aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJasper Hugunin2020-10-09 20:17:24 -0700
committerJasper Hugunin2020-10-11 19:05:14 -0700
commitc513ab654b2de5a80a5bc71b9a0769c46e5b55cd (patch)
tree58eb155c5f351c8b2bae55e74d942cc62a1bfc99
parentaf7b79f52f0f9d900142930114b02a34b9091a78 (diff)
Modify ZArith/Wf_Z.v to compile with -mangle-names
-rw-r--r--theories/ZArith/Wf_Z.v16
1 files changed, 8 insertions, 8 deletions
diff --git a/theories/ZArith/Wf_Z.v b/theories/ZArith/Wf_Z.v
index 62fccf3ce2..9fa05dd2f7 100644
--- a/theories/ZArith/Wf_Z.v
+++ b/theories/ZArith/Wf_Z.v
@@ -67,7 +67,7 @@ Lemma natlike_ind :
forall x:Z, 0 <= x -> P x.
Proof.
intros P Ho Hrec x Hx; apply Z_of_nat_prop; trivial.
- induction n. exact Ho.
+ intros n; induction n. exact Ho.
rewrite Nat2Z.inj_succ. apply Hrec; trivial using Nat2Z.is_nonneg.
Qed.
@@ -78,7 +78,7 @@ Lemma natlike_rec :
forall x:Z, 0 <= x -> P x.
Proof.
intros P Ho Hrec x Hx; apply Z_of_nat_set; trivial.
- induction n. exact Ho.
+ intros n; induction n. exact Ho.
rewrite Nat2Z.inj_succ. apply Hrec; trivial using Nat2Z.is_nonneg.
Qed.
@@ -101,9 +101,9 @@ Section Efficient_Rec.
(forall z:Z, 0 <= z -> P z -> P (Z.succ z)) ->
forall z:Z, 0 <= z -> P z.
Proof.
- intros P Ho Hrec.
+ intros P Ho Hrec z.
induction z as [z IH] using (well_founded_induction_type R_wf).
- destruct z; intros Hz.
+ destruct z as [|p|p]; intros Hz.
- apply Ho.
- set (y:=Z.pred (Zpos p)).
assert (LE : 0 <= y) by (unfold y; now apply Z.lt_le_pred).
@@ -121,9 +121,9 @@ Section Efficient_Rec.
(forall z:Z, 0 < z -> P (Z.pred z) -> P z) ->
forall z:Z, 0 <= z -> P z.
Proof.
- intros P Ho Hrec.
+ intros P Ho Hrec z.
induction z as [z IH] using (well_founded_induction_type R_wf).
- destruct z; intros Hz.
+ destruct z as [|p|p]; intros Hz.
- apply Ho.
- assert (EQ : 0 <= Z.pred (Zpos p)) by now apply Z.lt_le_pred.
apply Hrec. easy. apply IH; trivial. split; trivial.
@@ -138,7 +138,7 @@ Section Efficient_Rec.
(forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> 0 <= x -> P x) ->
forall x:Z, 0 <= x -> P x.
Proof.
- intros P Hrec.
+ intros P Hrec x.
induction x as [x IH] using (well_founded_induction_type R_wf).
destruct x; intros Hx.
- apply Hrec; trivial. intros y (Hy,Hy').
@@ -196,7 +196,7 @@ Section Efficient_Rec.
(forall x:Z, (forall y:Z, z <= y < x -> P y) -> z <= x -> P x) ->
forall x:Z, z <= x -> P x.
Proof.
- intros; now apply Zlt_lower_bound_rec with z.
+ intros P z ? x ?; now apply Zlt_lower_bound_rec with z.
Qed.
End Efficient_Rec.