diff options
| author | herbelin | 2003-10-27 12:33:08 +0000 |
|---|---|---|
| committer | herbelin | 2003-10-27 12:33:08 +0000 |
| commit | d23a8490aa5ef1701c31cbeab44e299ac9e0c040 (patch) | |
| tree | 2e73efd74dfc49aa934c89935c5af176ca7bd494 | |
| parent | 5a283131ba25055af16dd83015204e72001133f7 (diff) | |
MAJ Double Inductive vis a vis de la V7.4
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@8346 85f007b7-540e-0410-9357-904b9bb8a0f7
| -rw-r--r-- | doc/RefMan-tac.tex | 28 |
1 files changed, 21 insertions, 7 deletions
diff --git a/doc/RefMan-tac.tex b/doc/RefMan-tac.tex index cfee66fce2..81ccc657e3 100644 --- a/doc/RefMan-tac.tex +++ b/doc/RefMan-tac.tex @@ -1061,16 +1061,30 @@ Proof c. %\subsection{\tt FixPoint \dots}\tacindex{Fixpoint} %Not yet documented. -\subsection {\tt Double Induction \num$_1$ \num$_2$} +\subsection {\tt Double Induction \ident$_1$ \ident$_2$} \tacindex{Double Induction} -This tactic applies to any goal. If the \num$_1$th and \num$_2$th -premises of the goal have an inductive type, then this tactic -performs double induction on these premises. +This tactic applies to any goal. If the variables {\ident$_1$} and {\ident$_2$} +of the goal have an inductive type, then this tactic +performs double induction on these variables. For instance, if the current goal is \verb+(n,m:nat)(P n m)+ then, -{\tt Double Induction 1 2} yields the four cases with their respective -inductive hypothesis. In particular the case for +{\tt Double Induction n m} yields the four cases with their respective +inductive hypotheses. In particular the case for \verb+(P (S n) (S m))+ -with the inductive hypothesis about both \verb+n+ and \verb+m+. +with the induction hypotheses \verb+(P (S n) m)+ and +\verb+(m:nat)(P n m)+ (hence \verb+(P n m)+ and \verb+(P n (S m))+). + +\Rem When the induction hypothesis \verb+(P (S n) m)+ is not +needed, {\tt NewInduction \ident$_1$; NewDestruct \ident$_2$} produces +more concise subgoals. + +\begin{Variant} + +\item {\tt Double Induction \num$_1$ \num$_2$}\\ +This applies double induction on the \num$_1^{th}$ and \num$_2^{th}$ {\it +non dependent} premises of the goal. More generally, any combination of an +{\ident} and an {\num} is valid. + +\end{Variant} \subsection{\tt Decompose [ {\ident$_1$} \dots\ {\ident$_n$} ] \term} \label{Decompose} |
