aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorherbelin2002-10-21 19:23:39 +0000
committerherbelin2002-10-21 19:23:39 +0000
commitb19a4f3e8a785247ccb7d5b7464c15ccd4c3b3ce (patch)
tree87b567a59020e50137ab7b7fb85f7fb94d05b99a
parent04ceaad7583afcd85754b909ae25e7128646ff54 (diff)
Mise en transparence des schémas d'induction bien-fondée sur Set
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@3168 85f007b7-540e-0410-9357-904b9bb8a0f7
-rwxr-xr-xtheories/Arith/Wf_nat.v29
1 files changed, 20 insertions, 9 deletions
diff --git a/theories/Arith/Wf_nat.v b/theories/Arith/Wf_nat.v
index e8e91670b7..581b458515 100755
--- a/theories/Arith/Wf_nat.v
+++ b/theories/Arith/Wf_nat.v
@@ -66,20 +66,25 @@ Apply F.
Unfold ltof; Intros b ltfafb.
Apply IHn.
Apply lt_le_trans with (f a); Auto with arith.
-Qed.
+Defined.
Theorem induction_gtof1
: (P:A->Set)((x:A)((y:A)(gtof y x)->(P y))->(P x))->(a:A)(P a).
-Proof induction_ltof1.
+Proof.
+Exact induction_ltof1.
+Defined.
Theorem induction_ltof2
: (P:A->Set)((x:A)((y:A)(ltof y x)->(P y))->(P x))->(a:A)(P a).
-Proof (well_founded_induction A ltof well_founded_ltof).
+Proof.
+Exact (well_founded_induction A ltof well_founded_ltof).
+Defined.
Theorem induction_gtof2
: (P:A->Set)((x:A)((y:A)(gtof y x)->(P y))->(P x))->(a:A)(P a).
-Proof induction_ltof2.
-
+Proof.
+Exact induction_ltof2.
+Defined.
(** If a relation [R] is compatible with [lt] i.e. if [x R y => f(x) < f(y)]
then [R] is well-founded. *)
@@ -109,13 +114,17 @@ Proof (well_founded_ltof nat [m:nat]m).
Lemma lt_wf_rec1 : (p:nat)(P:nat->Set)
((n:nat)((m:nat)(lt m n)->(P m))->(P n)) -> (P p).
-Proof [p:nat][P:nat->Set][F:(n:nat)((m:nat)(lt m n)->(P m))->(P n)]
+Proof.
+Exact [p:nat][P:nat->Set][F:(n:nat)((m:nat)(lt m n)->(P m))->(P n)]
(induction_ltof1 nat [m:nat]m P F p).
+Defined.
Lemma lt_wf_rec : (p:nat)(P:nat->Set)
((n:nat)((m:nat)(lt m n)->(P m))->(P n)) -> (P p).
-Proof [p:nat][P:nat->Set][F:(n:nat)((m:nat)(lt m n)->(P m))->(P n)]
+Proof.
+Exact [p:nat][P:nat->Set][F:(n:nat)((m:nat)(lt m n)->(P m))->(P n)]
(induction_ltof2 nat [m:nat]m P F p).
+Defined.
Lemma lt_wf_ind : (p:nat)(P:nat->Prop)
((n:nat)((m:nat)(lt m n)->(P m))->(P n)) -> (P p).
@@ -124,7 +133,9 @@ Qed.
Lemma gt_wf_rec : (p:nat)(P:nat->Set)
((n:nat)((m:nat)(gt n m)->(P m))->(P n)) -> (P p).
-Proof lt_wf_rec.
+Proof.
+Exact lt_wf_rec.
+Defined.
Lemma gt_wf_ind : (p:nat)(P:nat->Prop)
((n:nat)((m:nat)(gt n m)->(P m))->(P n)) -> (P p).
@@ -136,7 +147,7 @@ Lemma lt_wf_double_rec :
-> (p,q:nat)(P p q).
Intros P Hrec p; Pattern p; Apply lt_wf_rec.
Intros; Pattern q; Apply lt_wf_rec; Auto with arith.
-Qed.
+Defined.
Lemma lt_wf_double_ind :
(P:nat->nat->Prop)