aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorglondu2010-12-23 19:28:45 +0000
committerglondu2010-12-23 19:28:45 +0000
commitb26dcdc37705c2e0d5f7d4322f5dc26fb6b7984a (patch)
treeb3f7bb2f56c18a452d6a4972d84d1475c7a3b219
parent4dc1e6db7c6742e098b2f710613afd14fdff3987 (diff)
Remove the two-argument variant of "decide equality"
This variant was ignoring its second argument, and didn't exactly respect its documented specification. This is fixed by removing the variant altogether. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13746 85f007b7-540e-0410-9357-904b9bb8a0f7
-rw-r--r--doc/refman/RefMan-tac.tex6
-rw-r--r--tactics/eqdecide.ml41
-rw-r--r--test-suite/success/eqdecide.v7
3 files changed, 1 insertions, 13 deletions
diff --git a/doc/refman/RefMan-tac.tex b/doc/refman/RefMan-tac.tex
index 977f68352d..4e76fa67ea 100644
--- a/doc/refman/RefMan-tac.tex
+++ b/doc/refman/RefMan-tac.tex
@@ -2593,12 +2593,6 @@ This tactic solves a goal of the form
is an inductive type such that its constructors do not take proofs or
functions as arguments, nor objects in dependent types.
-\begin{Variants}
-\item {\tt decide equality {\term}$_1$ {\term}$_2$ }.\\
- Solves a goal of the form {\tt \{}\term$_1${\tt =}\term$_2${\tt
-\}+\{\verb|~|}\term$_1${\tt =}\term$_2${\tt \}}.
-\end{Variants}
-
\subsection{\tt compare \term$_1$ \term$_2$
\tacindex{compare}}
diff --git a/tactics/eqdecide.ml4 b/tactics/eqdecide.ml4
index 1bc9f1f7ce..932e88fea2 100644
--- a/tactics/eqdecide.ml4
+++ b/tactics/eqdecide.ml4
@@ -181,7 +181,6 @@ let compare c1 c2 g =
(* User syntax *)
TACTIC EXTEND decide_equality
- [ "decide" "equality" constr(c1) constr(c2) ] -> [ decideEquality c1 c2 ]
| [ "decide" "equality" ] -> [ decideEqualityGoal ]
END
diff --git a/test-suite/success/eqdecide.v b/test-suite/success/eqdecide.v
index 5f2d0f3954..8c00583ed6 100644
--- a/test-suite/success/eqdecide.v
+++ b/test-suite/success/eqdecide.v
@@ -16,12 +16,7 @@ Qed.
Lemma lem2 : forall x y : T, {x = y} + {x <> y}.
intros x y.
- decide equality x y.
-Qed.
-
-Lemma lem3 : forall x y : T, {x = y} + {x <> y}.
-intros x y.
- decide equality y x.
+ decide equality.
Qed.
Lemma lem4 : forall x y : T, {x = y} + {x <> y}.