aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMichael Soegtrop2020-05-10 08:45:19 +0200
committerMichael Soegtrop2020-05-10 08:45:19 +0200
commitd567eeeac238175e4d3d032f72a1409145abf89d (patch)
tree1d8e5ec34fc06d4e522b09d2218ef27f11ad9b79
parent2760d13b4bc70738cf10f1e6864764f62dcef32d (diff)
parent598e24a9c4a81ec9f24f1088d0a7a4a93dc19fd4 (diff)
Merge PR #12287: Define CRzero and CRone via CR_of_Q
Reviewed-by: MSoegtropIMC
-rw-r--r--theories/Reals/Abstract/ConstructiveAbs.v153
-rw-r--r--theories/Reals/Abstract/ConstructiveLUB.v7
-rw-r--r--theories/Reals/Abstract/ConstructiveLimits.v71
-rw-r--r--theories/Reals/Abstract/ConstructiveReals.v107
-rw-r--r--theories/Reals/Abstract/ConstructiveRealsMorphisms.v133
-rw-r--r--theories/Reals/Abstract/ConstructiveSum.v4
-rw-r--r--theories/Reals/Cauchy/ConstructiveRcomplete.v5
7 files changed, 229 insertions, 251 deletions
diff --git a/theories/Reals/Abstract/ConstructiveAbs.v b/theories/Reals/Abstract/ConstructiveAbs.v
index d357ad2d54..31397cbddd 100644
--- a/theories/Reals/Abstract/ConstructiveAbs.v
+++ b/theories/Reals/Abstract/ConstructiveAbs.v
@@ -57,11 +57,11 @@ Proof.
- pose proof (CRabs_def R x (CRabs R x)) as [_ H1].
apply H1, CRle_refl.
- rewrite <- CRabs_def. split. apply CRle_refl.
- apply (CRle_trans _ (CRzero R)). 2: exact H.
- apply (CRle_trans _ (CRopp R (CRzero R))).
+ apply (CRle_trans _ 0). 2: exact H.
+ apply (CRle_trans _ (CRopp R 0)).
intro abs. apply CRopp_lt_cancel in abs. contradiction.
- apply (CRplus_le_reg_l (CRzero R)).
- apply (CRle_trans _ (CRzero R)). apply CRplus_opp_r.
+ apply (CRplus_le_reg_l 0).
+ apply (CRle_trans _ 0). apply CRplus_opp_r.
apply CRplus_0_r.
Qed.
@@ -164,8 +164,7 @@ Lemma CR_of_Q_abs : forall {R : ConstructiveReals} (q : Q),
Proof.
intros. destruct (Qlt_le_dec 0 q).
- apply (CReq_trans _ (CR_of_Q R q)).
- apply CRabs_right. apply (CRle_trans _ (CR_of_Q R 0)).
- apply CR_of_Q_zero. apply CR_of_Q_le. apply Qlt_le_weak, q0.
+ apply CRabs_right. apply CR_of_Q_le. apply Qlt_le_weak, q0.
apply CR_of_Q_morph. symmetry. apply Qabs_pos, Qlt_le_weak, q0.
- apply (CReq_trans _ (CR_of_Q R (-q))).
apply (CReq_trans _ (CRabs R (CRopp R (CR_of_Q R q)))).
@@ -173,8 +172,7 @@ Proof.
2: apply CR_of_Q_morph; symmetry; apply Qabs_neg, q0.
apply (CReq_trans _ (CRopp R (CR_of_Q R q))).
2: apply CReq_sym, CR_of_Q_opp.
- apply CRabs_right. apply (CRle_trans _ (CR_of_Q R 0)).
- apply CR_of_Q_zero.
+ apply CRabs_right.
apply (CRle_trans _ (CR_of_Q R (-q))). apply CR_of_Q_le.
apply (Qplus_le_l _ _ q). ring_simplify. exact q0.
apply CR_of_Q_opp.
@@ -206,14 +204,14 @@ Proof.
destruct (CR_Q_dense R _ _ neg) as [q [H0 H1]].
destruct (Qlt_le_dec 0 q).
- destruct (s (CR_of_Q R (-q)) x 0).
- rewrite <- CR_of_Q_zero. apply CR_of_Q_lt.
+ apply CR_of_Q_lt.
apply (Qplus_lt_l _ _ q). ring_simplify. exact q0.
exfalso. pose proof (CRabs_def R x (CR_of_Q R q)) as [H2 _].
apply H2. clear H2. split. apply CRlt_asym, H0.
2: exact H1. rewrite <- Qopp_involutive, CR_of_Q_opp.
apply CRopp_ge_le_contravar, CRlt_asym, c. exact c.
- apply (CRlt_le_trans _ _ _ H0).
- rewrite <- CR_of_Q_zero. apply CR_of_Q_le. exact q0.
+ apply CR_of_Q_le. exact q0.
Qed.
@@ -339,24 +337,23 @@ Proof.
left; apply CR_of_Q_pos; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
- rewrite (CR_of_Q_plus R 1 1), CR_of_Q_one, CRmult_plus_distr_l, CRmult_1_r.
+ rewrite CRmult_1_r.
+ rewrite (CR_of_Q_plus R 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite CRabs_right. unfold CRminus.
rewrite CRopp_plus_distr, CRplus_assoc, <- (CRplus_assoc y).
rewrite CRplus_opp_r, CRplus_0_l, CRopp_involutive. reflexivity.
apply (CRmult_lt_compat_r (CR_of_Q R 2)) in H.
2: apply CR_of_Q_pos; reflexivity.
- rewrite CRmult_assoc, <- CR_of_Q_mult in H.
- setoid_replace ((1 # 2) * 2)%Q with 1%Q in H. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r in H.
- rewrite CRmult_comm, (CR_of_Q_plus R 1 1), CR_of_Q_one, CRmult_plus_distr_r,
- CRmult_1_l in H.
- intro abs. rewrite CRabs_left in H.
- unfold CRminus in H.
- rewrite CRopp_involutive, CRplus_comm in H.
- rewrite CRplus_assoc, <- (CRplus_assoc (-x)), CRplus_opp_l in H.
- rewrite CRplus_0_l in H. exact (CRlt_asym _ _ H H).
- apply CRlt_asym, abs.
+ intro abs. contradict H.
+ apply (CRle_trans _ (x + y - CRabs R (y - x))).
+ rewrite CRabs_left. 2: apply CRlt_asym, abs.
+ unfold CRminus. rewrite CRopp_involutive, CRplus_comm.
+ rewrite CRplus_assoc, <- (CRplus_assoc (-x)), CRplus_opp_l.
+ rewrite CRplus_0_l, (CR_of_Q_plus R 1 1), CRmult_plus_distr_l.
+ rewrite CRmult_1_r. apply CRle_refl.
+ rewrite CRmult_assoc, <- CR_of_Q_mult.
+ setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
+ rewrite CRmult_1_r. apply CRle_refl.
Qed.
Add Parametric Morphism {R : ConstructiveReals} : CRmin
@@ -383,11 +380,11 @@ Lemma CRmin_l : forall {R : ConstructiveReals} (x y : CRcarrier R),
Proof.
intros. unfold CRmin.
apply (CRmult_le_reg_r (CR_of_Q R 2)).
- rewrite <- CR_of_Q_zero. apply CR_of_Q_lt; reflexivity.
+ apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
- rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
+ rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
unfold CRminus. rewrite CRplus_assoc. apply CRplus_le_compat_l.
apply (CRplus_le_reg_r (CRabs _ (y + - x)+ -x)).
rewrite CRplus_assoc, <- (CRplus_assoc (-CRabs _ (y + - x))).
@@ -401,11 +398,11 @@ Lemma CRmin_r : forall {R : ConstructiveReals} (x y : CRcarrier R),
Proof.
intros. unfold CRmin.
apply (CRmult_le_reg_r (CR_of_Q R 2)).
- rewrite <- CR_of_Q_zero. apply CR_of_Q_lt; reflexivity.
+ apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
- rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
+ rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite (CRplus_comm x).
unfold CRminus. rewrite CRplus_assoc. apply CRplus_le_compat_l.
apply (CRplus_le_reg_l (-x)).
@@ -451,15 +448,15 @@ Proof.
intros. unfold CRmin.
unfold CRminus. setoid_replace (x + z + - (x + y)) with (z-y).
apply (CRmult_eq_reg_r (CR_of_Q _ 2)).
- left. rewrite <- CR_of_Q_zero. apply CR_of_Q_lt; reflexivity.
+ left. apply CR_of_Q_lt; reflexivity.
rewrite CRmult_plus_distr_r.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
- rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
+ rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
do 3 rewrite (CRplus_assoc x). apply CRplus_morph. reflexivity.
do 2 rewrite <- CRplus_assoc. apply CRplus_morph. 2: reflexivity.
rewrite (CRplus_comm x). apply CRplus_assoc.
@@ -474,11 +471,11 @@ Lemma CRmin_left : forall {R : ConstructiveReals} (x y : CRcarrier R),
Proof.
intros. unfold CRmin.
apply (CRmult_eq_reg_r (CR_of_Q R 2)).
- left. rewrite <- CR_of_Q_zero. apply CR_of_Q_lt; reflexivity.
+ left. apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
- rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
+ rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite CRabs_right. unfold CRminus. rewrite CRopp_plus_distr.
rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l. apply CRopp_involutive.
@@ -491,11 +488,11 @@ Lemma CRmin_right : forall {R : ConstructiveReals} (x y : CRcarrier R),
Proof.
intros. unfold CRmin.
apply (CRmult_eq_reg_r (CR_of_Q R 2)).
- left. rewrite <- CR_of_Q_zero. apply CR_of_Q_lt; reflexivity.
+ left. apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
- rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
+ rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite CRabs_left. unfold CRminus. do 2 rewrite CRopp_plus_distr.
rewrite (CRplus_comm x y).
rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
@@ -510,10 +507,10 @@ Lemma CRmin_lt : forall {R : ConstructiveReals} (x y z : CRcarrier R),
Proof.
intros. unfold CRmin.
apply (CRmult_lt_reg_r (CR_of_Q R 2)).
- rewrite <- CR_of_Q_zero. apply CR_of_Q_lt; reflexivity.
+ apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
apply (CRplus_lt_reg_l _ (CRabs _ (y - x) - (z*CR_of_Q R 2))).
unfold CRminus. rewrite CRplus_assoc. rewrite CRplus_opp_l, CRplus_0_r.
rewrite (CRplus_comm (CRabs R (y + - x))).
@@ -526,7 +523,7 @@ Proof.
apply (CRplus_lt_reg_l R (-x)).
rewrite CRopp_mult_distr_l.
rewrite <- CRplus_assoc, CRplus_opp_l, CRplus_0_l.
- rewrite (CR_of_Q_plus R 1 1), CR_of_Q_one, CRmult_plus_distr_l.
+ rewrite (CR_of_Q_plus R 1 1), CRmult_plus_distr_l.
rewrite CRmult_1_r. apply CRplus_le_lt_compat.
apply CRlt_asym.
apply CRopp_gt_lt_contravar, H.
@@ -537,7 +534,7 @@ Proof.
apply (CRplus_lt_reg_l R (-y)).
rewrite CRopp_mult_distr_l.
rewrite <- CRplus_assoc, CRplus_opp_l, CRplus_0_l.
- rewrite (CR_of_Q_plus R 1 1), CR_of_Q_one, CRmult_plus_distr_l.
+ rewrite (CR_of_Q_plus R 1 1), CRmult_plus_distr_l.
rewrite CRmult_1_r. apply CRplus_le_lt_compat.
apply CRlt_asym.
apply CRopp_gt_lt_contravar, H0.
@@ -552,12 +549,12 @@ Proof.
rewrite (CRabs_morph
_ ((x - y + (CRabs _ (a - y) - CRabs _ (a - x))) * CR_of_Q R (1 # 2))).
rewrite CRabs_mult, (CRabs_right (CR_of_Q R (1 # 2))).
- 2: rewrite <- CR_of_Q_zero; apply CR_of_Q_le; discriminate.
+ 2: apply CR_of_Q_le; discriminate.
apply (CRle_trans _
((CRabs _ (x - y) * 1 + CRabs _ (x-y) * 1)
* CR_of_Q R (1 # 2))).
apply CRmult_le_compat_r.
- rewrite <- CR_of_Q_zero. apply CR_of_Q_le. discriminate.
+ apply CR_of_Q_le. discriminate.
apply (CRle_trans
_ (CRabs _ (x - y) + CRabs _ (CRabs _ (a - y) - CRabs _ (a - x)))).
apply CRabs_triang. rewrite CRmult_1_r. apply CRplus_le_compat_l.
@@ -568,11 +565,11 @@ Proof.
rewrite CRplus_comm, CRopp_plus_distr, <- CRplus_assoc.
rewrite CRplus_opp_r, CRopp_involutive, CRplus_0_l.
reflexivity.
- rewrite <- CRmult_plus_distr_l, <- CR_of_Q_one.
+ rewrite <- CRmult_plus_distr_l.
rewrite <- (CR_of_Q_plus R 1 1).
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 + 1) * (1 # 2))%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r. apply CRle_refl.
+ rewrite CRmult_1_r. apply CRle_refl.
unfold CRminus. apply CRmult_morph. 2: reflexivity.
do 4 rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
rewrite <- CRplus_assoc. rewrite CRplus_comm, CRopp_plus_distr.
@@ -587,10 +584,10 @@ Lemma CRmin_glb : forall {R : ConstructiveReals} (x y z:CRcarrier R),
Proof.
intros. unfold CRmin.
apply (CRmult_le_reg_r (CR_of_Q R 2)).
- rewrite <- CR_of_Q_zero. apply CR_of_Q_lt; reflexivity.
+ apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
apply (CRplus_le_reg_l (CRabs _ (y-x) - (z*CR_of_Q R 2))).
unfold CRminus. rewrite CRplus_assoc, CRplus_opp_l, CRplus_0_r.
rewrite (CRplus_comm (CRabs R (y + - x) + - (z * CR_of_Q R 2))).
@@ -601,13 +598,13 @@ Proof.
rewrite CRopp_involutive, (CRplus_comm y), CRplus_assoc.
apply CRplus_le_compat_l, (CRplus_le_reg_l y).
rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l.
- rewrite (CR_of_Q_plus R 1 1), CR_of_Q_one, CRmult_plus_distr_l.
+ rewrite (CR_of_Q_plus R 1 1), CRmult_plus_distr_l.
rewrite CRmult_1_r. apply CRplus_le_compat; exact H0.
- rewrite (CRplus_comm x), CRplus_assoc. apply CRplus_le_compat_l.
apply (CRplus_le_reg_l (-x)).
rewrite <- CRplus_assoc, CRplus_opp_l, CRplus_0_l.
rewrite CRopp_mult_distr_l.
- rewrite (CR_of_Q_plus R 1 1), CR_of_Q_one, CRmult_plus_distr_l.
+ rewrite (CR_of_Q_plus R 1 1), CRmult_plus_distr_l.
rewrite CRmult_1_r.
apply CRplus_le_compat; apply CRopp_ge_le_contravar; exact H.
Qed.
@@ -673,11 +670,11 @@ Lemma CRmax_lub : forall {R : ConstructiveReals} (x y z:CRcarrier R),
x <= z -> y <= z -> CRmax x y <= z.
Proof.
intros. unfold CRmax.
- apply (CRmult_le_reg_r (CR_of_Q _ 2)). rewrite <- CR_of_Q_zero.
+ apply (CRmult_le_reg_r (CR_of_Q _ 2)).
apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
apply (CRplus_le_reg_l (-x-y)).
rewrite <- CRplus_assoc. unfold CRminus.
rewrite <- CRopp_plus_distr, CRplus_opp_l, CRplus_0_l.
@@ -687,14 +684,14 @@ Proof.
rewrite (CRplus_comm x), CRplus_assoc. apply CRplus_le_compat_l.
apply (CRplus_le_reg_l (-x)).
rewrite <- CRplus_assoc, CRplus_opp_l, CRplus_0_l.
- rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CR_of_Q_one, CRmult_1_r.
+ rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite CRopp_plus_distr.
apply CRplus_le_compat; apply CRopp_ge_le_contravar; assumption.
- rewrite (CRplus_comm y), CRopp_plus_distr, CRplus_assoc.
apply CRplus_le_compat_l.
apply (CRplus_le_reg_l y).
rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l.
- rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CR_of_Q_one, CRmult_1_r.
+ rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
apply CRplus_le_compat; assumption.
Qed.
@@ -702,12 +699,12 @@ Lemma CRmax_l : forall {R : ConstructiveReals} (x y : CRcarrier R),
x <= CRmax x y.
Proof.
intros. unfold CRmax.
- apply (CRmult_le_reg_r (CR_of_Q R 2)). rewrite <- CR_of_Q_zero.
+ apply (CRmult_le_reg_r (CR_of_Q R 2)).
apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
- setoid_replace 2%Q with (1+1)%Q. rewrite CR_of_Q_plus, CR_of_Q_one.
+ rewrite CRmult_1_r.
+ setoid_replace 2%Q with (1+1)%Q. rewrite CR_of_Q_plus.
rewrite CRmult_plus_distr_l, CRmult_1_r, CRplus_assoc.
apply CRplus_le_compat_l.
apply (CRplus_le_reg_l (-y)).
@@ -720,12 +717,12 @@ Lemma CRmax_r : forall {R : ConstructiveReals} (x y : CRcarrier R),
y <= CRmax x y.
Proof.
intros. unfold CRmax.
- apply (CRmult_le_reg_r (CR_of_Q _ 2)). rewrite <- CR_of_Q_zero.
+ apply (CRmult_le_reg_r (CR_of_Q _ 2)).
apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
- rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
+ rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite (CRplus_comm x).
rewrite CRplus_assoc. apply CRplus_le_compat_l.
apply (CRplus_le_reg_l (-x)).
@@ -754,14 +751,14 @@ Proof.
intros. unfold CRmax.
setoid_replace (x + z - (x + y)) with (z-y).
apply (CRmult_eq_reg_r (CR_of_Q _ 2)).
- left. rewrite <- CR_of_Q_zero. apply CR_of_Q_lt; reflexivity.
+ left. apply CR_of_Q_lt; reflexivity.
rewrite CRmult_plus_distr_r.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CR_of_Q_one, CRmult_1_r.
+ rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite CRmult_1_r.
do 3 rewrite (CRplus_assoc x). apply CRplus_morph. reflexivity.
do 2 rewrite <- CRplus_assoc. apply CRplus_morph. 2: reflexivity.
@@ -777,11 +774,11 @@ Lemma CRmax_left : forall {R : ConstructiveReals} (x y : CRcarrier R),
Proof.
intros. unfold CRmax.
apply (CRmult_eq_reg_r (CR_of_Q R 2)).
- left. rewrite <- CR_of_Q_zero. apply CR_of_Q_lt; reflexivity.
+ left. apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
- rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
+ rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
rewrite CRabs_left. unfold CRminus. rewrite CRopp_plus_distr, CRopp_involutive.
rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l. reflexivity.
@@ -793,11 +790,11 @@ Lemma CRmax_right : forall {R : ConstructiveReals} (x y : CRcarrier R),
Proof.
intros. unfold CRmax.
apply (CRmult_eq_reg_r (CR_of_Q R 2)).
- left. rewrite <- CR_of_Q_zero. apply CR_of_Q_lt; reflexivity.
+ left. apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
- rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
+ rewrite (CR_of_Q_plus _ 1 1), CRmult_plus_distr_l, CRmult_1_r.
rewrite (CRplus_comm x y).
rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
rewrite CRabs_right. unfold CRminus. rewrite CRplus_comm.
@@ -812,12 +809,12 @@ Proof.
rewrite (CRabs_morph
_ ((x - y + (CRabs _ (a - x) - CRabs _ (a - y))) * CR_of_Q R (1 # 2))).
rewrite CRabs_mult, (CRabs_right (CR_of_Q R (1 # 2))).
- 2: rewrite <- CR_of_Q_zero; apply CR_of_Q_le; discriminate.
+ 2: apply CR_of_Q_le; discriminate.
apply (CRle_trans
_ ((CRabs _ (x - y) * 1 + CRabs _ (x-y) * 1)
* CR_of_Q R (1 # 2))).
apply CRmult_le_compat_r.
- rewrite <- CR_of_Q_zero. apply CR_of_Q_le. discriminate.
+ apply CR_of_Q_le. discriminate.
apply (CRle_trans
_ (CRabs _ (x - y) + CRabs _ (CRabs _ (a - x) - CRabs _ (a - y)))).
apply CRabs_triang. rewrite CRmult_1_r. apply CRplus_le_compat_l.
@@ -829,11 +826,11 @@ Proof.
rewrite CRplus_comm, CRopp_plus_distr, <- CRplus_assoc.
rewrite CRplus_opp_r, CRopp_involutive, CRplus_0_l.
reflexivity.
- rewrite <- CRmult_plus_distr_l, <- CR_of_Q_one.
+ rewrite <- CRmult_plus_distr_l.
rewrite <- (CR_of_Q_plus R 1 1).
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 + 1) * (1 # 2))%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r. apply CRle_refl.
+ rewrite CRmult_1_r. apply CRle_refl.
unfold CRminus. rewrite CRopp_mult_distr_l.
rewrite <- CRmult_plus_distr_r. apply CRmult_morph. 2: reflexivity.
do 4 rewrite CRplus_assoc. apply CRplus_morph. reflexivity.
@@ -849,10 +846,10 @@ Lemma CRmax_lub_lt : forall {R : ConstructiveReals} (x y z : CRcarrier R),
Proof.
intros. unfold CRmax.
apply (CRmult_lt_reg_r (CR_of_Q R 2)).
- rewrite <- CR_of_Q_zero. apply CR_of_Q_lt; reflexivity.
+ apply CR_of_Q_lt; reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
apply (CRplus_lt_reg_l _ (-y -x)). unfold CRminus.
rewrite CRplus_assoc, <- (CRplus_assoc (-x)), <- (CRplus_assoc (-x)).
rewrite CRplus_opp_l, CRplus_0_l, <- CRplus_assoc, CRplus_opp_l, CRplus_0_l.
@@ -861,14 +858,14 @@ Proof.
apply CRplus_lt_compat_l.
apply (CRplus_lt_reg_l _ y).
rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l.
- rewrite (CR_of_Q_plus R 1 1), CR_of_Q_one, CRmult_plus_distr_l.
+ rewrite (CR_of_Q_plus R 1 1), CRmult_plus_distr_l.
rewrite CRmult_1_r. apply CRplus_le_lt_compat.
apply CRlt_asym, H0. exact H0.
- rewrite CRopp_plus_distr, CRopp_involutive.
rewrite CRplus_assoc. apply CRplus_lt_compat_l.
apply (CRplus_lt_reg_l _ x).
rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l.
- rewrite (CR_of_Q_plus R 1 1), CR_of_Q_one, CRmult_plus_distr_l.
+ rewrite (CR_of_Q_plus R 1 1), CRmult_plus_distr_l.
rewrite CRmult_1_r. apply CRplus_le_lt_compat.
apply CRlt_asym, H. exact H.
Qed.
diff --git a/theories/Reals/Abstract/ConstructiveLUB.v b/theories/Reals/Abstract/ConstructiveLUB.v
index 4ae24de154..1c19c6aa40 100644
--- a/theories/Reals/Abstract/ConstructiveLUB.v
+++ b/theories/Reals/Abstract/ConstructiveLUB.v
@@ -108,7 +108,7 @@ Proof.
rewrite Z.mul_1_l, Z.mul_1_l. apply Pos2Z.pos_le_pos.
apply Pos2Nat.inj_le. rewrite Nat2Pos.id.
apply le_S, H0. discriminate.
- rewrite <- CR_of_Q_zero. apply CR_of_Q_le. discriminate.
+ apply CR_of_Q_le. discriminate.
Qed.
Lemma is_upper_bound_dec :
@@ -272,7 +272,7 @@ Proof.
apply CR_of_Q_pos. reflexivity.
rewrite CRmult_assoc, <- CR_of_Q_mult, (CR_of_Q_plus R 1 1).
setoid_replace ((1 # 2) * 2)%Q with 1%Q. 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_plus_distr_l, CRmult_1_r, CRmult_1_r.
+ rewrite CRmult_plus_distr_l, CRmult_1_r, CRmult_1_r.
apply CRplus_lt_compat_r. exact H0. }
destruct (CR_cv_open_below _ _ l lcv H1) as [p pmaj].
assert (0 < (l-CR_of_Q R r) * CR_of_Q R (1#2)).
@@ -280,7 +280,6 @@ Proof.
apply CRplus_lt_compat_r. exact H0. apply CR_of_Q_pos. reflexivity. }
destruct (CRup_nat (CRinv R _ (inr H2))) as [i imaj].
destruct i. exfalso. simpl in imaj.
- rewrite CR_of_Q_zero in imaj.
exact (CRlt_asym _ _ imaj (CRinv_0_lt_compat R _ (inr H2) H2)).
specialize (pmaj (max (S i) (S p)) (le_trans p (S p) _ (le_S p p (le_refl p)) (Nat.le_max_r (S i) (S p)))).
unfold proj1_sig in pmaj.
@@ -309,7 +308,7 @@ Proof.
CR_of_Q R (1 # Pos.of_nat (S i)))).
apply CRlt_asym, imaj. rewrite CRmult_assoc, <- CR_of_Q_mult.
setoid_replace ((Z.of_nat (S i) # 1) * (1 # Pos.of_nat (S i)))%Q with 1%Q.
- rewrite CR_of_Q_one, CRmult_1_r.
+ rewrite CRmult_1_r.
unfold CRminus. rewrite CRmult_plus_distr_r, (CRplus_comm (-CR_of_Q R r)).
rewrite (CRplus_comm (CR_of_Q R r)), CRmult_plus_distr_r.
rewrite CRplus_assoc. apply CRplus_le_compat_l.
diff --git a/theories/Reals/Abstract/ConstructiveLimits.v b/theories/Reals/Abstract/ConstructiveLimits.v
index 4a40cc8cb3..64dcd2e1ec 100644
--- a/theories/Reals/Abstract/ConstructiveLimits.v
+++ b/theories/Reals/Abstract/ConstructiveLimits.v
@@ -89,7 +89,7 @@ Lemma CR_cv_unique : forall {R : ConstructiveReals} (xn : nat -> CRcarrier R)
-> CR_cv R xn b
-> a == b.
Proof.
- intros. assert (CR_cv R (fun _ => CRzero R) (CRminus R b a)).
+ intros. assert (CR_cv R (fun _ => 0) (CRminus R b a)).
{ apply (CR_cv_extens (fun n => CRminus R (xn n) (xn n))).
intro n. unfold CRminus. apply CRplus_opp_r.
apply CR_cv_plus. exact H0. apply CR_cv_opp, H. }
@@ -111,8 +111,7 @@ Proof.
rewrite Qmult_1_r in pmaj. exact pmaj. unfold Qeq, Qnum, Qden; simpl.
do 2 rewrite Pos.mul_1_r. reflexivity.
apply (Qplus_lt_l _ _ q). ring_simplify.
- apply (lt_CR_of_Q R q 0). apply (CRlt_le_trans _ (CRzero R) _ H).
- apply CR_of_Q_zero.
+ apply (lt_CR_of_Q R q 0). exact H.
apply (CRlt_le_trans _ (CRopp R z)).
apply (CRle_lt_trans _ (CRopp R (CR_of_Q R q))). apply CR_of_Q_opp.
apply CRopp_gt_lt_contravar, H0.
@@ -131,8 +130,7 @@ Proof.
setoid_replace ((Z.pos p # 1) * (1 # p))%Q with 1%Q in pmaj.
rewrite Qmult_1_r in pmaj. exact pmaj. unfold Qeq, Qnum, Qden; simpl.
do 2 rewrite Pos.mul_1_r. reflexivity.
- apply (lt_CR_of_Q R 0 q). apply (CRle_lt_trans _ (CRzero R)).
- 2: exact H0. apply CR_of_Q_zero.
+ apply (lt_CR_of_Q R 0 q). exact H0.
apply (CRlt_le_trans _ _ _ H).
apply (CRle_trans _ (CRabs R (CRopp R z))).
apply (CRle_trans _ (CRabs R z)).
@@ -140,10 +138,7 @@ Proof.
apply H1. apply CRle_refl. apply CRabs_opp.
apply CRabs_morph. unfold CRminus. symmetry. apply CRplus_0_l.
- subst z. apply (CRplus_eq_reg_l (CRopp R a)).
- apply (CReq_trans _ (CRzero R)). apply CRplus_opp_l.
- destruct (CRisRing R).
- apply (CReq_trans _ (CRplus R b (CRopp R a))). apply CReq_sym, H.
- apply Radd_comm.
+ rewrite CRplus_opp_l, CRplus_comm. symmetry. exact H.
Qed.
Lemma CR_cv_eq : forall {R : ConstructiveReals}
@@ -196,7 +191,7 @@ Lemma Un_cv_nat_real : forall {R : ConstructiveReals}
Proof.
intros. destruct (CR_archimedean R (CRinv R eps (inr H0))) as [k kmaj].
assert (0 < CR_of_Q R (Z.pos k # 1)).
- { rewrite <- CR_of_Q_zero. apply CR_of_Q_lt. reflexivity. }
+ { apply CR_of_Q_lt. reflexivity. }
specialize (H k) as [p pmaj].
exists p. intros.
apply (CRle_lt_trans _ (CR_of_Q R (1 # k))).
@@ -204,7 +199,7 @@ Proof.
apply (CRmult_lt_reg_l (CR_of_Q R (Z.pos k # 1))). exact H1.
rewrite <- CR_of_Q_mult.
apply (CRle_lt_trans _ 1).
- rewrite <- CR_of_Q_one. apply CR_of_Q_le.
+ apply CR_of_Q_le.
unfold Qle; simpl. do 2 rewrite Pos.mul_1_r. apply Z.le_refl.
apply (CRmult_lt_reg_r (CRinv R eps (inr H0))).
apply CRinv_0_lt_compat, H0. rewrite CRmult_1_l, CRmult_assoc.
@@ -220,7 +215,7 @@ Lemma Un_cv_real_nat : forall {R : ConstructiveReals}
Proof.
intros. intros n.
specialize (H (CR_of_Q R (1#n))) as [p pmaj].
- rewrite <- CR_of_Q_zero. apply CR_of_Q_lt. reflexivity.
+ apply CR_of_Q_lt. reflexivity.
exists p. intros. apply CRlt_asym. apply pmaj. apply H.
Qed.
@@ -288,12 +283,12 @@ Proof.
setoid_replace (1 # n * x)%Q with ((1 # n) *(1# x))%Q. 2: reflexivity.
rewrite <- (CRmult_1_r (CR_of_Q R (1#n))).
rewrite CR_of_Q_mult, CRmult_assoc.
- apply CRmult_le_compat_l. rewrite <- CR_of_Q_zero.
+ apply CRmult_le_compat_l.
apply CR_of_Q_le. discriminate. intro abs.
apply (CRmult_lt_compat_l (CR_of_Q R (Z.pos x #1))) in abs.
rewrite CRmult_1_r, <- CRmult_assoc, <- CR_of_Q_mult in abs.
rewrite (CR_of_Q_morph R ((Z.pos x # 1) * (1 # x))%Q 1%Q) in abs.
- rewrite CR_of_Q_one, CRmult_1_l in abs.
+ rewrite CRmult_1_l in abs.
apply (CRlt_asym _ _ abs), (CRlt_trans _ (1 + CRabs R a)).
2: exact c. rewrite <- CRplus_0_l, <- CRplus_assoc.
apply CRplus_lt_compat_r. rewrite CRplus_0_r. apply CRzero_lt_one.
@@ -310,7 +305,7 @@ Lemma CR_cv_const : forall {R : ConstructiveReals} (a : CRcarrier R),
Proof.
intros a p. exists O. intros.
unfold CRminus. rewrite CRplus_opp_r.
- rewrite CRabs_right. rewrite <- CR_of_Q_zero.
+ rewrite CRabs_right.
apply CR_of_Q_le. discriminate. apply CRle_refl.
Qed.
@@ -633,7 +628,7 @@ Lemma CR_double : forall {R : ConstructiveReals} (x:CRcarrier R),
CR_of_Q R 2 * x == x + x.
Proof.
intros R x. rewrite (CR_of_Q_morph R 2 (1+1)).
- 2: reflexivity. rewrite CR_of_Q_plus, CR_of_Q_one.
+ 2: reflexivity. rewrite CR_of_Q_plus.
rewrite CRmult_plus_distr_r, CRmult_1_l. reflexivity.
Qed.
@@ -641,7 +636,7 @@ Lemma GeoCvZero : forall {R : ConstructiveReals},
CR_cv R (fun n:nat => CRpow (CR_of_Q R (1#2)) n) 0.
Proof.
intro R. assert (forall n:nat, INR n < CRpow (CR_of_Q R 2) n).
- { induction n. unfold INR; simpl. rewrite CR_of_Q_zero.
+ { induction n. unfold INR; simpl.
apply CRzero_lt_one. unfold INR. fold (1+n)%nat.
rewrite Nat2Z.inj_add.
rewrite (CR_of_Q_morph R _ ((Z.of_nat 1 # 1) + (Z.of_nat n #1))).
@@ -651,29 +646,29 @@ Proof.
with (CR_of_Q R 2 * CRpow (CR_of_Q R 2) n).
2: reflexivity. rewrite CR_double.
apply CRplus_le_lt_compat.
- 2: exact IHn. simpl. rewrite CR_of_Q_one.
- apply pow_R1_Rle. rewrite <- CR_of_Q_one. apply CR_of_Q_le. discriminate. }
+ 2: exact IHn. simpl.
+ apply pow_R1_Rle. apply CR_of_Q_le. discriminate. }
intros p. exists (Pos.to_nat p). intros.
unfold CRminus. rewrite CRopp_0. rewrite CRplus_0_r.
rewrite CRabs_right.
- 2: apply pow_le; rewrite <- CR_of_Q_zero; apply CR_of_Q_le; discriminate.
+ 2: apply pow_le; apply CR_of_Q_le; discriminate.
apply CRlt_asym.
apply (CRmult_lt_reg_l (CR_of_Q R (Z.pos p # 1))).
- rewrite <- CR_of_Q_zero. apply CR_of_Q_lt. reflexivity. rewrite <- CR_of_Q_mult.
+ apply CR_of_Q_lt. reflexivity. rewrite <- CR_of_Q_mult.
rewrite (CR_of_Q_morph R ((Z.pos p # 1) * (1 # p)) 1).
2: unfold Qmult, Qeq, Qnum, Qden; ring_simplify; reflexivity.
apply (CRmult_lt_reg_r (CRpow (CR_of_Q R 2) i)).
- apply pow_lt. simpl. rewrite <- CR_of_Q_zero.
+ apply pow_lt. simpl.
apply CR_of_Q_lt. reflexivity.
rewrite CRmult_assoc. rewrite pow_mult.
rewrite (pow_proper (CR_of_Q R (1 # 2) * CR_of_Q R 2) 1), pow_one.
- rewrite CRmult_1_r, CR_of_Q_one, CRmult_1_l.
+ rewrite CRmult_1_r, CRmult_1_l.
apply (CRle_lt_trans _ (INR i)). 2: exact (H i). clear H.
apply CR_of_Q_le. unfold Qle,Qnum,Qden.
do 2 rewrite Z.mul_1_r.
rewrite <- positive_nat_Z. apply Nat2Z.inj_le, H0.
rewrite <- CR_of_Q_mult. setoid_replace ((1#2)*2)%Q with 1%Q.
- apply CR_of_Q_one. reflexivity.
+ reflexivity. reflexivity.
Qed.
Lemma GeoFiniteSum : forall {R : ConstructiveReals} (n:nat),
@@ -681,9 +676,9 @@ Lemma GeoFiniteSum : forall {R : ConstructiveReals} (n:nat),
Proof.
induction n.
- unfold CRsum, CRpow. simpl (1%ConstructiveReals).
- unfold CRminus. rewrite (CR_of_Q_morph R _ (1+1)).
- rewrite CR_of_Q_plus, CR_of_Q_one, CRplus_assoc.
- rewrite CRplus_opp_r, CRplus_0_r. reflexivity. reflexivity.
+ unfold CRminus. rewrite (CR_of_Q_plus R 1 1).
+ rewrite CRplus_assoc.
+ rewrite CRplus_opp_r, CRplus_0_r. reflexivity.
- setoid_replace (CRsum (CRpow (CR_of_Q R (1 # 2))) (S n))
with (CRsum (CRpow (CR_of_Q R (1 # 2))) n + CRpow (CR_of_Q R (1 # 2)) (S n)).
2: reflexivity.
@@ -701,7 +696,7 @@ Proof.
2: reflexivity.
rewrite <- CRmult_assoc, <- CR_of_Q_mult.
setoid_replace (2 * (1 # 2))%Q with 1%Q.
- rewrite CR_of_Q_one. apply CRmult_1_l. reflexivity.
+ apply CRmult_1_l. reflexivity.
Qed.
Lemma GeoHalfBelowTwo : forall {R : ConstructiveReals} (n:nat),
@@ -710,7 +705,7 @@ Proof.
intros. rewrite <- (CRplus_0_r (CR_of_Q R 2)), GeoFiniteSum.
apply CRplus_lt_compat_l. rewrite <- CRopp_0.
apply CRopp_gt_lt_contravar.
- apply pow_lt. rewrite <- CR_of_Q_zero. apply CR_of_Q_lt. reflexivity.
+ apply pow_lt. apply CR_of_Q_lt. reflexivity.
Qed.
Lemma GeoHalfTwo : forall {R : ConstructiveReals},
@@ -720,35 +715,35 @@ Proof.
apply (CR_cv_eq _ (fun n => CR_of_Q R 2 - CRpow (CR_of_Q R (1 # 2)) n)).
- intro n. rewrite GeoFiniteSum. reflexivity.
- assert (forall n:nat, INR n < CRpow (CR_of_Q R 2) n).
- { induction n. unfold INR; simpl. rewrite CR_of_Q_zero.
+ { induction n. unfold INR; simpl.
apply CRzero_lt_one. apply (CRlt_le_trans _ (CRpow (CR_of_Q R 2) n + 1)).
unfold INR.
rewrite Nat2Z.inj_succ, <- Z.add_1_l.
rewrite (CR_of_Q_morph R _ (1 + (Z.of_nat n #1))).
2: symmetry; apply Qinv_plus_distr. rewrite CR_of_Q_plus.
- rewrite CRplus_comm. rewrite CR_of_Q_one.
+ rewrite CRplus_comm.
apply CRplus_lt_compat_r, IHn.
setoid_replace (CRpow (CR_of_Q R 2) (S n))
with (CRpow (CR_of_Q R 2) n + CRpow (CR_of_Q R 2) n).
apply CRplus_le_compat. apply CRle_refl.
- apply pow_R1_Rle. rewrite <- CR_of_Q_one. apply CR_of_Q_le. discriminate.
+ apply pow_R1_Rle. apply CR_of_Q_le. discriminate.
rewrite <- CR_double. reflexivity. }
intros n. exists (Pos.to_nat n). intros.
setoid_replace (CR_of_Q R 2 - CRpow (CR_of_Q R (1 # 2)) i - CR_of_Q R 2)
with (- CRpow (CR_of_Q R (1 # 2)) i).
rewrite CRabs_opp. rewrite CRabs_right.
assert (0 < CR_of_Q R 2).
- { rewrite <- CR_of_Q_zero. apply CR_of_Q_lt. reflexivity. }
+ { apply CR_of_Q_lt. reflexivity. }
rewrite (pow_proper _ (CRinv R (CR_of_Q R 2) (inr H1))).
rewrite pow_inv. apply CRlt_asym.
apply (CRmult_lt_reg_l (CRpow (CR_of_Q R 2) i)). apply pow_lt, H1.
rewrite CRinv_r.
apply (CRmult_lt_reg_r (CR_of_Q R (Z.pos n#1))).
- rewrite <- CR_of_Q_zero. apply CR_of_Q_lt. reflexivity.
+ apply CR_of_Q_lt. reflexivity.
rewrite CRmult_1_l, CRmult_assoc.
rewrite <- CR_of_Q_mult.
rewrite (CR_of_Q_morph R ((1 # n) * (Z.pos n # 1)) 1). 2: reflexivity.
- rewrite CR_of_Q_one, CRmult_1_r. apply (CRle_lt_trans _ (INR i)).
+ rewrite CRmult_1_r. apply (CRle_lt_trans _ (INR i)).
2: apply H. apply CR_of_Q_le.
unfold Qle, Qnum, Qden. do 2 rewrite Z.mul_1_r. destruct i.
exfalso. inversion H0. pose proof (Pos2Nat.is_pos n).
@@ -758,8 +753,8 @@ Proof.
apply (CRmult_eq_reg_l (CR_of_Q R 2)). right. exact H1.
rewrite CRinv_r. rewrite <- CR_of_Q_mult.
setoid_replace (2 * (1 # 2))%Q with 1%Q.
- apply CR_of_Q_one. reflexivity.
- apply CRlt_asym, pow_lt. rewrite <- CR_of_Q_zero.
+ reflexivity. reflexivity.
+ apply CRlt_asym, pow_lt.
apply CR_of_Q_lt. reflexivity.
unfold CRminus. rewrite CRplus_comm, <- CRplus_assoc.
rewrite CRplus_opp_l, CRplus_0_l. reflexivity.
@@ -929,5 +924,5 @@ Proof.
intros n. exists (Pos.to_nat n). intros.
unfold CRminus. simpl.
rewrite CRopp_involutive, CRplus_opp_l. rewrite CRabs_right.
- rewrite <- CR_of_Q_zero. apply CR_of_Q_le. discriminate. apply CRle_refl.
+ apply CR_of_Q_le. discriminate. apply CRle_refl.
Qed.
diff --git a/theories/Reals/Abstract/ConstructiveReals.v b/theories/Reals/Abstract/ConstructiveReals.v
index d91fd1183a..019428a5b0 100644
--- a/theories/Reals/Abstract/ConstructiveReals.v
+++ b/theories/Reals/Abstract/ConstructiveReals.v
@@ -101,9 +101,15 @@ Structure ConstructiveReals : Type :=
CRltDisjunctEpsilon : forall a b c d : CRcarrier,
(CRltProp a b \/ CRltProp c d) -> CRlt a b + CRlt c d;
- (* Constants *)
- CRzero : CRcarrier;
- CRone : CRcarrier;
+ (* The initial field morphism (in characteristic zero).
+ The abstract definition by iteration of addition is
+ probably the slowest. Let each instance implement
+ a faster (and often simpler) version. *)
+ CR_of_Q : Q -> CRcarrier;
+ CR_of_Q_lt : forall q r : Q,
+ Qlt q r -> CRlt (CR_of_Q q) (CR_of_Q r);
+ lt_CR_of_Q : forall q r : Q,
+ CRlt (CR_of_Q q) (CR_of_Q r) -> Qlt q r;
(* Addition and multiplication *)
CRplus : CRcarrier -> CRcarrier -> CRcarrier;
@@ -111,19 +117,22 @@ Structure ConstructiveReals : Type :=
stronger than Prop-existence of opposite *)
CRmult : CRcarrier -> CRcarrier -> CRcarrier;
- CRisRing : ring_theory CRzero CRone CRplus CRmult
+ CR_of_Q_plus : forall q r : Q, CReq (CR_of_Q (q+r))
+ (CRplus (CR_of_Q q) (CR_of_Q r));
+ CR_of_Q_mult : forall q r : Q, CReq (CR_of_Q (q*r))
+ (CRmult (CR_of_Q q) (CR_of_Q r));
+ CRisRing : ring_theory (CR_of_Q 0) (CR_of_Q 1) CRplus CRmult
(fun x y => CRplus x (CRopp y)) CRopp CReq;
CRisRingExt : ring_eq_ext CRplus CRmult CRopp CReq;
(* Compatibility with order *)
- CRzero_lt_one : CRlt CRzero CRone; (* 0 # 1 would only allow 0 < 1 because
- of Fmult_lt_0_compat so request 0 < 1 directly. *)
+ CRzero_lt_one : CRlt (CR_of_Q 0) (CR_of_Q 1);
CRplus_lt_compat_l : forall r r1 r2 : CRcarrier,
CRlt r1 r2 -> CRlt (CRplus r r1) (CRplus r r2);
CRplus_lt_reg_l : forall r r1 r2 : CRcarrier,
CRlt (CRplus r r1) (CRplus r r2) -> CRlt r1 r2;
CRmult_lt_0_compat : forall x y : CRcarrier,
- CRlt CRzero x -> CRlt CRzero y -> CRlt CRzero (CRmult x y);
+ CRlt (CR_of_Q 0) x -> CRlt (CR_of_Q 0) y -> CRlt (CR_of_Q 0) (CRmult x y);
(* A constructive total inverse function on F would need to be continuous,
which is impossible because we cannot connect plus and minus infinities.
@@ -132,26 +141,11 @@ Structure ConstructiveReals : Type :=
To implement Finv by Cauchy sequences we need orderAppart,
~orderEq is not enough. *)
- CRinv : forall x : CRcarrier, CRapart x CRzero -> CRcarrier;
- CRinv_l : forall (r:CRcarrier) (rnz : CRapart r CRzero),
- CReq (CRmult (CRinv r rnz) r) CRone;
- CRinv_0_lt_compat : forall (r : CRcarrier) (rnz : CRapart r CRzero),
- CRlt CRzero r -> CRlt CRzero (CRinv r rnz);
-
- (* The initial field morphism (in characteristic zero).
- The abstract definition by iteration of addition is
- probably the slowest. Let each instance implement
- a faster (and often simpler) version. *)
- CR_of_Q : Q -> CRcarrier;
- CR_of_Q_plus : forall q r : Q, CReq (CR_of_Q (q+r))
- (CRplus (CR_of_Q q) (CR_of_Q r));
- CR_of_Q_mult : forall q r : Q, CReq (CR_of_Q (q*r))
- (CRmult (CR_of_Q q) (CR_of_Q r));
- CR_of_Q_one : CReq (CR_of_Q 1) CRone;
- CR_of_Q_lt : forall q r : Q,
- Qlt q r -> CRlt (CR_of_Q q) (CR_of_Q r);
- lt_CR_of_Q : forall q r : Q,
- CRlt (CR_of_Q q) (CR_of_Q r) -> Qlt q r;
+ CRinv : forall x : CRcarrier, CRapart x (CR_of_Q 0) -> CRcarrier;
+ CRinv_l : forall (r:CRcarrier) (rnz : CRapart r (CR_of_Q 0)),
+ CReq (CRmult (CRinv r rnz) r) (CR_of_Q 1);
+ CRinv_0_lt_compat : forall (r : CRcarrier) (rnz : CRapart r (CR_of_Q 0)),
+ CRlt (CR_of_Q 0) r -> CRlt (CR_of_Q 0) (CRinv r rnz);
(* This function is very fast in both the Cauchy and Dedekind
instances, because this rational number q is almost what
@@ -213,8 +207,17 @@ Notation "x <= y <= z" := (CRle _ x y /\ CRle _ y z) : ConstructiveReals.
Notation "x < y < z" := (prod (CRlt _ x y) (CRlt _ y z)) : ConstructiveReals.
Notation "x == y" := (CReq _ x y) : ConstructiveReals.
Notation "x ≶ y" := (CRapart _ x y) (at level 70, no associativity) : ConstructiveReals.
-Notation "0" := (CRzero _) : ConstructiveReals.
-Notation "1" := (CRone _) : ConstructiveReals.
+Notation "0" := (CR_of_Q _ 0) : ConstructiveReals.
+Notation "1" := (CR_of_Q _ 1) : ConstructiveReals.
+Notation "2" := (CR_of_Q _ 2) : ConstructiveReals.
+Notation "3" := (CR_of_Q _ 3) : ConstructiveReals.
+Notation "4" := (CR_of_Q _ 4) : ConstructiveReals.
+Notation "5" := (CR_of_Q _ 5) : ConstructiveReals.
+Notation "6" := (CR_of_Q _ 6) : ConstructiveReals.
+Notation "7" := (CR_of_Q _ 7) : ConstructiveReals.
+Notation "8" := (CR_of_Q _ 8) : ConstructiveReals.
+Notation "9" := (CR_of_Q _ 9) : ConstructiveReals.
+Notation "10" := (CR_of_Q _ 10) : ConstructiveReals.
Notation "x + y" := (CRplus _ x y) : ConstructiveReals.
Notation "- x" := (CRopp _ x) : ConstructiveReals.
Notation "x - y" := (CRminus _ x y) : ConstructiveReals.
@@ -567,7 +570,7 @@ Lemma CRopp_involutive : forall {R : ConstructiveReals} (r : CRcarrier R),
- - r == r.
Proof.
intros. apply (CRplus_eq_reg_l (CRopp R r)).
- transitivity (CRzero R). apply CRisRing.
+ transitivity (CR_of_Q R 0). apply CRisRing.
apply CReq_sym. transitivity (r + - r).
apply CRisRing. apply CRisRing.
Qed.
@@ -578,7 +581,7 @@ Lemma CRopp_gt_lt_contravar
Proof.
intros. apply (CRplus_lt_reg_l R r1).
destruct (CRisRing R).
- apply (CRle_lt_trans _ (CRzero R)). apply Ropp_def.
+ apply (CRle_lt_trans _ 0). apply Ropp_def.
apply (CRplus_lt_compat_l R (CRopp R r2)) in H.
apply (CRle_lt_trans _ (CRplus R (CRopp R r2) r2)).
apply (CRle_trans _ (CRplus R r2 (CRopp R r2))).
@@ -611,13 +614,13 @@ Lemma CRopp_plus_distr : forall {R : ConstructiveReals} (r1 r2 : CRcarrier R),
Proof.
intros. destruct (CRisRing R), (CRisRingExt R).
apply (CRplus_eq_reg_l (CRplus R r1 r2)).
- transitivity (CRzero R). apply Ropp_def.
+ transitivity (CR_of_Q R 0). apply Ropp_def.
transitivity (r2 + r1 + (-r1 + -r2)).
transitivity (r2 + (r1 + (-r1 + -r2))).
transitivity (r2 + - r2).
apply CReq_sym. apply Ropp_def. apply Radd_ext.
apply CReq_refl.
- transitivity (CRzero R + - r2).
+ transitivity (0 + - r2).
apply CReq_sym, Radd_0_l.
transitivity (r1 + - r1 + - r2).
apply Radd_ext. 2: apply CReq_refl. apply CReq_sym, Ropp_def.
@@ -701,7 +704,7 @@ Lemma CRopp_mult_distr_r : forall {R : ConstructiveReals} (r1 r2 : CRcarrier R),
- (r1 * r2) == r1 * (- r2).
Proof.
intros. apply (CRplus_eq_reg_l (CRmult R r1 r2)).
- destruct (CRisRing R). transitivity (CRzero R). apply Ropp_def.
+ destruct (CRisRing R). transitivity (CR_of_Q R 0). apply Ropp_def.
transitivity (r1 * (r2 + - r2)).
2: apply CRmult_plus_distr_l.
transitivity (r1 * 0).
@@ -725,7 +728,7 @@ Lemma CRmult_lt_compat_r : forall {R : ConstructiveReals} (r r1 r2 : CRcarrier R
0 < r -> r1 < r2 -> r1 * r < r2 * r.
Proof.
intros. apply (CRplus_lt_reg_r (CRopp R (CRmult R r1 r))).
- apply (CRle_lt_trans _ (CRzero R)).
+ apply (CRle_lt_trans _ 0).
apply (Ropp_def (CRisRing R)).
apply (CRlt_le_trans _ (CRplus R (CRmult R r2 r) (CRmult R (CRopp R r1) r))).
apply (CRlt_le_trans _ (CRmult R (CRplus R r2 (CRopp R r1)) r)).
@@ -734,7 +737,7 @@ Proof.
apply (CRle_lt_trans _ r1). apply (Radd_0_l (CRisRing R)).
apply (CRlt_le_trans _ r2 _ H0).
apply (CRle_trans _ (CRplus R r2 (CRplus R (CRopp R r1) r1))).
- apply (CRle_trans _ (CRplus R r2 (CRzero R))).
+ apply (CRle_trans _ (CRplus R r2 0)).
destruct (CRplus_0_r r2). exact H1.
apply CRplus_le_compat_l. destruct (CRplus_opp_l r1). exact H1.
destruct (Radd_assoc (CRisRing R) r2 (CRopp R r1) r1). exact H2.
@@ -752,7 +755,7 @@ Proof.
Qed.
Lemma CRinv_r : forall {R : ConstructiveReals} (r:CRcarrier R)
- (rnz : r ≶ (CRzero R)),
+ (rnz : r ≶ 0),
r * (/ r) rnz == 1.
Proof.
intros. transitivity ((/ r) rnz * r).
@@ -765,7 +768,7 @@ Proof.
intros. apply (CRmult_lt_compat_r ((/ r) (inr H))) in H0.
2: apply CRinv_0_lt_compat, H.
apply (CRle_lt_trans _ ((r1 * r) * ((/ r) (inr H)))).
- - clear H0. apply (CRle_trans _ (CRmult R r1 (CRone R))).
+ - clear H0. apply (CRle_trans _ (CRmult R r1 1)).
destruct (CRmult_1_r r1). exact H0.
apply (CRle_trans _ (CRmult R r1 (CRmult R r ((/ r) (inr H))))).
destruct (Rmul_ext (CRisRingExt R) r1 r1 (CReq_refl r1)
@@ -779,7 +782,7 @@ Proof.
apply (CRle_trans _ (r2 * (r * ((/ r) (inr H))))).
destruct (Rmul_assoc (CRisRing R) r2 r ((/ r) (inr H))). exact H0.
destruct (Rmul_ext (CRisRingExt R) r2 r2 (CReq_refl r2)
- (r * ((/ r) (inr H))) (CRone R)).
+ (r * ((/ r) (inr H))) 1).
apply CRinv_r. exact H1.
Qed.
@@ -829,7 +832,7 @@ Proof.
apply CRmult_lt_compat_r. 2: exact abs.
apply (CRplus_lt_reg_r r). apply (CRle_lt_trans _ r).
apply (Radd_0_l (CRisRing R)).
- apply (CRlt_le_trans _ (CRzero R) _ c).
+ apply (CRlt_le_trans _ 0 _ c).
apply CRplus_opp_l.
+ intro abs. apply H0. apply CRopp_lt_cancel.
apply (CRle_lt_trans _ (CRmult R r2 (CRopp R r))).
@@ -839,7 +842,7 @@ Proof.
apply CRmult_lt_compat_r. 2: exact abs.
apply (CRplus_lt_reg_r r). apply (CRle_lt_trans _ r).
apply (Radd_0_l (CRisRing R)).
- apply (CRlt_le_trans _ (CRzero R) _ c).
+ apply (CRlt_le_trans _ 0 _ c).
apply CRplus_opp_l.
Qed.
@@ -920,31 +923,21 @@ Proof.
intros R x y H. apply CR_of_Q_morph; assumption.
Qed.
-Lemma CR_of_Q_zero : forall {R : ConstructiveReals},
- CR_of_Q R 0 == 0.
-Proof.
- intros. apply CRzero_double.
- transitivity (CR_of_Q R (0+0)). apply CR_of_Q_morph.
- reflexivity. apply CR_of_Q_plus.
-Qed.
-
Lemma CR_of_Q_opp : forall {R : ConstructiveReals} (q : Q),
CR_of_Q R (-q) == - CR_of_Q R q.
Proof.
intros. apply (CRplus_eq_reg_l (CR_of_Q R q)).
- transitivity (CRzero R).
+ transitivity (CR_of_Q R 0).
transitivity (CR_of_Q R (q-q)).
apply CReq_sym, CR_of_Q_plus.
- transitivity (CR_of_Q R 0).
- apply CR_of_Q_morph. ring. apply CR_of_Q_zero.
+ apply CR_of_Q_morph. ring.
apply CReq_sym. apply (CRisRing R).
Qed.
Lemma CR_of_Q_pos : forall {R : ConstructiveReals} (q:Q),
Qlt 0 q -> 0 < CR_of_Q R q.
Proof.
- intros. apply (CRle_lt_trans _ (CR_of_Q R 0)).
- apply CR_of_Q_zero. apply CR_of_Q_lt. exact H.
+ intros. apply CR_of_Q_lt. exact H.
Qed.
Lemma CR_of_Q_inv : forall {R : ConstructiveReals} (q : Q) (qPos : Qlt 0 q),
@@ -954,7 +947,7 @@ Proof.
intros.
apply (CRmult_eq_reg_l (CR_of_Q R q)).
right. apply CR_of_Q_pos, qPos.
- rewrite CRinv_r, <- CR_of_Q_mult, <- CR_of_Q_one.
+ rewrite CRinv_r, <- CR_of_Q_mult.
apply CR_of_Q_morph. field. intro abs.
rewrite abs in qPos. exact (Qlt_irrefl 0 qPos).
Qed.
@@ -969,7 +962,7 @@ Proof.
destruct (CR_archimedean R (b * ((/ -(a*b)) (inr epsPos))))
as [n maj].
assert (0 < CR_of_Q R (Z.pos n #1)) as nPos.
- { rewrite <- CR_of_Q_zero. apply CR_of_Q_lt. reflexivity. }
+ { apply CR_of_Q_lt. reflexivity. }
assert (b * (/ CR_of_Q R (Z.pos n #1)) (inr nPos) < -(a*b)).
{ apply (CRmult_lt_reg_r (CR_of_Q R (Z.pos n #1))). apply nPos.
rewrite <- (Rmul_assoc (CRisRing R)), CRinv_l, CRmult_1_r.
@@ -1082,7 +1075,7 @@ Definition CRfloor {R : ConstructiveReals} (a : CRcarrier R)
Proof.
destruct (CR_Q_dense R (a - CR_of_Q R (1#2)) a) as [q qmaj].
- apply (CRlt_le_trans _ (a-0)). apply CRplus_lt_compat_l.
- apply CRopp_gt_lt_contravar. rewrite <- CR_of_Q_zero.
+ apply CRopp_gt_lt_contravar.
apply CR_of_Q_lt. reflexivity.
unfold CRminus. rewrite CRopp_0, CRplus_0_r. apply CRle_refl.
- exists (Qfloor q). destruct qmaj. split.
diff --git a/theories/Reals/Abstract/ConstructiveRealsMorphisms.v b/theories/Reals/Abstract/ConstructiveRealsMorphisms.v
index bc44668e2f..cf302dc847 100644
--- a/theories/Reals/Abstract/ConstructiveRealsMorphisms.v
+++ b/theories/Reals/Abstract/ConstructiveRealsMorphisms.v
@@ -163,9 +163,8 @@ Lemma CRmorph_zero : forall {R1 R2 : ConstructiveReals}
CRmorph f 0 == 0.
Proof.
intros. apply (CReq_trans _ (CRmorph f (CR_of_Q R1 0))).
- apply CRmorph_proper. apply CReq_sym, CR_of_Q_zero.
- apply (CReq_trans _ (CR_of_Q R2 0)).
- apply CRmorph_rat. apply CR_of_Q_zero.
+ apply CRmorph_proper. reflexivity.
+ apply CRmorph_rat.
Qed.
Lemma CRmorph_one : forall {R1 R2 : ConstructiveReals}
@@ -173,9 +172,8 @@ Lemma CRmorph_one : forall {R1 R2 : ConstructiveReals}
CRmorph f 1 == 1.
Proof.
intros. apply (CReq_trans _ (CRmorph f (CR_of_Q R1 1))).
- apply CRmorph_proper. apply CReq_sym, CR_of_Q_one.
- apply (CReq_trans _ (CR_of_Q R2 1)).
- apply CRmorph_rat. apply CR_of_Q_one.
+ apply CRmorph_proper. reflexivity.
+ apply CRmorph_rat.
Qed.
Lemma CRmorph_opp : forall {R1 R2 : ConstructiveReals}
@@ -228,9 +226,9 @@ Lemma CRplus_pos_rat_lt : forall {R : ConstructiveReals} (x : CRcarrier R) (q :
Qlt 0 q -> CRlt R x (CRplus R x (CR_of_Q R q)).
Proof.
intros.
- apply (CRle_lt_trans _ (CRplus R x (CRzero R))). apply CRplus_0_r.
+ apply (CRle_lt_trans _ (CRplus R x 0)). apply CRplus_0_r.
apply CRplus_lt_compat_l.
- apply (CRle_lt_trans _ (CR_of_Q R 0)). apply CR_of_Q_zero.
+ apply (CRle_lt_trans _ (CR_of_Q R 0)). apply CRle_refl.
apply CR_of_Q_lt. exact H.
Defined.
@@ -238,10 +236,10 @@ Lemma CRplus_neg_rat_lt : forall {R : ConstructiveReals} (x : CRcarrier R) (q :
Qlt q 0 -> CRlt R (CRplus R x (CR_of_Q R q)) x.
Proof.
intros.
- apply (CRlt_le_trans _ (CRplus R x (CRzero R))). 2: apply CRplus_0_r.
+ apply (CRlt_le_trans _ (CRplus R x 0)). 2: apply CRplus_0_r.
apply CRplus_lt_compat_l.
apply (CRlt_le_trans _ (CR_of_Q R 0)).
- apply CR_of_Q_lt. exact H. apply CR_of_Q_zero.
+ apply CR_of_Q_lt. exact H. apply CRle_refl.
Qed.
Lemma CRmorph_plus_rat : forall {R1 R2 : ConstructiveReals}
@@ -276,7 +274,7 @@ Proof.
destruct (CRisRing R1).
apply (CRle_trans
_ (CRplus R1 x (CRplus R1 (CR_of_Q R1 q) (CRopp R1 (CR_of_Q R1 q))))).
- apply (CRle_trans _ (CRplus R1 x (CRzero R1))).
+ apply (CRle_trans _ (CRplus R1 x 0)).
destruct (CRplus_0_r x). exact H.
apply CRplus_le_compat_l. destruct (Ropp_def (CR_of_Q R1 q)). exact H.
destruct (Radd_assoc x (CR_of_Q R1 q) (CRopp R1 (CR_of_Q R1 q))).
@@ -294,7 +292,7 @@ Proof.
_ (CRplus R1 x (CRplus R1 (CR_of_Q R1 q) (CRopp R1 (CR_of_Q R1 q))))).
destruct (Radd_assoc x (CR_of_Q R1 q) (CRopp R1 (CR_of_Q R1 q))).
exact H0.
- apply (CRle_trans _ (CRplus R1 x (CRzero R1))).
+ apply (CRle_trans _ (CRplus R1 x 0)).
apply CRplus_le_compat_l. destruct (Ropp_def (CR_of_Q R1 q)). exact H1.
destruct (CRplus_0_r x). exact H1.
apply (CRlt_le_trans _ (CR_of_Q R1 (r-q))).
@@ -379,12 +377,12 @@ Proof.
apply CRmorph_proper. destruct (CRisRing R1).
apply (CReq_trans _ (CRplus R1 x (CRplus R1 y (CRopp R1 y)))).
apply CReq_sym, Radd_assoc.
- apply (CReq_trans _ (CRplus R1 x (CRzero R1))). 2: apply CRplus_0_r.
+ apply (CReq_trans _ (CRplus R1 x 0)). 2: apply CRplus_0_r.
destruct (CRisRingExt R1). apply Radd_ext.
apply CReq_refl. apply Ropp_def.
apply (CRplus_lt_reg_r (CRmorph f y)).
apply (CRlt_le_trans _ _ _ abs). clear abs.
- apply (CRle_trans _ (CRplus R2 (CRmorph f (CRplus R1 x y)) (CRzero R2))).
+ apply (CRle_trans _ (CRplus R2 (CRmorph f (CRplus R1 x y)) 0)).
destruct (CRplus_0_r (CRmorph f (CRplus R1 x y))). exact H.
apply (CRle_trans _ (CRplus R2 (CRmorph f (CRplus R1 x y))
(CRplus R2 (CRmorph f (CRopp R1 y)) (CRmorph f y)))).
@@ -407,29 +405,26 @@ Lemma CRmorph_mult_pos : forall {R1 R2 : ConstructiveReals}
Proof.
induction n.
- simpl. destruct (CRisRingExt R1).
- apply (CReq_trans _ (CRzero R2)).
- + apply (CReq_trans _ (CRmorph f (CRzero R1))).
+ apply (CReq_trans _ 0).
+ + apply (CReq_trans _ (CRmorph f 0)).
2: apply CRmorph_zero. apply CRmorph_proper.
- apply (CReq_trans _ (CRmult R1 x (CRzero R1))).
- 2: apply CRmult_0_r. apply Rmul_ext. apply CReq_refl. apply CR_of_Q_zero.
- + apply (CReq_trans _ (CRmult R2 (CRmorph f x) (CRzero R2))).
+ apply (CReq_trans _ (CRmult R1 x 0)).
+ 2: apply CRmult_0_r. apply Rmul_ext. apply CReq_refl. reflexivity.
+ + apply (CReq_trans _ (CRmult R2 (CRmorph f x) 0)).
apply CReq_sym, CRmult_0_r. destruct (CRisRingExt R2).
- apply Rmul_ext0. apply CReq_refl. apply CReq_sym, CR_of_Q_zero.
+ apply Rmul_ext0. apply CReq_refl. reflexivity.
- destruct (CRisRingExt R1), (CRisRingExt R2).
- apply (CReq_trans
- _ (CRmorph f (CRplus R1 x (CRmult R1 x (CR_of_Q R1 (Z.of_nat n # 1)))))).
+ transitivity (CRmorph f (CRplus R1 x (CRmult R1 x (CR_of_Q R1 (Z.of_nat n # 1))))).
apply CRmorph_proper.
- apply (CReq_trans
- _ (CRmult R1 x (CRplus R1 (CRone R1) (CR_of_Q R1 (Z.of_nat n # 1))))).
- apply Rmul_ext. apply CReq_refl.
- apply (CReq_trans _ (CR_of_Q R1 (1 + (Z.of_nat n # 1)))).
+ transitivity (CRmult R1 x (CRplus R1 1 (CR_of_Q R1 (Z.of_nat n # 1)))).
+ apply Rmul_ext. reflexivity.
+ transitivity (CR_of_Q R1 (1 + (Z.of_nat n # 1))).
apply CR_of_Q_morph. rewrite Nat2Z.inj_succ. unfold Z.succ.
rewrite Z.add_comm. rewrite Qinv_plus_distr. reflexivity.
- apply (CReq_trans _ (CRplus R1 (CR_of_Q R1 1) (CR_of_Q R1 (Z.of_nat n # 1)))).
- apply CR_of_Q_plus. apply Radd_ext. apply CR_of_Q_one. apply CReq_refl.
- apply (CReq_trans _ (CRplus R1 (CRmult R1 x (CRone R1))
- (CRmult R1 x (CR_of_Q R1 (Z.of_nat n # 1))))).
- apply CRmult_plus_distr_l. apply Radd_ext. apply CRmult_1_r. apply CReq_refl.
+ rewrite CR_of_Q_plus. reflexivity.
+ transitivity (CRplus R1 (CRmult R1 x 1)
+ (CRmult R1 x (CR_of_Q R1 (Z.of_nat n # 1)))).
+ apply CRmult_plus_distr_l. apply Radd_ext. apply CRmult_1_r. reflexivity.
apply (CReq_trans
_ (CRplus R2 (CRmorph f x)
(CRmorph f (CRmult R1 x (CR_of_Q R1 (Z.of_nat n # 1)))))).
@@ -439,16 +434,16 @@ Proof.
(CRmult R2 (CRmorph f x) (CR_of_Q R2 (Z.of_nat n # 1))))).
apply Radd_ext0. apply CReq_refl. exact IHn.
apply (CReq_trans
- _ (CRmult R2 (CRmorph f x) (CRplus R2 (CRone R2) (CR_of_Q R2 (Z.of_nat n # 1))))).
+ _ (CRmult R2 (CRmorph f x) (CRplus R2 1 (CR_of_Q R2 (Z.of_nat n # 1))))).
apply (CReq_trans
- _ (CRplus R2 (CRmult R2 (CRmorph f x) (CRone R2))
+ _ (CRplus R2 (CRmult R2 (CRmorph f x) 1)
(CRmult R2 (CRmorph f x) (CR_of_Q R2 (Z.of_nat n # 1))))).
apply Radd_ext0. 2: apply CReq_refl. apply CReq_sym, CRmult_1_r.
apply CReq_sym, CRmult_plus_distr_l.
apply Rmul_ext0. apply CReq_refl.
apply (CReq_trans _ (CR_of_Q R2 (1 + (Z.of_nat n # 1)))).
apply (CReq_trans _ (CRplus R2 (CR_of_Q R2 1) (CR_of_Q R2 (Z.of_nat n # 1)))).
- apply Radd_ext0. apply CReq_sym, CR_of_Q_one. apply CReq_refl.
+ apply Radd_ext0. reflexivity. reflexivity.
apply CReq_sym, CR_of_Q_plus.
apply CR_of_Q_morph. rewrite Nat2Z.inj_succ. unfold Z.succ.
rewrite Z.add_comm. rewrite Qinv_plus_distr. reflexivity.
@@ -501,7 +496,7 @@ Lemma CRmorph_mult_inv : forall {R1 R2 : ConstructiveReals}
Proof.
intros. apply (CRmult_eq_reg_r (CR_of_Q R2 (Z.pos p # 1))).
left. apply (CRle_lt_trans _ (CR_of_Q R2 0)).
- apply CR_of_Q_zero. apply CR_of_Q_lt. reflexivity.
+ apply CRle_refl. apply CR_of_Q_lt. reflexivity.
apply (CReq_trans _ (CRmorph f x)).
- apply (CReq_trans
_ (CRmorph f (CRmult R1 (CRmult R1 x (CR_of_Q R1 (1 # p)))
@@ -511,22 +506,22 @@ Proof.
_ (CRmult R1 x (CRmult R1 (CR_of_Q R1 (1 # p))
(CR_of_Q R1 (Z.pos p # 1))))).
destruct (CRisRing R1). apply CReq_sym, Rmul_assoc.
- apply (CReq_trans _ (CRmult R1 x (CRone R1))).
+ apply (CReq_trans _ (CRmult R1 x 1)).
apply (Rmul_ext (CRisRingExt R1)). apply CReq_refl.
apply (CReq_trans _ (CR_of_Q R1 ((1#p) * (Z.pos p # 1)))).
apply CReq_sym, CR_of_Q_mult.
apply (CReq_trans _ (CR_of_Q R1 1)).
- apply CR_of_Q_morph. reflexivity. apply CR_of_Q_one.
+ apply CR_of_Q_morph. reflexivity. reflexivity.
apply CRmult_1_r.
- apply (CReq_trans
_ (CRmult R2 (CRmorph f x)
(CRmult R2 (CR_of_Q R2 (1 # p)) (CR_of_Q R2 (Z.pos p # 1))))).
2: apply (Rmul_assoc (CRisRing R2)).
- apply (CReq_trans _ (CRmult R2 (CRmorph f x) (CRone R2))).
+ apply (CReq_trans _ (CRmult R2 (CRmorph f x) 1)).
apply CReq_sym, CRmult_1_r.
apply (Rmul_ext (CRisRingExt R2)). apply CReq_refl.
apply (CReq_trans _ (CR_of_Q R2 1)).
- apply CReq_sym, CR_of_Q_one.
+ reflexivity.
apply (CReq_trans _ (CR_of_Q R2 ((1#p)*(Z.pos p # 1)))).
apply CR_of_Q_morph. reflexivity. apply CR_of_Q_mult.
Qed.
@@ -571,7 +566,7 @@ Qed.
Lemma CRmorph_mult_pos_pos_le : forall {R1 R2 : ConstructiveReals}
(f : @ConstructiveRealsMorphism R1 R2)
(x y : CRcarrier R1),
- CRlt R1 (CRzero R1) y
+ CRlt R1 0 y
-> CRmult R2 (CRmorph f x) (CRmorph f y)
<= CRmorph f (CRmult R1 x y).
Proof.
@@ -590,20 +585,20 @@ Proof.
apply Qlt_minus_iff in H1. rewrite H4 in H1. inversion H1. }
destruct (CR_Q_dense R1 (CRplus R1 x (CR_of_Q R1 ((q-r) * (1#A)))) x)
as [s [H4 H5]].
- - apply (CRlt_le_trans _ (CRplus R1 x (CRzero R1))).
+ - apply (CRlt_le_trans _ (CRplus R1 x 0)).
2: apply CRplus_0_r. apply CRplus_lt_compat_l.
apply (CRplus_lt_reg_l R1 (CR_of_Q R1 ((r-q) * (1#A)))).
- apply (CRle_lt_trans _ (CRzero R1)).
+ apply (CRle_lt_trans _ 0).
apply (CRle_trans _ (CR_of_Q R1 ((r-q)*(1#A) + (q-r)*(1#A)))).
destruct (CR_of_Q_plus R1 ((r-q)*(1#A)) ((q-r)*(1#A))).
exact H0. apply (CRle_trans _ (CR_of_Q R1 0)).
- 2: destruct (@CR_of_Q_zero R1); exact H4.
+ 2: apply CRle_refl.
intro H4. apply lt_CR_of_Q in H4. ring_simplify in H4.
inversion H4.
apply (CRlt_le_trans _ (CR_of_Q R1 ((r - q) * (1 # A)))).
2: apply CRplus_0_r.
apply (CRle_lt_trans _ (CR_of_Q R1 0)).
- apply CR_of_Q_zero. apply CR_of_Q_lt.
+ apply CRle_refl. apply CR_of_Q_lt.
rewrite <- (Qmult_0_r (r-q)). apply Qmult_lt_l.
apply Qlt_minus_iff in H1. exact H1. reflexivity.
- apply (CRmorph_increasing f) in H4.
@@ -637,7 +632,7 @@ Proof.
apply (CRlt_le_trans
_ (CRmult R2 (CR_of_Q R2 ((q - r) * (1 # A))) (CRmorph f y))).
apply (CRmult_lt_reg_l (CR_of_Q R2 (/((r-q)*(1#A))))).
- apply (CRle_lt_trans _ (CR_of_Q R2 0)). apply CR_of_Q_zero.
+ apply (CRle_lt_trans _ (CR_of_Q R2 0)). apply CRle_refl.
apply CR_of_Q_lt, Qinv_lt_0_compat.
rewrite <- (Qmult_0_r (r-q)). apply Qmult_lt_l.
apply Qlt_minus_iff in H1. exact H1. reflexivity.
@@ -655,24 +650,24 @@ Proof.
apply (CRlt_le_trans _ (CRmorph f (CR_of_Q R1 (Z.pos A # 1)))).
apply CRmorph_increasing. exact Amaj.
destruct (CRmorph_rat f (Z.pos A # 1)). exact H4.
- apply (CRle_trans _ (CRmult R2 (CRopp R2 (CRone R2)) (CRmorph f y))).
- apply (CRle_trans _ (CRopp R2 (CRmult R2 (CRone R2) (CRmorph f y)))).
+ apply (CRle_trans _ (CRmult R2 (CRopp R2 1) (CRmorph f y))).
+ apply (CRle_trans _ (CRopp R2 (CRmult R2 1 (CRmorph f y)))).
destruct (Ropp_ext (CRisRingExt R2) (CRmorph f y)
- (CRmult R2 (CRone R2) (CRmorph f y))).
+ (CRmult R2 1 (CRmorph f y))).
apply CReq_sym, (Rmul_1_l (CRisRing R2)). exact H4.
- destruct (CRopp_mult_distr_l (CRone R2) (CRmorph f y)). exact H4.
+ destruct (CRopp_mult_distr_l 1 (CRmorph f y)). exact H4.
apply (CRle_trans _ (CRmult R2 (CRmult R2 (CR_of_Q R2 (/ ((r - q) * (1 # A))))
(CR_of_Q R2 ((q - r) * (1 # A))))
(CRmorph f y))).
apply CRmult_le_compat_r_half.
- apply (CRle_lt_trans _ (CRmorph f (CRzero R1))).
+ apply (CRle_lt_trans _ (CRmorph f 0)).
apply CRmorph_zero. apply CRmorph_increasing. exact H.
apply (CRle_trans _ (CR_of_Q R2 ((/ ((r - q) * (1 # A)))
* ((q - r) * (1 # A))))).
apply (CRle_trans _ (CR_of_Q R2 (-1))).
apply (CRle_trans _ (CRopp R2 (CR_of_Q R2 1))).
- destruct (Ropp_ext (CRisRingExt R2) (CRone R2) (CR_of_Q R2 1)).
- apply CReq_sym, CR_of_Q_one. exact H4.
+ destruct (Ropp_ext (CRisRingExt R2) 1 (CR_of_Q R2 1)).
+ reflexivity. exact H4.
destruct (@CR_of_Q_opp R2 1). exact H0.
destruct (CR_of_Q_morph R2 (-1) (/ ((r - q) * (1 # A)) * ((q - r) * (1 # A)))).
field. split.
@@ -685,7 +680,7 @@ Proof.
(CRmorph f y)).
exact H0.
apply CRmult_le_compat_r_half.
- apply (CRle_lt_trans _ (CRmorph f (CRzero R1))).
+ apply (CRle_lt_trans _ (CRmorph f 0)).
apply CRmorph_zero. apply CRmorph_increasing. exact H.
destruct (CRmorph_rat f ((q - r) * (1 # A))). exact H0.
+ apply (CRle_trans _ (CRmorph f (CRmult R1 y (CR_of_Q R1 s)))).
@@ -696,14 +691,14 @@ Proof.
destruct (CRmorph_proper f (CRmult R1 y (CR_of_Q R1 s))
(CRmult R1 (CR_of_Q R1 s) y)).
apply (Rmul_comm (CRisRing R1)). exact H4.
- + apply (CRle_lt_trans _ (CRmorph f (CRzero R1))).
+ + apply (CRle_lt_trans _ (CRmorph f 0)).
apply CRmorph_zero. apply CRmorph_increasing. exact H.
Qed.
Lemma CRmorph_mult_pos_pos : forall {R1 R2 : ConstructiveReals}
(f : @ConstructiveRealsMorphism R1 R2)
(x y : CRcarrier R1),
- CRlt R1 (CRzero R1) y
+ CRlt R1 0 y
-> CRmorph f (CRmult R1 x y)
== CRmult R2 (CRmorph f x) (CRmorph f y).
Proof.
@@ -718,10 +713,10 @@ Proof.
destruct (CR_archimedean R1 y) as [A Amaj].
destruct (CR_Q_dense R1 x (CRplus R1 x (CR_of_Q R1 ((q-r) * (1#A)))))
as [s [H4 H5]].
- - apply (CRle_lt_trans _ (CRplus R1 x (CRzero R1))).
+ - apply (CRle_lt_trans _ (CRplus R1 x 0)).
apply CRplus_0_r. apply CRplus_lt_compat_l.
apply (CRle_lt_trans _ (CR_of_Q R1 0)).
- apply CR_of_Q_zero. apply CR_of_Q_lt.
+ apply CRle_refl. apply CR_of_Q_lt.
rewrite <- (Qmult_0_r (q-r)). apply Qmult_lt_l.
apply Qlt_minus_iff in H3. exact H3. reflexivity.
- apply (CRmorph_increasing f) in H5.
@@ -763,14 +758,14 @@ Proof.
(CRmult R2 (CR_of_Q R2 ((q - r) * (1 # A)))
(CRmorph f y)))).
apply CRplus_le_compat_l, CRmult_le_compat_r_half.
- apply (CRle_lt_trans _ (CRmorph f (CRzero R1))).
+ apply (CRle_lt_trans _ (CRmorph f 0)).
apply CRmorph_zero. apply CRmorph_increasing. exact H.
destruct (CRmorph_rat f ((q - r) * (1 # A))). exact H2.
apply (CRlt_le_trans _ (CRplus R2 (CR_of_Q R2 r)
(CR_of_Q R2 ((q - r))))).
apply CRplus_lt_compat_l.
* apply (CRmult_lt_reg_l (CR_of_Q R2 (/((q - r) * (1 # A))))).
- apply (CRle_lt_trans _ (CR_of_Q R2 0)). apply CR_of_Q_zero.
+ apply (CRle_lt_trans _ (CR_of_Q R2 0)). apply CRle_refl.
apply CR_of_Q_lt, Qinv_lt_0_compat.
rewrite <- (Qmult_0_r (q-r)). apply Qmult_lt_l.
apply Qlt_minus_iff in H3. exact H3. reflexivity.
@@ -781,9 +776,9 @@ Proof.
exact (proj2 (Rmul_assoc (CRisRing R2) (CR_of_Q R2 (/ ((q - r) * (1 # A))))
(CR_of_Q R2 ((q - r) * (1 # A)))
(CRmorph f y))).
- apply (CRle_trans _ (CRmult R2 (CRone R2) (CRmorph f y))).
+ apply (CRle_trans _ (CRmult R2 1 (CRmorph f y))).
apply CRmult_le_compat_r_half.
- apply (CRle_lt_trans _ (CRmorph f (CRzero R1))).
+ apply (CRle_lt_trans _ (CRmorph f 0)).
apply CRmorph_zero. apply CRmorph_increasing. exact H.
apply (CRle_trans
_ (CR_of_Q R2 ((/ ((q - r) * (1 # A))) * ((q - r) * (1 # A))))).
@@ -793,7 +788,7 @@ Proof.
field_simplify. reflexivity. split.
intro H5. inversion H5. intro H5. apply Qlt_minus_iff in H3.
rewrite H5 in H3. inversion H3. exact H2.
- destruct (CR_of_Q_one R2). exact H2.
+ apply CRle_refl.
destruct (Rmul_1_l (CRisRing R2) (CRmorph f y)).
intro H5. contradiction.
apply (CRlt_le_trans _ (CR_of_Q R2 (Z.pos A # 1))).
@@ -809,7 +804,7 @@ Proof.
* apply (CRle_trans _ (CR_of_Q R2 (r + (q-r)))).
exact (proj1 (CR_of_Q_plus R2 r (q-r))).
destruct (CR_of_Q_morph R2 (r + (q-r)) q). ring. exact H2.
- + apply (CRle_lt_trans _ (CRmorph f (CRzero R1))).
+ + apply (CRle_lt_trans _ (CRmorph f 0)).
apply CRmorph_zero. apply CRmorph_increasing. exact H.
Qed.
@@ -867,10 +862,10 @@ Lemma CRmorph_appart_zero : forall {R1 R2 : ConstructiveReals}
CRmorph f x ≶ 0.
Proof.
intros. destruct app.
- - left. apply (CRlt_le_trans _ (CRmorph f (CRzero R1))).
+ - left. apply (CRlt_le_trans _ (CRmorph f 0)).
apply CRmorph_increasing. exact c.
exact (proj2 (CRmorph_zero f)).
- - right. apply (CRle_lt_trans _ (CRmorph f (CRzero R1))).
+ - right. apply (CRle_lt_trans _ (CRmorph f 0)).
exact (proj1 (CRmorph_zero f)).
apply CRmorph_increasing. exact c.
Defined.
@@ -885,7 +880,7 @@ Lemma CRmorph_inv : forall {R1 R2 : ConstructiveReals}
Proof.
intros. apply (CRmult_eq_reg_r (CRmorph f x)).
destruct fxnz. right. exact c. left. exact c.
- apply (CReq_trans _ (CRone R2)).
+ apply (CReq_trans _ 1).
2: apply CReq_sym, CRinv_l.
apply (CReq_trans _ (CRmorph f (CRmult R1 ((/ x) xnz) x))).
apply CReq_sym, CRmorph_mult.
@@ -915,11 +910,11 @@ Proof.
- simpl. unfold INR.
rewrite (CRmorph_proper f _ (1 + CR_of_Q R1 (Z.of_nat n # 1))).
rewrite CRmorph_plus. unfold INR in IHn.
- rewrite IHn. rewrite CRmorph_one, <- CR_of_Q_one, <- CR_of_Q_plus.
+ rewrite IHn. rewrite CRmorph_one, <- CR_of_Q_plus.
apply CR_of_Q_morph. rewrite Qinv_plus_distr.
unfold Qeq, Qnum, Qden. do 2 rewrite Z.mul_1_r.
rewrite Nat2Z.inj_succ. rewrite <- Z.add_1_l. reflexivity.
- rewrite <- CR_of_Q_one, <- CR_of_Q_plus.
+ rewrite <- CR_of_Q_plus.
apply CR_of_Q_morph. rewrite Qinv_plus_distr.
unfold Qeq, Qnum, Qden. do 2 rewrite Z.mul_1_r.
rewrite Nat2Z.inj_succ. rewrite <- Z.add_1_l. reflexivity.
@@ -1047,7 +1042,7 @@ Proof.
apply Pos2Z.pos_le_pos, Pos2Nat.inj_le. rewrite Nat2Pos.id. exact H0.
destruct i. inversion H0. pose proof (Pos2Nat.is_pos p).
rewrite H2 in H1. inversion H1. discriminate.
- rewrite <- CR_of_Q_zero. apply CR_of_Q_le. discriminate.
+ apply CR_of_Q_le. discriminate.
rewrite CRplus_0_r. reflexivity. }
pose proof (CR_cv_open_above _ _ _ H0 H) as [n nmaj].
apply (CRle_lt_trans _ (CR_of_Q R2 (let (q0, _) := CR_Q_limit x n in
diff --git a/theories/Reals/Abstract/ConstructiveSum.v b/theories/Reals/Abstract/ConstructiveSum.v
index 11c8e5d8a2..3be03bf615 100644
--- a/theories/Reals/Abstract/ConstructiveSum.v
+++ b/theories/Reals/Abstract/ConstructiveSum.v
@@ -60,11 +60,11 @@ Lemma sum_const : forall {R : ConstructiveReals} (a : CRcarrier R) (n : nat),
CRsum (fun _ => a) n == a * INR (S n).
Proof.
induction n.
- - unfold INR. simpl. rewrite CR_of_Q_one, CRmult_1_r. reflexivity.
+ - unfold INR. simpl. rewrite CRmult_1_r. reflexivity.
- simpl. rewrite IHn. unfold INR.
replace (Z.of_nat (S (S n))) with (Z.of_nat (S n) + 1)%Z.
rewrite <- Qinv_plus_distr, CR_of_Q_plus, CRmult_plus_distr_l.
- apply CRplus_morph. reflexivity. rewrite CR_of_Q_one, CRmult_1_r. reflexivity.
+ apply CRplus_morph. reflexivity. rewrite CRmult_1_r. reflexivity.
replace 1%Z with (Z.of_nat 1). rewrite <- Nat2Z.inj_add.
apply f_equal. rewrite Nat.add_comm. reflexivity. reflexivity.
Qed.
diff --git a/theories/Reals/Cauchy/ConstructiveRcomplete.v b/theories/Reals/Cauchy/ConstructiveRcomplete.v
index be844c413a..754f9be5fe 100644
--- a/theories/Reals/Cauchy/ConstructiveRcomplete.v
+++ b/theories/Reals/Cauchy/ConstructiveRcomplete.v
@@ -309,12 +309,11 @@ Definition CRealConstructive : ConstructiveReals
:= Build_ConstructiveReals
CReal CRealLt CRealLtIsLinear CRealLtProp
CRealLtEpsilon CRealLtForget CRealLtDisjunctEpsilon
- (inject_Q 0) (inject_Q 1)
+ inject_Q inject_Q_lt lt_inject_Q
CReal_plus CReal_opp CReal_mult
+ inject_Q_plus inject_Q_mult
CReal_isRing CReal_isRingExt CRealLt_0_1
CReal_plus_lt_compat_l CReal_plus_lt_reg_l
CReal_mult_lt_0_compat
CReal_inv CReal_inv_l CReal_inv_0_lt_compat
- inject_Q inject_Q_plus inject_Q_mult
- inject_Q_one inject_Q_lt lt_inject_Q
CRealQ_dense Rup_pos CReal_abs CRealAbsLUB CRealComplete.