diff options
| author | Hugo Herbelin | 2017-08-21 23:25:21 +0200 |
|---|---|---|
| committer | Hugo Herbelin | 2018-02-20 10:03:06 +0100 |
| commit | bc73f267ad2da0f1e24e66cb481725be018a8ce6 (patch) | |
| tree | ba5b0ccdb6de146a209a27fbc2c24603609e16e8 | |
| parent | 3a6b1d2c04ceeb568accbc9ddfc3fc0f14faf25b (diff) | |
A (significant) simplification in printing notations with recursive binders.
For historical reasons (this was one of the first examples of
notations with binders), there was a special treatment for notations
whose right-hand side had the form "forall x, P" or "fun x => P". Not
only this is not necessary, but this prevents notations binding to
expressions such as "forall x, x>0 -> P" to be used in printing.
We let the general case absorb this particular case.
We add the integration of "let x:=c in ..." in the middle of a
notation with recursive binders as part of the binder list, reprinting
it "(x:=c)" (this was formerly the case only for the above particular
case).
Note that integrating "let" in sequence of binders is stil not the
case for the regular "forall"/"fun". Should we?
| -rw-r--r-- | interp/notation_ops.ml | 80 | ||||
| -rw-r--r-- | test-suite/output/Notations2.out | 6 | ||||
| -rw-r--r-- | test-suite/output/Notations2.v | 5 | ||||
| -rw-r--r-- | test-suite/output/Notations3.out | 5 | ||||
| -rw-r--r-- | test-suite/output/Notations3.v | 5 |
5 files changed, 24 insertions, 77 deletions
diff --git a/interp/notation_ops.ml b/interp/notation_ops.ml index b7c1d84f13..0480a93e27 100644 --- a/interp/notation_ops.ml +++ b/interp/notation_ops.ml @@ -975,36 +975,9 @@ let rec match_cases_pattern_binders metas (alp,sigma as acc) pat1 pat2 = | PatCstr (c1,patl1,na1), PatCstr (c2,patl2,na2) when eq_constructor c1 c2 && Int.equal (List.length patl1) (List.length patl2) -> List.fold_left2 (match_cases_pattern_binders metas) - (match_names metas acc na1 na2) patl1 patl2 + (match_names metas acc na1 na2) patl1 patl2 | _ -> raise No_match -let glue_letin_with_decls = true - -let rec match_iterated_binders islambda decls bi revert = DAst.(with_loc_val (fun ?loc -> function - | GLambda (na,bk,t,b) as b0 -> - begin match na, DAst.get b with - | Name p, GCases (LetPatternStyle,None,[(e,_)],[(_,(ids,[cp],b))]) - when islambda && is_gvar p e && not (occur_glob_constr p b) -> - match_iterated_binders islambda ((DAst.make ?loc @@ GLocalPattern((cp,ids),p,bk,t))::decls) b revert - | _, _ when islambda -> - match_iterated_binders islambda ((DAst.make ?loc @@ GLocalAssum(na,bk,t))::decls) b revert - | _ -> (decls, DAst.make ?loc b0) - end - | GProd (na,bk,t,b) as b0 -> - begin match na, DAst.get b with - | Name p, GCases (LetPatternStyle,None,[(e,_)],[(_,(ids,[cp],b))]) - when not islambda && is_gvar p e && not (occur_glob_constr p b) -> - match_iterated_binders islambda ((DAst.make ?loc @@ GLocalPattern((cp,ids),p,bk,t))::decls) b revert - | Name _, _ when not islambda -> - match_iterated_binders islambda ((DAst.make ?loc @@ GLocalAssum(na,bk,t))::decls) b revert - | _ -> (decls, DAst.make ?loc b0) - end - | GLetIn (na,c,t,b) when glue_letin_with_decls -> - match_iterated_binders islambda - ((DAst.make ?loc @@ GLocalDef (na,Explicit (*?*), c,t))::decls) b revert - | b -> (decls, DAst.make ?loc b) - )) bi - let remove_sigma x (terms,termlists,binders,binderlists) = (Id.List.remove_assoc x terms,termlists,binders,binderlists) @@ -1015,7 +988,9 @@ let add_ldots_var metas = (ldots_var,((None,[]),NtnTypeConstr))::metas let add_meta_bindinglist x metas = (x,((None,[]),NtnTypeBinderList))::metas -let match_binderlist_with_app match_fun alp metas sigma rest x y iter termin revert = +let glue_letin_with_decls = true + +let match_binderlist match_fun alp metas sigma rest x y iter termin revert = let rec aux sigma bl rest = try let metas = add_ldots_var (add_meta_bindinglist y metas) in @@ -1028,8 +1003,12 @@ let match_binderlist_with_app match_fun alp metas sigma rest x y iter termin rev (* In case y is bound not only to a binder but also to a term *) let sigma = remove_sigma y sigma in aux sigma (b::bl) rest - with No_match when not (List.is_empty bl) -> - bl, rest, sigma in + with No_match -> + match DAst.get rest with + | GLetIn (na,c,t,rest) when glue_letin_with_decls -> + let b = DAst.make ?loc:rest.CAst.loc @@ GLocalDef (na,Explicit (*?*), c,t) in + aux sigma (b::bl) rest + | _ -> if not (List.is_empty bl) then bl, rest, sigma else raise No_match in let bl,rest,sigma = aux sigma [] rest in let bl = if revert then List.rev bl else bl in let alp,sigma = bind_bindinglist_env alp sigma x bl in @@ -1096,46 +1075,9 @@ let rec match_ inner u alp metas sigma a1 a2 = | r1, NList (x,y,iter,termin,revert) -> match_termlist (match_hd u alp) alp metas sigma a1 x y iter termin revert - | GLambda (na1, bk, t1, b1), NBinderList (x,y,iter,termin,revert) -> - begin match na1, DAst.get b1, iter with - (* "λ p, let 'cp = p in t" -> "λ 'cp, t" *) - | Name p, GCases (LetPatternStyle,None,[(e,_)],[(_,(ids,[cp],b1))]), NLambda (Name _, _, _) - when is_gvar p e && not (occur_glob_constr p b1) -> - let (decls,b) = match_iterated_binders true [DAst.make ?loc @@ GLocalPattern((cp,ids),p,bk,t1)] b1 revert in - let alp,sigma = bind_bindinglist_env alp sigma x decls in - match_in u alp metas sigma b termin - (* Matching recursive notations for binders: ad hoc cases supporting let-in *) - | _, _, NLambda (Name _,_,_) -> - let (decls,b) = match_iterated_binders true [DAst.make ?loc @@ GLocalAssum (na1,bk,t1)] b1 revert in - (* TODO: address the possibility that termin is a Lambda itself *) - let alp,sigma = bind_bindinglist_env alp sigma x decls in - match_in u alp metas sigma b termin - (* Matching recursive notations for binders: general case *) - | _, _, _ -> - match_binderlist_with_app (match_hd u) alp metas sigma a1 x y iter termin revert - end - - | GProd (na1, bk, t1, b1), NBinderList (x,y,iter,termin,revert) -> - (* "∀ p, let 'cp = p in t" -> "∀ 'cp, t" *) - begin match na1, DAst.get b1, iter, termin with - | Name p, GCases (LetPatternStyle,None,[(e, _)],[(_,(ids,[cp],b1))]), NProd (Name _,_,_), NVar _ - when is_gvar p e && not (occur_glob_constr p b1) -> - let (decls,b) = match_iterated_binders true [DAst.make ?loc @@ GLocalPattern ((cp,ids),p,bk,t1)] b1 revert in - let alp,sigma = bind_bindinglist_env alp sigma x decls in - match_in u alp metas sigma b termin - | _, _, NProd (Name _,_,_), _ when na1 != Anonymous -> - let (decls,b) = match_iterated_binders false [DAst.make ?loc @@ GLocalAssum (na1,bk,t1)] b1 revert in - (* TODO: address the possibility that termin is a Prod itself *) - let alp,sigma = bind_bindinglist_env alp sigma x decls in - match_in u alp metas sigma b termin - (* Matching recursive notations for binders: general case *) - | _, _, _, _ -> - match_binderlist_with_app (match_hd u) alp metas sigma a1 x y iter termin revert - end - (* Matching recursive notations for binders: general case *) | _r, NBinderList (x,y,iter,termin,revert) -> - match_binderlist_with_app (match_hd u) alp metas sigma a1 x y iter termin revert + match_binderlist (match_hd u) alp metas sigma a1 x y iter termin revert (* Matching compositionally *) | GVar id1, NVar id2 when alpha_var id1 id2 (fst alp) -> sigma diff --git a/test-suite/output/Notations2.out b/test-suite/output/Notations2.out index 121a369a94..0e5f399036 100644 --- a/test-suite/output/Notations2.out +++ b/test-suite/output/Notations2.out @@ -17,10 +17,8 @@ fun (P : nat -> nat -> Prop) (x : nat) => exists y, P x y ∃ n p : nat, n + p = 0 : Prop let a := 0 in -∃ x y : nat, -let b := 1 in -let c := b in -let d := 2 in ∃ z : nat, let e := 3 in let f := 4 in x + y = z + d +∃ (x y : nat) (b := 1) (c := b) (d := 2) (z : nat) (e := 3) (f := 4), +x + y = z + d : Prop ∀ n p : nat, n + p = 0 : Prop diff --git a/test-suite/output/Notations2.v b/test-suite/output/Notations2.v index 531398bb0b..923caedace 100644 --- a/test-suite/output/Notations2.v +++ b/test-suite/output/Notations2.v @@ -36,8 +36,9 @@ Check fun P:nat->nat->Prop => fun x:nat => ex (P x). (* Test notations with binders *) -Notation "∃ x .. y , P":= (ex (fun x => .. (ex (fun y => P)) ..)) - (x binder, y binder, at level 200, right associativity). +Notation "∃ x .. y , P":= (ex (fun x => .. (ex (fun y => P)) ..)) + (x binder, y binder, at level 200, right associativity, + format "'[ ' ∃ x .. y ']' , P"). Check (∃ n p, n+p=0). diff --git a/test-suite/output/Notations3.out b/test-suite/output/Notations3.out index 7c47c0885d..cb18fa3564 100644 --- a/test-suite/output/Notations3.out +++ b/test-suite/output/Notations3.out @@ -152,8 +152,7 @@ exists x : nat, nat -> exists '{{z, t}}, forall z2 : nat, z2 = 0 /\ x + y = 0 /\ z + t = 0 : Prop -exists_true '{{x, y}}, -(let u := 0 in exists_true '{{z, t}}, x + y = 0 /\ z + t = 0) +exists_true '{{x, y}} (u := 0) '{{z, t}}, x + y = 0 /\ z + t = 0 : Prop exists_true (A : Type) (R : A -> A -> Prop) (_ : Reflexive R), (forall x : A, R x x) @@ -173,6 +172,8 @@ exists_true (x : nat) (A : Type) (R : A -> A -> Prop) : Prop * Prop exists_non_null x y z t : nat , x = y /\ z = t : Prop +forall_non_null x y z t : nat , x = y /\ z = t + : Prop {{RL 1, 2}} : nat * (nat * nat) {{RR 1, 2}} diff --git a/test-suite/output/Notations3.v b/test-suite/output/Notations3.v index ee6f0a09e0..d768b9ba49 100644 --- a/test-suite/output/Notations3.v +++ b/test-suite/output/Notations3.v @@ -308,6 +308,11 @@ Notation "'exists_non_null' x .. y , P" := (at level 200, x binder). Check exists_non_null x y z t , x=y/\z=t. +Notation "'forall_non_null' x .. y , P" := + (forall x, x <> 0 -> .. (forall y, y <> 0 -> P) ..) + (at level 200, x binder). +Check forall_non_null x y z t , x=y/\z=t. + (* Examples where the recursive pattern is in reverse order *) Notation "{{RL c , .. , d }}" := (pair d .. (pair c 0) ..). |
