aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGaëtan Gilbert2019-02-07 13:23:25 +0100
committerGaëtan Gilbert2019-02-12 17:16:39 +0100
commitaeb5deb414daf47e0f766489742b4ef9c2529c63 (patch)
tree3410b12d9ab8fb53acc6e8e1d35c4abb323dd840
parent123064557fce67e98f73ee56bb4aff534c9ceb85 (diff)
Fix failing coqtops in gallina-specification-language.rst
-rw-r--r--doc/sphinx/language/gallina-specification-language.rst26
1 files changed, 21 insertions, 5 deletions
diff --git a/doc/sphinx/language/gallina-specification-language.rst b/doc/sphinx/language/gallina-specification-language.rst
index 5ecf007eff..9ab3f905e6 100644
--- a/doc/sphinx/language/gallina-specification-language.rst
+++ b/doc/sphinx/language/gallina-specification-language.rst
@@ -434,6 +434,10 @@ the identifier :g:`b` being used to represent the dependency.
the return type. For instance, the following alternative definition is
accepted and has the same meaning as the previous one.
+ .. coqtop:: none
+
+ Reset bool_case.
+
.. coqtop:: in
Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) :=
@@ -471,7 +475,7 @@ For instance, in the following example:
Definition eq_sym (A:Type) (x y:A) (H:eq A x y) : eq A y x :=
match H in eq _ _ z return eq A z x with
- | eq_refl _ => eq_refl A x
+ | eq_refl _ _ => eq_refl A x
end.
the type of the branch is :g:`eq A x x` because the third argument of
@@ -826,6 +830,10 @@ Simple inductive types
.. example::
+ .. coqtop:: none
+
+ Reset nat.
+
.. coqtop:: in
Inductive nat : Set := O | S (_:nat).
@@ -904,6 +912,10 @@ Parametrized inductive types
Once again, it is possible to specify only the type of the arguments
of the constructors, and to omit the type of the conclusion:
+ .. coqtop:: none
+
+ Reset list.
+
.. coqtop:: in
Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A).
@@ -949,7 +961,7 @@ Parametrized inductive types
inductive definitions are abstracted over their parameters
before type checking constructors, allowing to write:
- .. coqtop:: all undo
+ .. coqtop:: all
Set Uniform Inductive Parameters.
Inductive list3 (A:Set) : Set :=
@@ -960,7 +972,7 @@ Parametrized inductive types
and using :cmd:`Context` to give the uniform parameters, like so
(cf. :ref:`section-mechanism`):
- .. coqtop:: all undo
+ .. coqtop:: all reset
Section list3.
Context (A:Set).
@@ -1038,7 +1050,7 @@ Mutually defined inductive types
two type variables :g:`A` and :g:`B`, the declaration should be
done the following way:
- .. coqtop:: in
+ .. coqdoc::
Inductive tree (A B:Set) : Set := node : A -> forest A B -> tree A B
@@ -1130,6 +1142,10 @@ found in e.g. Agda, and preserves subject reduction.
The above example can be rewritten in the following way.
+.. coqtop:: none
+
+ Reset Stream.
+
.. coqtop:: all
Set Primitive Projections.
@@ -1147,7 +1163,7 @@ axiom.
.. coqtop:: all
- Axiom Stream_eta : forall s: Stream, s = cons (hs s) (tl s).
+ Axiom Stream_eta : forall s: Stream, s = Seq (hd s) (tl s).
More generally, as in the case of positive coinductive types, it is consistent
to further identify extensional equality of coinductive types with propositional