aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorherbelin2003-10-27 12:33:08 +0000
committerherbelin2003-10-27 12:33:08 +0000
commitd23a8490aa5ef1701c31cbeab44e299ac9e0c040 (patch)
tree2e73efd74dfc49aa934c89935c5af176ca7bd494
parent5a283131ba25055af16dd83015204e72001133f7 (diff)
MAJ Double Inductive vis a vis de la V7.4
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@8346 85f007b7-540e-0410-9357-904b9bb8a0f7
-rw-r--r--doc/RefMan-tac.tex28
1 files changed, 21 insertions, 7 deletions
diff --git a/doc/RefMan-tac.tex b/doc/RefMan-tac.tex
index cfee66fce2..81ccc657e3 100644
--- a/doc/RefMan-tac.tex
+++ b/doc/RefMan-tac.tex
@@ -1061,16 +1061,30 @@ Proof c.
%\subsection{\tt FixPoint \dots}\tacindex{Fixpoint}
%Not yet documented.
-\subsection {\tt Double Induction \num$_1$ \num$_2$}
+\subsection {\tt Double Induction \ident$_1$ \ident$_2$}
\tacindex{Double Induction}
-This tactic applies to any goal. If the \num$_1$th and \num$_2$th
-premises of the goal have an inductive type, then this tactic
-performs double induction on these premises.
+This tactic applies to any goal. If the variables {\ident$_1$} and {\ident$_2$}
+of the goal have an inductive type, then this tactic
+performs double induction on these variables.
For instance, if the current goal is \verb+(n,m:nat)(P n m)+ then,
-{\tt Double Induction 1 2} yields the four cases with their respective
-inductive hypothesis. In particular the case for
+{\tt Double Induction n m} yields the four cases with their respective
+inductive hypotheses. In particular the case for
\verb+(P (S n) (S m))+
-with the inductive hypothesis about both \verb+n+ and \verb+m+.
+with the induction hypotheses \verb+(P (S n) m)+ and
+\verb+(m:nat)(P n m)+ (hence \verb+(P n m)+ and \verb+(P n (S m))+).
+
+\Rem When the induction hypothesis \verb+(P (S n) m)+ is not
+needed, {\tt NewInduction \ident$_1$; NewDestruct \ident$_2$} produces
+more concise subgoals.
+
+\begin{Variant}
+
+\item {\tt Double Induction \num$_1$ \num$_2$}\\
+This applies double induction on the \num$_1^{th}$ and \num$_2^{th}$ {\it
+non dependent} premises of the goal. More generally, any combination of an
+{\ident} and an {\num} is valid.
+
+\end{Variant}
\subsection{\tt Decompose [ {\ident$_1$} \dots\ {\ident$_n$} ] \term}
\label{Decompose}