diff options
| author | glondu | 2010-12-23 19:28:45 +0000 |
|---|---|---|
| committer | glondu | 2010-12-23 19:28:45 +0000 |
| commit | b26dcdc37705c2e0d5f7d4322f5dc26fb6b7984a (patch) | |
| tree | b3f7bb2f56c18a452d6a4972d84d1475c7a3b219 | |
| parent | 4dc1e6db7c6742e098b2f710613afd14fdff3987 (diff) | |
Remove the two-argument variant of "decide equality"
This variant was ignoring its second argument, and didn't exactly
respect its documented specification. This is fixed by removing the
variant altogether.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13746 85f007b7-540e-0410-9357-904b9bb8a0f7
| -rw-r--r-- | doc/refman/RefMan-tac.tex | 6 | ||||
| -rw-r--r-- | tactics/eqdecide.ml4 | 1 | ||||
| -rw-r--r-- | test-suite/success/eqdecide.v | 7 |
3 files changed, 1 insertions, 13 deletions
diff --git a/doc/refman/RefMan-tac.tex b/doc/refman/RefMan-tac.tex index 977f68352d..4e76fa67ea 100644 --- a/doc/refman/RefMan-tac.tex +++ b/doc/refman/RefMan-tac.tex @@ -2593,12 +2593,6 @@ This tactic solves a goal of the form is an inductive type such that its constructors do not take proofs or functions as arguments, nor objects in dependent types. -\begin{Variants} -\item {\tt decide equality {\term}$_1$ {\term}$_2$ }.\\ - Solves a goal of the form {\tt \{}\term$_1${\tt =}\term$_2${\tt -\}+\{\verb|~|}\term$_1${\tt =}\term$_2${\tt \}}. -\end{Variants} - \subsection{\tt compare \term$_1$ \term$_2$ \tacindex{compare}} diff --git a/tactics/eqdecide.ml4 b/tactics/eqdecide.ml4 index 1bc9f1f7ce..932e88fea2 100644 --- a/tactics/eqdecide.ml4 +++ b/tactics/eqdecide.ml4 @@ -181,7 +181,6 @@ let compare c1 c2 g = (* User syntax *) TACTIC EXTEND decide_equality - [ "decide" "equality" constr(c1) constr(c2) ] -> [ decideEquality c1 c2 ] | [ "decide" "equality" ] -> [ decideEqualityGoal ] END diff --git a/test-suite/success/eqdecide.v b/test-suite/success/eqdecide.v index 5f2d0f3954..8c00583ed6 100644 --- a/test-suite/success/eqdecide.v +++ b/test-suite/success/eqdecide.v @@ -16,12 +16,7 @@ Qed. Lemma lem2 : forall x y : T, {x = y} + {x <> y}. intros x y. - decide equality x y. -Qed. - -Lemma lem3 : forall x y : T, {x = y} + {x <> y}. -intros x y. - decide equality y x. + decide equality. Qed. Lemma lem4 : forall x y : T, {x = y} + {x <> y}. |
