files changed, 34 insertions, 35 deletions
diff --git a/theories/Relations/Operators_Properties.v b/theories/Relations/Operators_Properties.v
index 72183f76e6..51be2bd956 100644
--- a/theories/Relations/Operators_Properties.v
+++ b/theories/Relations/Operators_Properties.v
@@ -54,8 +54,7 @@ Section Properties.
Lemma clos_rt_idempotent : inclusion (R*)* R*.
Proof.
red.
- induction 1; auto with sets.
- intros.
+ induction 1 as [x y H|x|x y z H IH H0 IH0]; auto with sets.
apply rt_trans with y; auto with sets.
Qed.
@@ -70,7 +69,7 @@ Section Properties.
inclusion (clos_refl_trans R) (clos_refl_sym_trans R).
Proof.
red.
- induction 1; auto with sets.
+ induction 1 as [x y H|x|x y z H IH H0 IH0]; auto with sets.
apply rst_trans with y; auto with sets.
Qed.
@@ -90,7 +89,7 @@ Section Properties.
clos_trans R x z.
Proof.
induction 1 as [b d H1|b|a b d H1 H2 IH1 IH2]; auto.
- intro H. apply t_trans with (y:=d); auto.
+ intro H. apply (t_trans _ _ _ d); auto.
constructor. auto.
Qed.
@@ -111,7 +110,7 @@ Section Properties.
(clos_refl_sym_trans R).
Proof.
red.
- induction 1; auto with sets.
+ induction 1 as [x y H|x|x y H IH|x y z H IH H0 IH0]; auto with sets.
apply rst_trans with y; auto with sets.
Qed.
@@ -128,7 +127,7 @@ Section Properties.
Lemma clos_t1n_trans : forall x y, clos_trans_1n R x y -> clos_trans R x y.
Proof.
- induction 1.
+ induction 1 as [x y H|x y z H H0 IH0].
- left; assumption.
- right with y; auto.
left; auto.
@@ -136,9 +135,10 @@ Section Properties.
Lemma clos_trans_t1n : forall x y, clos_trans R x y -> clos_trans_1n R x y.
Proof.
- induction 1.
+ induction 1 as [x y H|x y z H IHclos_trans1 H0 IHclos_trans2].
- left; assumption.
- - generalize IHclos_trans2; clear IHclos_trans2; induction IHclos_trans1.
+ - generalize IHclos_trans2; clear IHclos_trans2.
+ induction IHclos_trans1 as [x y H1|x y z0 H1 ? IHIHclos_trans1].
+ right with y; auto.
+ right with y; auto.
eapply IHIHclos_trans1; auto.
@@ -157,7 +157,7 @@ Section Properties.
Lemma clos_tn1_trans : forall x y, clos_trans_n1 R x y -> clos_trans R x y.
Proof.
- induction 1.
+ induction 1 as [y H|y z H H0 ?].
- left; assumption.
- right with y; auto.
left; assumption.
@@ -165,13 +165,13 @@ Section Properties.
Lemma clos_trans_tn1 : forall x y, clos_trans R x y -> clos_trans_n1 R x y.
Proof.
- induction 1.
+ induction 1 as [x y H|x y z H IHclos_trans1 H0 IHclos_trans2].
- left; assumption.
- elim IHclos_trans2.
+ intro y0; right with y.
* auto.
* auto.
- + intros.
+ + intro y0; intros.
right with y0; auto.
Qed.
@@ -201,7 +201,7 @@ Section Properties.
Lemma clos_rt1n_rt : forall x y,
clos_refl_trans_1n R x y -> clos_refl_trans R x y.
Proof.
- induction 1.
+ induction 1 as [|x y z].
- constructor 2.
- constructor 3 with y; auto.
constructor 1; auto.
@@ -210,14 +210,14 @@ Section Properties.
Lemma clos_rt_rt1n : forall x y,
clos_refl_trans R x y -> clos_refl_trans_1n R x y.
Proof.
- induction 1.
+ induction 1 as [| |x y z H IHclos_refl_trans1 H0 IHclos_refl_trans2].
- apply clos_rt1n_step; assumption.
- left.
- generalize IHclos_refl_trans2; clear IHclos_refl_trans2;
- induction IHclos_refl_trans1; auto.
+ induction IHclos_refl_trans1 as [|x y z0 H1 ? IH]; auto.
right with y; auto.
- eapply IHIHclos_refl_trans1; auto.
+ eapply IH; auto.
apply clos_rt1n_rt; auto.
Qed.
@@ -235,7 +235,7 @@ Section Properties.
Lemma clos_rtn1_rt : forall x y,
clos_refl_trans_n1 R x y -> clos_refl_trans R x y.
Proof.
- induction 1.
+ induction 1 as [|y z].
- constructor 2.
- constructor 3 with y; auto.
constructor 1; assumption.
@@ -244,11 +244,11 @@ Section Properties.
Lemma clos_rt_rtn1 : forall x y,
clos_refl_trans R x y -> clos_refl_trans_n1 R x y.
Proof.
- induction 1.
+ induction 1 as [| |x y z H1 IH1 H2 IH2].
- apply clos_rtn1_step; auto.
- left.
- - elim IHclos_refl_trans2; auto.
- intros.
+ - elim IH2; auto.
+ intro y0; intros.
right with y0; auto.
Qed.
@@ -267,16 +267,16 @@ Section Properties.
(forall y z:A, clos_refl_trans R x y -> P y -> R y z -> P z) ->
forall z:A, clos_refl_trans R x z -> P z.
Proof.
- intros.
+ intros x P H H0 z H1.
revert H H0.
- induction H1; intros; auto with sets.
- - apply H1 with x; auto with sets.
+ induction H1 as [x| |x y z H1 IH1 H2 IH2]; intros HP HIS; auto with sets.
+ - apply HIS with x; auto with sets.
- - apply IHclos_refl_trans2.
- + apply IHclos_refl_trans1; auto with sets.
+ - apply IH2.
+ + apply IH1; auto with sets.
- + intros.
- apply H0 with y0; auto with sets.
+ + intro y0; intros;
+ apply HIS with y0; auto with sets.
apply rt_trans with y; auto with sets.
Qed.
@@ -286,7 +286,7 @@ Section Properties.
P z ->
(forall x y, R x y -> clos_refl_trans_1n R y z -> P y -> P x) ->
forall x, clos_refl_trans_1n R x z -> P x.
- induction 3; auto.
+ intros P z H H0 x; induction 1 as [|x y z]; auto.
apply H0 with y; auto.
Qed.
@@ -309,7 +309,7 @@ Section Properties.
Lemma clos_rst1n_rst : forall x y,
clos_refl_sym_trans_1n R x y -> clos_refl_sym_trans R x y.
Proof.
- induction 1.
+ induction 1 as [|x y z H].
- constructor 2.
- constructor 4 with y; auto.
case H;[constructor 1|constructor 3; constructor 1]; auto.
@@ -317,7 +317,7 @@ Section Properties.
Lemma clos_rst1n_trans : forall x y z, clos_refl_sym_trans_1n R x y ->
clos_refl_sym_trans_1n R y z -> clos_refl_sym_trans_1n R x z.
- induction 1.
+ induction 1 as [|x y z0].
- auto.
- intros; right with y; eauto.
Qed.
@@ -335,7 +335,7 @@ Section Properties.
Lemma clos_rst_rst1n : forall x y,
clos_refl_sym_trans R x y -> clos_refl_sym_trans_1n R x y.
- induction 1.
+ induction 1 as [x y| | |].
- constructor 2 with y; auto.
constructor 1.
- constructor 1.
@@ -357,7 +357,7 @@ Section Properties.
Lemma clos_rstn1_rst : forall x y,
clos_refl_sym_trans_n1 R x y -> clos_refl_sym_trans R x y.
Proof.
- induction 1.
+ induction 1 as [|y z H].
- constructor 2.
- constructor 4 with y; auto.
case H;[constructor 1|constructor 3; constructor 1]; auto.
@@ -367,10 +367,9 @@ Section Properties.
clos_refl_sym_trans_n1 R y z -> clos_refl_sym_trans_n1 R x z.
Proof.
intros x y z H1 H2.
- induction H2.
+ induction H2 as [|y0 z].
- auto.
- - intros.
- right with y0; eauto.
+ - right with y0; eauto.
Qed.
Lemma clos_rstn1_sym : forall x y, clos_refl_sym_trans_n1 R x y ->
@@ -387,7 +386,7 @@ Section Properties.
Lemma clos_rst_rstn1 : forall x y,
clos_refl_sym_trans R x y -> clos_refl_sym_trans_n1 R x y.
Proof.
- induction 1.
+ induction 1 as [x| | |].
- constructor 2 with x; auto.
constructor 1.
- constructor 1.