diff options
| author | Jasper Hugunin | 2020-10-09 20:17:24 -0700 |
|---|---|---|
| committer | Jasper Hugunin | 2020-10-11 19:05:14 -0700 |
| commit | c513ab654b2de5a80a5bc71b9a0769c46e5b55cd (patch) | |
| tree | 58eb155c5f351c8b2bae55e74d942cc62a1bfc99 | |
| parent | af7b79f52f0f9d900142930114b02a34b9091a78 (diff) | |
Modify ZArith/Wf_Z.v to compile with -mangle-names
| -rw-r--r-- | theories/ZArith/Wf_Z.v | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/theories/ZArith/Wf_Z.v b/theories/ZArith/Wf_Z.v index 62fccf3ce2..9fa05dd2f7 100644 --- a/theories/ZArith/Wf_Z.v +++ b/theories/ZArith/Wf_Z.v @@ -67,7 +67,7 @@ Lemma natlike_ind : forall x:Z, 0 <= x -> P x. Proof. intros P Ho Hrec x Hx; apply Z_of_nat_prop; trivial. - induction n. exact Ho. + intros n; induction n. exact Ho. rewrite Nat2Z.inj_succ. apply Hrec; trivial using Nat2Z.is_nonneg. Qed. @@ -78,7 +78,7 @@ Lemma natlike_rec : forall x:Z, 0 <= x -> P x. Proof. intros P Ho Hrec x Hx; apply Z_of_nat_set; trivial. - induction n. exact Ho. + intros n; induction n. exact Ho. rewrite Nat2Z.inj_succ. apply Hrec; trivial using Nat2Z.is_nonneg. Qed. @@ -101,9 +101,9 @@ Section Efficient_Rec. (forall z:Z, 0 <= z -> P z -> P (Z.succ z)) -> forall z:Z, 0 <= z -> P z. Proof. - intros P Ho Hrec. + intros P Ho Hrec z. induction z as [z IH] using (well_founded_induction_type R_wf). - destruct z; intros Hz. + destruct z as [|p|p]; intros Hz. - apply Ho. - set (y:=Z.pred (Zpos p)). assert (LE : 0 <= y) by (unfold y; now apply Z.lt_le_pred). @@ -121,9 +121,9 @@ Section Efficient_Rec. (forall z:Z, 0 < z -> P (Z.pred z) -> P z) -> forall z:Z, 0 <= z -> P z. Proof. - intros P Ho Hrec. + intros P Ho Hrec z. induction z as [z IH] using (well_founded_induction_type R_wf). - destruct z; intros Hz. + destruct z as [|p|p]; intros Hz. - apply Ho. - assert (EQ : 0 <= Z.pred (Zpos p)) by now apply Z.lt_le_pred. apply Hrec. easy. apply IH; trivial. split; trivial. @@ -138,7 +138,7 @@ Section Efficient_Rec. (forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> 0 <= x -> P x) -> forall x:Z, 0 <= x -> P x. Proof. - intros P Hrec. + intros P Hrec x. induction x as [x IH] using (well_founded_induction_type R_wf). destruct x; intros Hx. - apply Hrec; trivial. intros y (Hy,Hy'). @@ -196,7 +196,7 @@ Section Efficient_Rec. (forall x:Z, (forall y:Z, z <= y < x -> P y) -> z <= x -> P x) -> forall x:Z, z <= x -> P x. Proof. - intros; now apply Zlt_lower_bound_rec with z. + intros P z ? x ?; now apply Zlt_lower_bound_rec with z. Qed. End Efficient_Rec. |
