diff options
| author | Frédéric Besson | 2019-10-22 14:30:51 +0200 |
|---|---|---|
| committer | Frédéric Besson | 2019-10-22 14:30:51 +0200 |
| commit | ac8633ba19a7d8e937bbd6f9b7de2ad82b89f22f (patch) | |
| tree | b6512ba01f5b00fe490fe90b9d848c0d8a4c1f80 | |
| parent | 487f23187413e6cf6ee117d798a9057d0008aa6a (diff) | |
| parent | 4af9a79457fc265b1696de2b1fa1018ef12c986a (diff) | |
Merge PR #10875: [Stdlib] Remove some uses of the “omega” tactic
Reviewed-by: fajb
| -rw-r--r-- | plugins/micromega/Lia.v | 4 | ||||
| -rw-r--r-- | plugins/micromega/ZMicromega.v | 114 | ||||
| -rw-r--r-- | plugins/micromega/ZifyBool.v | 2 | ||||
| -rw-r--r-- | theories/FSets/FMapAVL.v | 3 | ||||
| -rw-r--r-- | theories/FSets/FMapFullAVL.v | 2 | ||||
| -rw-r--r-- | theories/FSets/FMapPositive.v | 4 | ||||
| -rw-r--r-- | theories/FSets/FSetEqProperties.v | 28 | ||||
| -rw-r--r-- | theories/QArith/QArith_base.v | 65 | ||||
| -rw-r--r-- | theories/QArith/Qreduction.v | 14 | ||||
| -rw-r--r-- | theories/QArith/Qround.v | 7 | ||||
| -rw-r--r-- | theories/Reals/Rtrigo1.v | 1 | ||||
| -rw-r--r-- | theories/Structures/OrderedTypeEx.v | 7 | ||||
| -rw-r--r-- | theories/ZArith/ZArith.v | 1 | ||||
| -rw-r--r-- | theories/ZArith/Zcomplements.v | 34 | ||||
| -rw-r--r-- | theories/ZArith/Zdiv.v | 73 | ||||
| -rw-r--r-- | theories/ZArith/Znumtheory.v | 336 | ||||
| -rw-r--r-- | theories/ZArith/Zpow_facts.v | 2 | ||||
| -rw-r--r-- | theories/ZArith/Zpower.v | 47 |
18 files changed, 459 insertions, 285 deletions
diff --git a/plugins/micromega/Lia.v b/plugins/micromega/Lia.v index 7e04fe0220..3351c7ef8a 100644 --- a/plugins/micromega/Lia.v +++ b/plugins/micromega/Lia.v @@ -44,9 +44,9 @@ Ltac zchecker_ext := (@eq_refl bool true <: @eq bool (ZTautoCheckerExt __ff __wit) true) (@find Z Z0 __varmap)). -Ltac lia := zify; xlia zchecker_ext. +Ltac lia := PreOmega.zify; xlia zchecker_ext. -Ltac nia := zify; xnlia zchecker. +Ltac nia := PreOmega.zify; xnlia zchecker. (* Local Variables: *) diff --git a/plugins/micromega/ZMicromega.v b/plugins/micromega/ZMicromega.v index 4f90d2b415..c160e11467 100644 --- a/plugins/micromega/ZMicromega.v +++ b/plugins/micromega/ZMicromega.v @@ -22,6 +22,7 @@ Require FSetPositive FSetEqProperties. Require Import ZCoeff. Require Import Refl. Require Import ZArith. +Require PreOmega. (*Declare ML Module "micromega_plugin".*) Local Open Scope Z_scope. @@ -100,11 +101,16 @@ Require Import EnvRing. Lemma Zsor : SOR 0 1 Z.add Z.mul Z.sub Z.opp (@eq Z) Z.le Z.lt. Proof. - constructor ; intros ; subst ; try (intuition (auto with zarith)). + constructor ; intros ; subst; try reflexivity. apply Zsth. apply Zth. + auto using Z.le_antisymm. + eauto using Z.le_trans. + apply Z.le_neq. destruct (Z.lt_trichotomy n m) ; intuition. + apply Z.add_le_mono_l; assumption. apply Z.mul_pos_pos ; auto. + discriminate. Qed. Lemma ZSORaddon : @@ -195,7 +201,8 @@ Proof. (fun x : N => x) (pow_N 1 Z.mul) env Flhs). generalize ((eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x) (fun x : N => x) (pow_N 1 Z.mul) env Frhs)). - destruct Fop ; simpl; intros ; intuition (auto with zarith). + destruct Fop ; simpl; intros; + intuition auto using Z.le_ge, Z.ge_le, Z.lt_gt, Z.gt_lt. Qed. @@ -531,7 +538,10 @@ Proof. apply Z.mul_le_mono_pos_l in H; auto with zarith. - assert (0 < Z.pos r) by easy. rewrite Z.add_1_r, Z.le_succ_l. - apply Z.mul_lt_mono_pos_l with a; auto with zarith. + apply Z.mul_lt_mono_pos_l with a. + auto using Z.gt_lt. + eapply Z.lt_le_trans. 2: eassumption. + now apply Z.lt_add_pos_r. - now elim H1. Qed. @@ -627,20 +637,15 @@ Qed. Lemma Zgcd_pol_ge : forall p, fst (Zgcd_pol p) >= 0. Proof. - induction p. - simpl. auto with zarith. - simpl. auto. + induction p. 1-2: easy. simpl. case_eq (Zgcd_pol p1). case_eq (Zgcd_pol p3). intros. simpl. unfold ZgcdM. - generalize (Z.gcd_nonneg z1 z2). - generalize (Zmax_spec (Z.gcd z1 z2) 1). - generalize (Z.gcd_nonneg (Z.max (Z.gcd z1 z2) 1) z). - generalize (Zmax_spec (Z.gcd (Z.max (Z.gcd z1 z2) 1) z) 1). - auto with zarith. + apply Z.le_ge; transitivity 1. easy. + apply Z.le_max_r. Qed. Lemma Zdivide_pol_Zdivide : forall p x y, Zdivide_pol x p -> (y | x) -> Zdivide_pol y p. @@ -698,7 +703,7 @@ Proof. induction p. simpl. intros. inversion H. - constructor. replace (c - 0) with c in H1 ; auto with zarith. + constructor. rewrite Z.sub_0_r in *. assumption. intros. constructor. simpl in H. inversion H ; subst; clear H. @@ -735,7 +740,7 @@ Proof. destruct HH2. rewrite H2. apply Zdivide_pol_sub ; auto. - auto with zarith. + apply Z.lt_le_trans with 1. reflexivity. now apply Z.ge_le. destruct HH2. rewrite H2. apply Zdivide_pol_one. unfold ZgcdM in HH1. unfold ZgcdM. @@ -1050,7 +1055,7 @@ Fixpoint bdepth (pf : ZArithProof) : nat := | DoneProof => O | RatProof _ p => S (bdepth p) | CutProof _ p => S (bdepth p) - | EnumProof _ _ l => S (List.fold_right (fun pf x => Max.max (bdepth pf) x) O l) + | EnumProof _ _ l => S (List.fold_right (fun pf x => Nat.max (bdepth pf) x) O l) end. Require Import Wf_nat. @@ -1069,19 +1074,19 @@ Proof. unfold ltof. simpl. generalize ( (fold_right - (fun (pf : ZArithProof) (x : nat) => Max.max (bdepth pf) x) 0%nat l)). + (fun (pf : ZArithProof) (x : nat) => Nat.max (bdepth pf) x) 0%nat l)). intros. generalize (bdepth y) ; intros. - generalize (Max.max_l n0 n) (Max.max_r n0 n). - auto with zarith. + rewrite Nat.lt_succ_r. apply Nat.le_max_l. generalize (IHl a0 b y H). unfold ltof. simpl. - generalize ( (fold_right (fun (pf : ZArithProof) (x : nat) => Max.max (bdepth pf) x) 0%nat + generalize ( (fold_right (fun (pf : ZArithProof) (x : nat) => Nat.max (bdepth pf) x) 0%nat l)). intros. - generalize (Max.max_l (bdepth a) n) (Max.max_r (bdepth a) n). - auto with zarith. + eapply lt_le_trans. eassumption. + rewrite <- Nat.succ_le_mono. + apply Nat.le_max_r. Qed. @@ -1113,10 +1118,14 @@ Proof. intros. inv H2. change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in *. - apply Zgcd_pol_correct_lt with (env:=env) in H1. - generalize (narrow_interval_lower_bound g (- c0) (eval_pol env (Zdiv_pol (PsubC Z.sub e c0) g)) H0). - auto with zarith. - auto with zarith. + apply Zgcd_pol_correct_lt with (env:=env) in H1. 2: auto using Z.gt_lt. + apply Z.le_add_le_sub_l, Z.ge_le; rewrite Z.add_0_r. + apply (narrow_interval_lower_bound g (- c0) (eval_pol env (Zdiv_pol (PsubC Z.sub e c0) g)) H0). + apply Z.le_ge. + rewrite <- Z.sub_0_l. + apply Z.le_sub_le_add_r. + rewrite <- H1. + assumption. (* g <= 0 *) intros. inv H2. auto with zarith. Qed. @@ -1143,7 +1152,7 @@ Proof. case_eq (Z.gtb g 0). intros. rewrite <- Zgt_is_gt_bool in H. - rewrite Zgcd_pol_correct_lt with (1:= H1) in H2; auto with zarith. + rewrite Zgcd_pol_correct_lt with (1:= H1) in H2. 2: auto using Z.gt_lt. unfold nformula_of_cutting_plane. change (eval_pol env (padd e' (Pc z)) = 0). inv H3. @@ -1159,7 +1168,7 @@ Proof. apply Zeq_bool_eq in H0. subst. simpl. rewrite Z.add_0_r, Z.mul_eq_0 in H2. - intuition auto with zarith. + intuition subst; easy. rewrite negb_false_iff in H0. apply Zeq_bool_eq in H0. assert (HH := Zgcd_is_gcd g c). @@ -1168,14 +1177,15 @@ Proof. apply Zdivide_opp_r in H4. rewrite Zdivide_ceiling ; auto. apply Z.sub_move_0_r. - apply Z.div_unique_exact ; auto with zarith. + apply Z.div_unique_exact. now intros ->. + now rewrite Z.add_move_0_r in H2. intros. unfold nformula_of_cutting_plane. inv H3. change (eval_pol env (padd e' (Pc 0)) = 0). rewrite eval_pol_add. simpl. - auto with zarith. + now rewrite Z.add_0_r. (* NonEqual *) intros. inv H0. @@ -1184,7 +1194,7 @@ Proof. unfold nformula_of_cutting_plane. unfold eval_op1 in *. rewrite (RingMicromega.eval_pol_add Zsor ZSORaddon). - simpl. auto with zarith. + simpl. now rewrite Z.add_0_r. (* Strict *) destruct p as [[e' z] op]. case_eq (makeCuttingPlane (PsubC Z.sub e 1)). @@ -1193,7 +1203,7 @@ Proof. apply makeCuttingPlane_ns_sound with (env:=env) (2:= H). simpl in *. rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon). - auto with zarith. + now apply Z.lt_le_pred. (* NonStrict *) destruct p as [[e' z] op]. case_eq (makeCuttingPlane e). @@ -1220,13 +1230,14 @@ Proof. rewrite negb_true_iff in H. apply Zeq_bool_neq in H. change (eval_pol env p = 0) in H2. - rewrite Zgcd_pol_correct_lt with (1:= H0) in H2; auto with zarith. + rewrite Zgcd_pol_correct_lt with (1:= H0) in H2. 2: auto using Z.gt_lt. set (x:=eval_pol env (Zdiv_pol (PsubC Z.sub p c) g)) in *; clearbody x. contradict H5. - apply Zis_gcd_gcd; auto with zarith. + apply Zis_gcd_gcd. apply Z.lt_le_incl, Z.gt_lt; assumption. constructor; auto with zarith. exists (-x). - rewrite Z.mul_opp_l, Z.mul_comm; auto with zarith. + rewrite Z.mul_opp_l, Z.mul_comm. + now apply Z.add_move_0_l. (**) destruct (makeCuttingPlane p); discriminate. discriminate. @@ -1321,11 +1332,13 @@ Proof. change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in HCutR. unfold eval_op1 in HCutR. destruct op1 ; simpl in Hop1 ; try discriminate; - rewrite eval_pol_add in HCutR; simpl in HCutR; auto with zarith. + rewrite eval_pol_add in HCutR; simpl in HCutR. + rewrite Z.add_move_0_l in HCutR; rewrite HCutR, Z.opp_involutive; reflexivity. + now apply Z.le_sub_le_add_r in HCutR. (**) apply is_pol_Z0_eval_pol with (env := env) in HZ0. - rewrite eval_pol_add in HZ0. - replace (eval_pol env p1) with (- eval_pol env p2) by omega. + rewrite eval_pol_add, Z.add_move_r, Z.sub_0_l in HZ0. + rewrite HZ0. apply eval_Psatz_sound with (env:=env) in Hf1 ; auto. apply cutting_plane_sound with (1:= Hf1) in HCutL. unfold nformula_of_cutting_plane in HCutL. @@ -1334,7 +1347,10 @@ Proof. change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in HCutL. unfold eval_op1 in HCutL. rewrite eval_pol_add in HCutL. simpl in HCutL. - destruct op2 ; simpl in Hop2 ; try discriminate ; omega. + destruct op2 ; simpl in Hop2 ; try discriminate. + rewrite Z.add_move_r, Z.sub_0_l in HCutL. + now rewrite HCutL, Z.opp_involutive. + now rewrite <- Z.le_sub_le_add_l in HCutL. revert Hfix. match goal with | |- context[?F pf (-z1) z2 = true] => set (FF := F) @@ -1348,26 +1364,24 @@ Proof. generalize (-z1). clear z1. intro z1. revert z1 z2. induction pf;simpl ;intros. - generalize (Zgt_cases z1 z2). - destruct (Z.gtb z1 z2). - intros. - apply False_ind ; omega. - discriminate. + revert Hfix. + now case (Z.gtb_spec); [ | easy ]; intros LT; elim (Zlt_not_le _ _ LT); transitivity x. flatten_bool. - assert (HH:(x = z1 \/ z1 +1 <=x)%Z) by omega. - destruct HH. - subst. - exists a ; auto. - assert (z1 + 1 <= x <= z2)%Z by omega. - elim IHpf with (2:=H2) (3:= H4). - destruct H4. + destruct (Z_le_lt_eq_dec _ _ (proj1 H0)) as [ LT | -> ]. + 2: exists a; auto. + rewrite <- Z.le_succ_l in LT. + assert (LE: (Z.succ z1 <= x <= z2)%Z) by intuition. + elim IHpf with (2:=H2) (3:= LE). intros. exists x0 ; split;tauto. intros until 1. apply H ; auto. unfold ltof in *. simpl in *. - zify. omega. + PreOmega.zify. + intuition subst. assumption. + eapply Z.lt_le_trans. eassumption. + apply Z.add_le_mono_r. assumption. (*/asser *) destruct (HH _ H1) as [pr [Hin Hcheker]]. assert (make_impl (eval_nformula env) ((PsubC Z.sub p1 (eval_pol env p1),Equal) :: l) False). diff --git a/plugins/micromega/ZifyBool.v b/plugins/micromega/ZifyBool.v index 6259c5b47a..03a7774a31 100644 --- a/plugins/micromega/ZifyBool.v +++ b/plugins/micromega/ZifyBool.v @@ -8,7 +8,7 @@ (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Bool ZArith. -Require Import ZifyClasses. +Require Import Zify ZifyClasses. Local Open Scope Z_scope. (* Instances of [ZifyClasses] for dealing with boolean operators. Various encodings of boolean are possible. One objective is to diff --git a/theories/FSets/FMapAVL.v b/theories/FSets/FMapAVL.v index 7c69350db4..ea4062d9fe 100644 --- a/theories/FSets/FMapAVL.v +++ b/theories/FSets/FMapAVL.v @@ -1363,7 +1363,8 @@ Lemma elements_aux_cardinal : Proof. simple induction m; simpl; intuition. rewrite <- H; simpl. - rewrite <- H0; omega. + rewrite <- H0, Nat.add_succ_r, (Nat.add_comm (cardinal t)), Nat.add_assoc. + reflexivity. Qed. Lemma elements_cardinal : forall (m:t elt), cardinal m = length (elements m). diff --git a/theories/FSets/FMapFullAVL.v b/theories/FSets/FMapFullAVL.v index 0ef356b582..fa553d9fce 100644 --- a/theories/FSets/FMapFullAVL.v +++ b/theories/FSets/FMapFullAVL.v @@ -68,7 +68,7 @@ Hint Constructors avl : core. Lemma height_non_negative : forall (s : t elt), avl s -> height s >= 0. Proof. - induction s; simpl; intros; auto with zarith. + induction s; simpl; intros. now apply Z.le_ge. inv avl; intuition; omega_max. Qed. diff --git a/theories/FSets/FMapPositive.v b/theories/FSets/FMapPositive.v index e5133f66b2..342a51b39b 100644 --- a/theories/FSets/FMapPositive.v +++ b/theories/FSets/FMapPositive.v @@ -476,8 +476,8 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits. unfold elements. intros m; set (p:=1); clearbody p; revert m p. induction m; simpl; auto; intros. - rewrite (IHm1 (append p 2)), (IHm2 (append p 3)); auto. - destruct o; rewrite app_length; simpl; omega. + rewrite (IHm1 (append p 2)), (IHm2 (append p 3)). + destruct o; rewrite app_length; simpl; auto. Qed. End CompcertSpec. diff --git a/theories/FSets/FSetEqProperties.v b/theories/FSets/FSetEqProperties.v index da504259f5..1983c6caa1 100644 --- a/theories/FSets/FSetEqProperties.v +++ b/theories/FSets/FSetEqProperties.v @@ -17,7 +17,7 @@ [mem x s=true] instead of [In x s], [equal s s'=true] instead of [Equal s s'], etc. *) -Require Import FSetProperties Zerob Sumbool Omega DecidableTypeEx. +Require Import FSetProperties Zerob Sumbool DecidableTypeEx. Module WEqProperties_fun (Import E:DecidableType)(M:WSfun E). Module Import MP := WProperties_fun E M. @@ -847,11 +847,16 @@ Proof. unfold sum. intros f g Hf Hg. assert (fc : compat_opL (fun x:elt =>plus (f x))). red; auto with fset. -assert (ft : transposeL (fun x:elt =>plus (f x))). red; intros; omega. +assert (ft : transposeL (fun x:elt =>plus (f x))). red; intros x y z. + rewrite !PeanoNat.Nat.add_assoc, (PeanoNat.Nat.add_comm (f x) (f y)); reflexivity. assert (gc : compat_opL (fun x:elt => plus (g x))). red; auto with fset. -assert (gt : transposeL (fun x:elt =>plus (g x))). red; intros; omega. +assert (gt : transposeL (fun x:elt =>plus (g x))). red; intros x y z. + rewrite !PeanoNat.Nat.add_assoc, (PeanoNat.Nat.add_comm (g x) (g y)); reflexivity. assert (fgc : compat_opL (fun x:elt =>plus ((f x)+(g x)))). repeat red; auto. -assert (fgt : transposeL (fun x:elt=>plus ((f x)+(g x)))). red; intros; omega. +assert (fgt : transposeL (fun x:elt=>plus ((f x)+(g x)))). red; intros x y z. + set (u := (f x + g x)); set (v := (f y + g y)). + rewrite !PeanoNat.Nat.add_assoc, (PeanoNat.Nat.add_comm u). + reflexivity. assert (st : Equivalence (@Logic.eq nat)) by (split; congruence). intros s;pattern s; apply set_rec. intros. @@ -859,7 +864,10 @@ rewrite <- (fold_equal _ _ st _ fc ft 0 _ _ H). rewrite <- (fold_equal _ _ st _ gc gt 0 _ _ H). rewrite <- (fold_equal _ _ st _ fgc fgt 0 _ _ H); auto. intros; do 3 (rewrite (fold_add _ _ st);auto). -rewrite H0;simpl;omega. +rewrite H0;simpl. +rewrite <- !(PeanoNat.Nat.add_assoc (f x)); f_equal. +rewrite !PeanoNat.Nat.add_assoc. f_equal. +apply PeanoNat.Nat.add_comm. do 3 rewrite fold_empty;auto. Qed. @@ -872,7 +880,11 @@ assert (cc : compat_opL (fun x => plus (if f x then 1 else 0))). repeat red; intros. rewrite (Hf _ _ H); auto. assert (ct : transposeL (fun x => plus (if f x then 1 else 0))). - red; intros; omega. + red; intros. + set (a := if f x then _ else _). + rewrite PeanoNat.Nat.add_comm. + rewrite <- !PeanoNat.Nat.add_assoc. f_equal. + apply PeanoNat.Nat.add_comm. intros s;pattern s; apply set_rec. intros. change elt with E.t. @@ -921,9 +933,11 @@ Lemma sum_compat : forall f g, Proper (E.eq==>Logic.eq) f -> Proper (E.eq==>Logic.eq) g -> forall s, (forall x, In x s -> f x=g x) -> sum f s=sum g s. intros. -unfold sum; apply (fold_compat _ (@Logic.eq nat)); auto with *. +unfold sum; apply (fold_compat _ (@Logic.eq nat)); auto with fset. intros x x' Hx y y' Hy. rewrite Hx, Hy; auto. +intros x y z; rewrite !PeanoNat.Nat.add_assoc; f_equal; apply PeanoNat.Nat.add_comm. intros x x' Hx y y' Hy. rewrite Hx, Hy; auto. +intros x y z; rewrite !PeanoNat.Nat.add_assoc; f_equal; apply PeanoNat.Nat.add_comm. Qed. End Sum. diff --git a/theories/QArith/QArith_base.v b/theories/QArith/QArith_base.v index b60feb9256..54d35cded2 100644 --- a/theories/QArith/QArith_base.v +++ b/theories/QArith/QArith_base.v @@ -79,7 +79,7 @@ Notation "x <= y <= z" := (x<=y/\y<=z) : Q_scope. Lemma inject_Z_injective (a b: Z): inject_Z a == inject_Z b <-> a = b. Proof. - unfold Qeq. simpl. omega. + unfold Qeq; simpl; rewrite !Z.mul_1_r; reflexivity. Qed. (** Another approach : using Qcompare for defining order relations. *) @@ -599,9 +599,7 @@ Proof. Qed. Lemma Qle_antisym x y : x<=y -> y<=x -> x==y. -Proof. - unfold Qle, Qeq; auto with zarith. -Qed. +Proof. apply Z.le_antisymm. Qed. Lemma Qle_trans : forall x y z, x<=y -> y<=z -> x<=z. Proof. @@ -618,14 +616,10 @@ Qed. Hint Resolve Qle_trans : qarith. Lemma Qlt_irrefl x : ~x<x. -Proof. - unfold Qlt. auto with zarith. -Qed. +Proof. apply Z.lt_irrefl. Qed. Lemma Qlt_not_eq x y : x<y -> ~ x==y. -Proof. - unfold Qlt, Qeq; auto with zarith. -Qed. +Proof. apply Z.lt_neq. Qed. Lemma Zle_Qle (x y: Z): (x <= y)%Z = (inject_Z x <= inject_Z y). Proof. @@ -647,9 +641,7 @@ Proof. Qed. Lemma Qlt_le_weak x y : x<y -> x<=y. -Proof. - unfold Qle, Qlt; auto with zarith. -Qed. +Proof. apply Z.lt_le_incl. Qed. Lemma Qle_lt_trans : forall x y z, x<=y -> y<z -> x<z. Proof. @@ -684,25 +676,17 @@ Qed. (** [x<y] iff [~(y<=x)] *) -Lemma Qnot_lt_le : forall x y, ~ x<y -> y<=x. -Proof. - unfold Qle, Qlt; auto with zarith. -Qed. +Lemma Qnot_lt_le x y : ~ x < y -> y <= x. +Proof. apply Z.nlt_ge. Qed. -Lemma Qnot_le_lt : forall x y, ~ x<=y -> y<x. -Proof. - unfold Qle, Qlt; auto with zarith. -Qed. +Lemma Qnot_le_lt x y : ~ x <= y -> y < x. +Proof. apply Z.nle_gt. Qed. -Lemma Qlt_not_le : forall x y, x<y -> ~ y<=x. -Proof. - unfold Qle, Qlt; auto with zarith. -Qed. +Lemma Qlt_not_le x y : x < y -> ~ y <= x. +Proof. apply Z.lt_nge. Qed. -Lemma Qle_not_lt : forall x y, x<=y -> ~ y<x. -Proof. - unfold Qle, Qlt; auto with zarith. -Qed. +Lemma Qle_not_lt x y : x <= y -> ~ y < x. +Proof. apply Z.le_ngt. Qed. Lemma Qle_lt_or_eq : forall x y, x<=y -> x<y \/ x==y. Proof. @@ -746,21 +730,24 @@ Defined. Lemma Qopp_le_compat : forall p q, p<=q -> -q <= -p. Proof. intros (a1,a2) (b1,b2); unfold Qle, Qlt; simpl. - rewrite !Z.mul_opp_l. omega. + now rewrite !Z.mul_opp_l, <- Z.opp_le_mono. Qed. + Hint Resolve Qopp_le_compat : qarith. Lemma Qle_minus_iff : forall p q, p <= q <-> 0 <= q+-p. Proof. intros (x1,x2) (y1,y2); unfold Qle; simpl. - rewrite Z.mul_opp_l. omega. + rewrite Z.mul_1_r, Z.mul_opp_l, <- Z.le_sub_le_add_r, Z.opp_involutive. + reflexivity. Qed. Lemma Qlt_minus_iff : forall p q, p < q <-> 0 < q+-p. Proof. intros (x1,x2) (y1,y2); unfold Qlt; simpl. - rewrite Z.mul_opp_l. omega. + rewrite Z.mul_1_r, Z.mul_opp_l, <- Z.lt_sub_lt_add_r, Z.opp_involutive. + reflexivity. Qed. Lemma Qplus_le_compat : @@ -831,9 +818,11 @@ Lemma Qmult_le_compat_r : forall x y z, x <= y -> 0 <= z -> x*z <= y*z. Proof. intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl. Open Scope Z_scope. + rewrite Z.mul_1_r. intros; simpl_mult. rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1). - apply Z.mul_le_mono_nonneg_r; auto with zarith. + apply Z.mul_le_mono_nonneg_r; auto. + now apply Z.mul_nonneg_nonneg. Close Scope Z_scope. Qed. @@ -843,9 +832,10 @@ Proof. Open Scope Z_scope. simpl_mult. rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1). + rewrite Z.mul_1_r. intros LT LE. apply Z.mul_le_mono_pos_r in LE; trivial. - apply Z.mul_pos_pos; [omega|easy]. + apply Z.mul_pos_pos; easy. Close Scope Z_scope. Qed. @@ -866,10 +856,11 @@ Lemma Qmult_lt_compat_r : forall x y z, 0 < z -> x < y -> x*z < y*z. Proof. intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl. Open Scope Z_scope. + rewrite Z.mul_1_r. intros; simpl_mult. rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1). apply Z.mul_lt_mono_pos_r; auto with zarith. - apply Z.mul_pos_pos; [omega|reflexivity]. + apply Z.mul_pos_pos; easy. Close Scope Z_scope. Qed. @@ -880,8 +871,9 @@ Proof. unfold Qle, Qlt; simpl. simpl_mult. rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1). + rewrite Z.mul_1_r. intro LT. rewrite <- Z.mul_lt_mono_pos_r. reflexivity. - apply Z.mul_pos_pos; [omega|reflexivity]. + now apply Z.mul_pos_pos. Close Scope Z_scope. Qed. @@ -896,6 +888,7 @@ Proof. intros a b Ha Hb. unfold Qle in *. simpl in *. +rewrite Z.mul_1_r in *. auto with *. Qed. diff --git a/theories/QArith/Qreduction.v b/theories/QArith/Qreduction.v index 78cd549ce6..e314f64028 100644 --- a/theories/QArith/Qreduction.v +++ b/theories/QArith/Qreduction.v @@ -35,7 +35,7 @@ Proof. rewrite <- Hg in LE; clear Hg. assert (0 <> g) by (intro; subst; discriminate). rewrite Z2Pos.id. ring. - rewrite <- (Z.mul_pos_cancel_l g); [now rewrite <- Hd | omega]. + now rewrite <- (Z.mul_pos_cancel_l g); [ rewrite <- Hd | apply Z.le_neq ]. Close Scope Z_scope. Qed. @@ -60,8 +60,8 @@ Proof. - congruence. - (*rel_prime*) constructor. - * exists aa; auto with zarith. - * exists bb; auto with zarith. + * exists aa; auto using Z.mul_1_r. + * exists bb; auto using Z.mul_1_r. * intros x Ha Hb. destruct Hg1 as (Hg11,Hg12,Hg13). destruct (Hg13 (g*x)) as (x',Hx). @@ -73,8 +73,8 @@ Proof. apply Z.mul_reg_l with g; auto. rewrite Hx at 1; ring. - (* rel_prime *) constructor. - * exists cc; auto with zarith. - * exists dd; auto with zarith. + * exists cc; auto using Z.mul_1_r. + * exists dd; auto using Z.mul_1_r. * intros x Hc Hd. inversion Hg'1 as (Hg'11,Hg'12,Hg'13). destruct (Hg'13 (g'*x)) as (x',Hx). @@ -85,9 +85,9 @@ Proof. exists x'. apply Z.mul_reg_l with g'; auto. rewrite Hx at 1; ring. - apply Z.lt_gt. - rewrite <- (Z.mul_pos_cancel_l g); [now rewrite <- Hg4 | omega]. + rewrite <- (Z.mul_pos_cancel_l g); [ now rewrite <- Hg4 | apply Z.le_neq; intuition ]. - apply Z.lt_gt. - rewrite <- (Z.mul_pos_cancel_l g'); [now rewrite <- Hg'4 | omega]. + rewrite <- (Z.mul_pos_cancel_l g'); [now rewrite <- Hg'4 | apply Z.le_neq; intuition ]. - apply Z.mul_reg_l with (g*g'). * rewrite Z.mul_eq_0. now destruct 1. * rewrite Z.mul_shuffle1, <- Hg3, <- Hg'4. diff --git a/theories/QArith/Qround.v b/theories/QArith/Qround.v index af5c471d5d..8d68038582 100644 --- a/theories/QArith/Qround.v +++ b/theories/QArith/Qround.v @@ -13,7 +13,8 @@ Require Import QArith. Lemma Qopp_lt_compat: forall p q : Q, p < q -> - q < - p. Proof. intros (a1,a2) (b1,b2); unfold Qle, Qlt; simpl. -rewrite !Z.mul_opp_l; omega. +rewrite !Z.mul_opp_l. +apply Z.opp_lt_mono. Qed. Hint Resolve Qopp_lt_compat : qarith. @@ -38,7 +39,7 @@ intros z. unfold Qceiling. simpl. rewrite Zdiv_1_r. -auto with *. +apply Z.opp_involutive. Qed. Lemma Qfloor_le : forall x, Qfloor x <= x. @@ -119,7 +120,7 @@ Lemma Qceiling_resp_le : forall x y, x <= y -> (Qceiling x <= Qceiling y)%Z. Proof. intros x y Hxy. unfold Qceiling. -cut (Qfloor (-y) <= Qfloor (-x))%Z; auto with *. +rewrite <- Z.opp_le_mono; auto with qarith. Qed. Hint Resolve Qceiling_resp_le : qarith. diff --git a/theories/Reals/Rtrigo1.v b/theories/Reals/Rtrigo1.v index a760a0af6a..0df1442f46 100644 --- a/theories/Reals/Rtrigo1.v +++ b/theories/Reals/Rtrigo1.v @@ -18,6 +18,7 @@ Require Export Cos_rel. Require Export Cos_plus. Require Import ZArith_base. Require Import Zcomplements. +Import Omega. Require Import Lra. Require Import Ranalysis1. Require Import Rsqrt_def. diff --git a/theories/Structures/OrderedTypeEx.v b/theories/Structures/OrderedTypeEx.v index a8e6993a63..cc216b21f8 100644 --- a/theories/Structures/OrderedTypeEx.v +++ b/theories/Structures/OrderedTypeEx.v @@ -12,7 +12,6 @@ Require Import OrderedType. Require Import ZArith. Require Import PeanoNat. Require Import Ascii String. -Require Import Omega. Require Import NArith Ndec. Require Import Compare_dec. @@ -55,7 +54,7 @@ Module Nat_as_OT <: UsualOrderedType. Proof. unfold lt; intros; apply lt_trans with y; auto. Qed. Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y. - Proof. unfold lt, eq; intros; omega. Qed. + Proof. unfold lt, eq; intros ? ? LT ->; revert LT; apply Nat.lt_irrefl. Qed. Definition compare x y : Compare lt eq x y. Proof. @@ -85,10 +84,10 @@ Module Z_as_OT <: UsualOrderedType. Definition lt (x y:Z) := (x<y). Lemma lt_trans : forall x y z, x<y -> y<z -> x<z. - Proof. intros; omega. Qed. + Proof. exact Z.lt_trans. Qed. Lemma lt_not_eq : forall x y, x<y -> ~ x=y. - Proof. intros; omega. Qed. + Proof. intros x y LT ->; revert LT; apply Z.lt_irrefl. Qed. Definition compare x y : Compare lt eq x y. Proof. diff --git a/theories/ZArith/ZArith.v b/theories/ZArith/ZArith.v index b0744caa7b..38f9336f1b 100644 --- a/theories/ZArith/ZArith.v +++ b/theories/ZArith/ZArith.v @@ -18,6 +18,7 @@ Require Export Zpow_def. (** Extra modules using [Omega] or [Ring]. *) +Require Export Omega. Require Export Zcomplements. Require Export Zpower. Require Export Zdiv. diff --git a/theories/ZArith/Zcomplements.v b/theories/ZArith/Zcomplements.v index 73c8ec11c6..0be6f8c8de 100644 --- a/theories/ZArith/Zcomplements.v +++ b/theories/ZArith/Zcomplements.v @@ -10,7 +10,6 @@ Require Import ZArithRing. Require Import ZArith_base. -Require Export Omega. Require Import Wf_nat. Local Open Scope Z_scope. @@ -40,10 +39,19 @@ Proof. reflexivity. Qed. Lemma floor_ok : forall p:positive, floor p <= Zpos p < 2 * floor p. Proof. - unfold floor. induction p; simpl. - - rewrite !Pos2Z.inj_xI, (Pos2Z.inj_xO (xO _)), Pos2Z.inj_xO. omega. - - rewrite (Pos2Z.inj_xO (xO _)), (Pos2Z.inj_xO p), Pos2Z.inj_xO. omega. - - omega. + unfold floor. induction p as [p [IH1p IH2p]|p [IH1p IH2]|]; simpl. + - rewrite !Pos2Z.inj_xI, (Pos2Z.inj_xO (xO _)), Pos2Z.inj_xO. + split. + + apply Z.le_trans with (2 * Z.pos p); auto with zarith. + rewrite <- (Z.add_0_r (2 * Z.pos p)) at 1; auto with zarith. + + apply Z.lt_le_trans with (2 * (Z.pos p + 1)). + * rewrite Z.mul_add_distr_l, Z.mul_1_r. + apply Zplus_lt_compat_l; red; auto with zarith. + * apply Z.mul_le_mono_nonneg_l; auto with zarith. + rewrite Z.add_1_r; apply Zlt_le_succ; auto. + - rewrite (Pos2Z.inj_xO (xO _)), (Pos2Z.inj_xO p), Pos2Z.inj_xO. + split; auto with zarith. + - split; auto with zarith; red; auto. Qed. (**********************************************************************) @@ -64,9 +72,10 @@ Proof. - rewrite Z.abs_eq; auto; intros. destruct (H (Z.abs m)); auto with zarith. destruct (Zabs_dec m) as [-> | ->]; trivial. - - rewrite Z.abs_neq, Z.opp_involutive; auto with zarith; intros. - destruct (H (Z.abs m)); auto with zarith. - destruct (Zabs_dec m) as [-> | ->]; trivial. + - rewrite Z.abs_neq, Z.opp_involutive; intros. + + destruct (H (Z.abs m)); auto with zarith. + destruct (Zabs_dec m) as [-> | ->]; trivial. + + apply Z.opp_le_mono; rewrite Z.opp_involutive; auto. Qed. Theorem Z_lt_abs_induction : @@ -84,9 +93,10 @@ Proof. - rewrite Z.abs_eq; auto; intros. elim (H (Z.abs m)); intros; auto with zarith. elim (Zabs_dec m); intro eq; rewrite eq; trivial. - - rewrite Z.abs_neq, Z.opp_involutive; auto with zarith; intros. - destruct (H (Z.abs m)); auto with zarith. - destruct (Zabs_dec m) as [-> | ->]; trivial. + - rewrite Z.abs_neq, Z.opp_involutive; intros. + + destruct (H (Z.abs m)); auto with zarith. + destruct (Zabs_dec m) as [-> | ->]; trivial. + + apply Z.opp_le_mono; rewrite Z.opp_involutive; auto. Qed. (** To do case analysis over the sign of [z] *) @@ -129,7 +139,7 @@ Section Zlength_properties. clear l. induction l. auto with zarith. intros. simpl length; simpl Zlength_aux. - rewrite IHl, Nat2Z.inj_succ; auto with zarith. + rewrite IHl, Nat2Z.inj_succ, Z.add_succ_comm; auto. unfold Zlength. now rewrite H. Qed. diff --git a/theories/ZArith/Zdiv.v b/theories/ZArith/Zdiv.v index 78df9941c9..2aaab3e50e 100644 --- a/theories/ZArith/Zdiv.v +++ b/theories/ZArith/Zdiv.v @@ -14,7 +14,7 @@ (** Initial Contribution by Claude Marché and Xavier Urbain *) Require Export ZArith_base. -Require Import Zbool Omega ZArithRing Zcomplements Setoid Morphisms. +Require Import Zbool ZArithRing Zcomplements Setoid Morphisms. Local Open Scope Z_scope. (** The definition of the division is now in [BinIntDef], the initial @@ -67,7 +67,12 @@ Definition Remainder_alt r b := Z.abs r < Z.abs b /\ Z.sgn r <> - Z.sgn b. Lemma Remainder_equiv : forall r b, Remainder r b <-> Remainder_alt r b. Proof. - intros; unfold Remainder, Remainder_alt; omega with *. + unfold Remainder, Remainder_alt. + intros [ | r | r ] [ | b | b ]; intuition try easy. + - now apply Z.opp_lt_mono. + - right; split. + + now apply Z.opp_lt_mono. + + apply Pos2Z.neg_is_nonpos. Qed. Hint Unfold Remainder : core. @@ -104,7 +109,7 @@ Proof (Z.mod_neg_bound a b). Lemma Z_div_mod_eq a b : b > 0 -> a = b*(a/b) + (a mod b). Proof. - intros Hb; apply Z.div_mod; auto with zarith. + intros Hb; apply Z.div_mod; now intros ->. Qed. Lemma Zmod_eq_full a b : b<>0 -> a mod b = a - (a/b)*b. @@ -224,18 +229,25 @@ Proof Z.div_mul. (* Division of positive numbers is positive. *) Lemma Z_div_pos: forall a b, b > 0 -> 0 <= a -> 0 <= a/b. -Proof. intros. apply Z.div_pos; auto with zarith. Qed. +Proof. intros. apply Z.div_pos; auto using Z.gt_lt. Qed. Lemma Z_div_ge0: forall a b, b > 0 -> a >= 0 -> a/b >=0. Proof. - intros; generalize (Z_div_pos a b H); auto with zarith. + intros; apply Z.le_ge, Z_div_pos; auto using Z.ge_le. Qed. (** As soon as the divisor is greater or equal than 2, the division is strictly decreasing. *) Lemma Z_div_lt : forall a b:Z, b >= 2 -> a > 0 -> a/b < a. -Proof. intros. apply Z.div_lt; auto with zarith. Qed. +Proof. + intros a b b_ge_2 a_gt_0. + apply Z.div_lt. + - apply Z.gt_lt; exact a_gt_0. + - apply (Z.lt_le_trans _ 2). + + reflexivity. + + apply Z.ge_le; exact b_ge_2. +Qed. (** A division of a small number by a bigger one yields zero. *) @@ -250,17 +262,17 @@ Proof Z.mod_small. (** [Z.ge] is compatible with a positive division. *) Lemma Z_div_ge : forall a b c:Z, c > 0 -> a >= b -> a/c >= b/c. -Proof. intros. apply Z.le_ge. apply Z.div_le_mono; auto with zarith. Qed. +Proof. intros. apply Z.le_ge. apply Z.div_le_mono; auto using Z.gt_lt, Z.ge_le. Qed. (** Same, with [Z.le]. *) Lemma Z_div_le : forall a b c:Z, c > 0 -> a <= b -> a/c <= b/c. -Proof. intros. apply Z.div_le_mono; auto with zarith. Qed. +Proof. intros. apply Z.div_le_mono; auto using Z.gt_lt. Qed. (** With our choice of division, rounding of (a/b) is always done toward bottom: *) Lemma Z_mult_div_ge : forall a b:Z, b > 0 -> b*(a/b) <= a. -Proof. intros. apply Z.mul_div_le; auto with zarith. Qed. +Proof. intros. apply Z.mul_div_le; auto using Z.gt_lt. Qed. Lemma Z_mult_div_ge_neg : forall a b:Z, b < 0 -> b*(a/b) >= a. Proof. intros. apply Z.le_ge. apply Z.mul_div_ge; auto with zarith. Qed. @@ -296,14 +308,18 @@ Proof. intros a b q; rewrite Z.mul_comm; apply Z.div_le_lower_bound. Qed. Lemma Zdiv_le_compat_l: forall p q r, 0 <= p -> 0 < q < r -> p / r <= p / q. -Proof. intros; apply Z.div_le_compat_l; auto with zarith. Qed. +Proof. intros; apply Z.div_le_compat_l; intuition auto using Z.lt_le_incl. Qed. Theorem Zdiv_sgn: forall a b, 0 <= Z.sgn (a/b) * Z.sgn a * Z.sgn b. Proof. destruct a as [ |a|a]; destruct b as [ |b|b]; simpl; auto with zarith; generalize (Z.div_pos (Zpos a) (Zpos b)); unfold Z.div, Z.div_eucl; - destruct Z.pos_div_eucl as (q,r); destruct r; omega with *. + destruct Z.pos_div_eucl as (q,r); destruct r; + rewrite ?Z.mul_1_r, <-?Z.opp_eq_mul_m1, ?Z.sgn_opp, ?Z.opp_involutive; + match goal with [|- (_ -> _ -> ?P) -> _] => + intros HH; assert (HH1 : P); auto with zarith + end; apply Z.sgn_nonneg; auto with zarith. Qed. (** * Relations between usual operations and Z.modulo and Z.div *) @@ -346,14 +362,14 @@ Proof. intros. zero_or_not b. apply Z.div_opp_l_z; auto. Qed. Lemma Z_div_nz_opp_full : forall a b:Z, a mod b <> 0 -> (-a)/b = -(a/b)-1. -Proof. intros a b. zero_or_not b. intros; rewrite Z.div_opp_l_nz; auto. Qed. +Proof. intros a b. zero_or_not b. easy. intros; rewrite Z.div_opp_l_nz; auto. Qed. Lemma Z_div_zero_opp_r : forall a b:Z, a mod b = 0 -> a/(-b) = -(a/b). Proof. intros. zero_or_not b. apply Z.div_opp_r_z; auto. Qed. Lemma Z_div_nz_opp_r : forall a b:Z, a mod b <> 0 -> a/(-b) = -(a/b)-1. -Proof. intros a b. zero_or_not b. intros; rewrite Z.div_opp_r_nz; auto. Qed. +Proof. intros a b. zero_or_not b. easy. intros; rewrite Z.div_opp_r_nz; auto. Qed. (** Cancellations. *) @@ -372,14 +388,16 @@ Lemma Zmult_mod_distr_l: forall a b c, (c*a) mod (c*b) = c * (a mod b). Proof. intros. zero_or_not c. rewrite (Z.mul_comm c b); zero_or_not b. - rewrite (Z.mul_comm b c). apply Z.mul_mod_distr_l; auto. + + now rewrite Z.mul_0_r. + + rewrite (Z.mul_comm b c). apply Z.mul_mod_distr_l; auto. Qed. Lemma Zmult_mod_distr_r: forall a b c, (a*c) mod (b*c) = (a mod b) * c. Proof. intros. zero_or_not b. rewrite (Z.mul_comm b c); zero_or_not c. - rewrite (Z.mul_comm c b). apply Z.mul_mod_distr_r; auto. + + now rewrite Z.mul_0_r. + + rewrite (Z.mul_comm c b). apply Z.mul_mod_distr_r; auto. Qed. (** Operations modulo. *) @@ -456,7 +474,7 @@ Proof. unfold eqm; auto. Qed. Lemma eqm_trans : forall a b c, a == b -> b == c -> a == c. -Proof. unfold eqm; eauto with *. Qed. +Proof. now unfold eqm; intros a b c ->. Qed. Instance eqm_setoid : Equivalence eqm. Proof. @@ -501,7 +519,8 @@ End EqualityModulo. Lemma Zdiv_Zdiv : forall a b c, 0<=b -> 0<=c -> (a/b)/c = a/(b*c). Proof. intros. zero_or_not b. rewrite Z.mul_comm. zero_or_not c. - rewrite Z.mul_comm. apply Z.div_div; auto with zarith. + rewrite Z.mul_comm. apply Z.div_div; auto. + apply Z.le_neq; auto. Qed. (** Unfortunately, the previous result isn't always true on negative numbers. @@ -519,7 +538,10 @@ Qed. Theorem Zdiv_mult_le: forall a b c, 0<=a -> 0<=b -> 0<=c -> c*(a/b) <= (c*a)/b. Proof. - intros. zero_or_not b. apply Z.div_mul_le; auto with zarith. Qed. + intros. zero_or_not b. now rewrite Z.mul_0_r. + apply Z.div_mul_le; auto. + apply Z.le_neq; auto. +Qed. (** Z.modulo is related to divisibility (see more in Znumtheory) *) @@ -566,17 +588,17 @@ Qed. Lemma Z_div_same : forall a, a > 0 -> a/a = 1. Proof. - intros; apply Z_div_same_full; auto with zarith. + now intros; apply Z_div_same_full; intros ->. Qed. Lemma Z_div_plus : forall a b c:Z, c > 0 -> (a + b * c) / c = a / c + b. Proof. - intros; apply Z_div_plus_full; auto with zarith. + now intros; apply Z_div_plus_full; intros ->. Qed. Lemma Z_div_mult : forall a b:Z, b > 0 -> (a*b)/b = a. Proof. - intros; apply Z_div_mult_full; auto with zarith. + now intros; apply Z_div_mult_full; intros ->. Qed. Lemma Z_mod_plus : forall a b c:Z, c > 0 -> (a + b * c) mod c = a mod c. @@ -591,7 +613,7 @@ Qed. Lemma Z_div_exact_2 : forall a b:Z, b > 0 -> a mod b = 0 -> a = b*(a/b). Proof. - intros; apply Z_div_exact_full_2; auto with zarith. + now intros; apply Z_div_exact_full_2; auto; intros ->. Qed. Lemma Z_mod_zero_opp : forall a b:Z, b > 0 -> a mod b = 0 -> (-a) mod b = 0. @@ -673,14 +695,15 @@ Theorem Zdiv_eucl_extended : Proof. intros b Hb a. destruct (Z_le_gt_dec 0 b) as [Hb'|Hb']. - - assert (Hb'' : b > 0) by omega. + - assert (Hb'' : b > 0) by (apply Z.lt_gt, Z.le_neq; auto). rewrite Z.abs_eq; [ apply Zdiv_eucl_exist; assumption | assumption ]. - - assert (Hb'' : - b > 0) by omega. + - assert (Hb'' : - b > 0). + { now apply Z.lt_gt, Z.opp_lt_mono; rewrite Z.opp_involutive; apply Z.gt_lt. } destruct (Zdiv_eucl_exist Hb'' a) as ((q,r),[]). exists (- q, r). split. + rewrite <- Z.mul_opp_comm; assumption. - + rewrite Z.abs_neq; [ assumption | omega ]. + + rewrite Z.abs_neq; [ assumption | apply Z.lt_le_incl, Z.gt_lt; auto ]. Qed. Arguments Zdiv_eucl_extended : default implicits. diff --git a/theories/ZArith/Znumtheory.v b/theories/ZArith/Znumtheory.v index 5d1a13ff6c..01365135c5 100644 --- a/theories/ZArith/Znumtheory.v +++ b/theories/ZArith/Znumtheory.v @@ -117,17 +117,23 @@ Proof. right. now rewrite <- Z.mod_divide. Defined. +Lemma Z_lt_neq {x y: Z} : x < y -> y <> x. +Proof. auto using Z.lt_neq, Z.neq_sym. Qed. + Theorem Zdivide_Zdiv_eq a b : 0 < a -> (a | b) -> b = a * (b / a). Proof. intros Ha H. - rewrite (Z.div_mod b a) at 1; auto with zarith. - rewrite Zdivide_mod; auto with zarith. + rewrite (Z.div_mod b a) at 1. + + rewrite Zdivide_mod; auto with zarith. + + auto using Z_lt_neq. Qed. Theorem Zdivide_Zdiv_eq_2 a b c : 0 < a -> (a | b) -> (c * b) / a = c * (b / a). Proof. - intros. apply Z.divide_div_mul_exact; auto with zarith. + intros. apply Z.divide_div_mul_exact. + + now apply Z_lt_neq. + + auto with zarith. Qed. Theorem Zdivide_le: forall a b : Z, @@ -139,28 +145,30 @@ Qed. Theorem Zdivide_Zdiv_lt_pos a b : 1 < a -> 0 < b -> (a | b) -> 0 < b / a < b . Proof. - intros H1 H2 H3; split. - apply Z.mul_pos_cancel_l with a; auto with zarith. - rewrite <- Zdivide_Zdiv_eq; auto with zarith. - now apply Z.div_lt. + intros H1 H2 H3. + assert (0 < a) by (now transitivity 1). + split. + + apply Z.mul_pos_cancel_l with a; auto. + rewrite <- Zdivide_Zdiv_eq; auto. + + now apply Z.div_lt. Qed. Lemma Zmod_div_mod n m a: 0 < n -> 0 < m -> (n | m) -> a mod n = (a mod m) mod n. -Proof. +Proof with auto using Z_lt_neq. intros H1 H2 (p,Hp). - rewrite (Z.div_mod a m) at 1; auto with zarith. + rewrite (Z.div_mod a m) at 1... rewrite Hp at 1. - rewrite Z.mul_shuffle0, Z.add_comm, Z.mod_add; auto with zarith. + rewrite Z.mul_shuffle0, Z.add_comm, Z.mod_add... Qed. Lemma Zmod_divide_minus a b c: 0 < b -> a mod b = c -> (b | a - c). -Proof. - intros H H1. apply Z.mod_divide; auto with zarith. - rewrite Zminus_mod; auto with zarith. +Proof with auto using Z_lt_neq. + intros H H1. apply Z.mod_divide... + rewrite Zminus_mod. rewrite H1. rewrite <- (Z.mod_small c b) at 1. - rewrite Z.sub_diag, Z.mod_0_l; auto with zarith. + rewrite Z.sub_diag, Z.mod_0_l... subst. now apply Z.mod_pos_bound. Qed. @@ -169,10 +177,11 @@ Lemma Zdivide_mod_minus a b c: Proof. intros (H1, H2) H3. assert (0 < b) by Z.order. - replace a with ((a - c) + c); auto with zarith. - rewrite Z.add_mod; auto with zarith. - rewrite (Zdivide_mod (a-c) b); try rewrite Z.add_0_l; auto with zarith. - rewrite Z.mod_mod; try apply Zmod_small; auto with zarith. + assert (b <> 0) by now apply Z_lt_neq. + replace a with ((a - c) + c) by ring. + rewrite Z.add_mod; auto. + rewrite (Zdivide_mod (a-c) b); try rewrite Z.add_0_l; auto. + rewrite Z.mod_mod; try apply Zmod_small; auto. Qed. (** * Greatest common divisor (gcd). *) @@ -300,8 +309,9 @@ Section extended_euclid_algorithm. set (q := u3 / x) in *. assert (Hq : 0 <= u3 - q * x < x). replace (u3 - q * x) with (u3 mod x). - apply Z_mod_lt; omega. - assert (xpos : x > 0). omega. + apply Z_mod_lt. + apply Z.lt_gt, Z.le_neq; auto. + assert (xpos : x > 0) by (apply Z.lt_gt, Z.le_neq; auto). generalize (Z_div_mod_eq u3 x xpos). unfold q. intro eq; pattern u3 at 2; rewrite eq; ring. @@ -325,11 +335,13 @@ Section extended_euclid_algorithm. intros; apply euclid_rec with (u1 := 1) (u2 := 0) (u3 := a) (v1 := 0) (v2 := 1) (v3 := b); - auto with zarith; ring. + auto; ring. intros; apply euclid_rec with (u1 := 1) (u2 := 0) (u3 := a) (v1 := 0) (v2 := -1) (v3 := - b); - auto with zarith; try ring. + auto; try ring. + now apply Z.opp_nonneg_nonpos, Z.lt_le_incl, Z.gt_lt. + auto with zarith. Qed. End extended_euclid_algorithm. @@ -433,22 +445,24 @@ Lemma rel_prime_cross_prod : rel_prime a b -> rel_prime c d -> b > 0 -> d > 0 -> a * d = b * c -> a = c /\ b = d. Proof. - intros a b c d; intros. + intros a b c d; intros H H0 H1 H2 H3. elim (Z.divide_antisym b d). - split; auto with zarith. - rewrite H4 in H3. - rewrite Z.mul_comm in H3. - apply Z.mul_reg_l with d; auto with zarith. - intros; omega. - apply Gauss with a. - rewrite H3. - auto with zarith. - red; auto with zarith. - apply Gauss with c. - rewrite Z.mul_comm. - rewrite <- H3. - auto with zarith. - red; auto with zarith. + - split; auto with zarith. + rewrite H4 in H3. + rewrite Z.mul_comm in H3. + apply Z.mul_reg_l with d; auto. + contradict H2; rewrite H2; discriminate. + - intros H4; contradict H1; rewrite H4. + apply Zgt_asym, Z.lt_gt, Z.opp_lt_mono. + now rewrite Z.opp_involutive; apply Z.gt_lt. + - apply Gauss with a. + + rewrite H3; auto with zarith. + + now apply Zis_gcd_sym. + - apply Gauss with c. + + rewrite Z.mul_comm. + rewrite <- H3. + auto with zarith. + + now apply Zis_gcd_sym. Qed. (** After factorization by a gcd, the original numbers are relatively prime. *) @@ -457,32 +471,35 @@ Lemma Zis_gcd_rel_prime : forall a b g:Z, b > 0 -> g >= 0 -> Zis_gcd a b g -> rel_prime (a / g) (b / g). Proof. - intros a b g; intros. - assert (g <> 0). - intro. - elim H1; intros. - elim H4; intros. - rewrite H2 in H6; subst b; omega. + intros a b g; intros H H0 H1. + assert (H2 : g <> 0) by + (intro; + elim H1; intros; + elim H4; intros; + rewrite H2 in H6; subst b; + contradict H; rewrite Z.mul_0_r; discriminate). + assert (H3 : g > 0) by + (apply Z.lt_gt, Z.le_neq; split; try apply Z.ge_le; auto). unfold rel_prime. - destruct H1. - destruct H1 as (a',H1). - destruct H3 as (b',H3). + destruct H1 as [Ha Hb Hab]. + destruct Ha as [a' Ha']. + destruct Hb as [b' Hb']. replace (a/g) with a'; - [|rewrite H1; rewrite Z_div_mult; auto with zarith]. + [|rewrite Ha'; rewrite Z_div_mult; auto with zarith]. replace (b/g) with b'; - [|rewrite H3; rewrite Z_div_mult; auto with zarith]. + [|rewrite Hb'; rewrite Z_div_mult; auto with zarith]. constructor. - exists a'; auto with zarith. - exists b'; auto with zarith. - intros x (xa,H5) (xb,H6). - destruct (H4 (x*g)) as (x',Hx'). - exists xa; rewrite Z.mul_assoc; rewrite <- H5; auto. - exists xb; rewrite Z.mul_assoc; rewrite <- H6; auto. - replace g with (1*g) in Hx'; auto with zarith. - do 2 rewrite Z.mul_assoc in Hx'. - apply Z.mul_reg_r in Hx'; trivial. - rewrite Z.mul_1_r in Hx'. - exists x'; auto with zarith. + - exists a'; rewrite ?Z.mul_1_r; auto with zarith. + - exists b'; rewrite ?Z.mul_1_r; auto with zarith. + - intros x (xa,H5) (xb,H6). + destruct (Hab (x*g)) as (x',Hx'). + exists xa; rewrite Z.mul_assoc; rewrite <- H5; auto. + exists xb; rewrite Z.mul_assoc; rewrite <- H6; auto. + replace g with (1*g) in Hx'; auto with zarith. + do 2 rewrite Z.mul_assoc in Hx'. + apply Z.mul_reg_r in Hx'; trivial. + rewrite Z.mul_1_r in Hx'. + exists x'; auto with zarith. Qed. Theorem rel_prime_sym: forall a b, rel_prime a b -> rel_prime b a. @@ -504,18 +521,18 @@ Qed. Theorem rel_prime_1: forall n, rel_prime 1 n. Proof. intros n; red; apply Zis_gcd_intro; auto. - exists 1; auto with zarith. - exists n; auto with zarith. + exists 1; reflexivity. + exists n; rewrite Z.mul_1_r; reflexivity. Qed. Theorem not_rel_prime_0: forall n, 1 < n -> ~ rel_prime 0 n. Proof. intros n H H1; absurd (n = 1 \/ n = -1). - intros [H2 | H2]; subst; contradict H; auto with zarith. + intros [H2 | H2]; subst; contradict H; discriminate. case (Zis_gcd_unique 0 n n 1); auto. apply Zis_gcd_intro; auto. - exists 0; auto with zarith. - exists 1; auto with zarith. + exists 0; reflexivity. + exists 1; rewrite Z.mul_1_l; reflexivity. Qed. Theorem rel_prime_mod: forall p q, 0 < q -> @@ -528,15 +545,16 @@ Proof. apply bezout_rel_prime. apply Bezout_intro with q1 (r1 + q1 * (p / q)). rewrite <- H2. - pattern p at 3; rewrite (Z_div_mod_eq p q); try ring; auto with zarith. + pattern p at 3; rewrite (Z_div_mod_eq p q); try ring. + now apply Z.lt_gt. Qed. Theorem rel_prime_mod_rev: forall p q, 0 < q -> rel_prime (p mod q) q -> rel_prime p q. Proof. intros p q H H0. - rewrite (Z_div_mod_eq p q); auto with zarith; red. - apply Zis_gcd_sym; apply Zis_gcd_for_euclid2; auto with zarith. + rewrite (Z_div_mod_eq p q) by now apply Z.lt_gt. red. + apply Zis_gcd_sym; apply Zis_gcd_for_euclid2; auto. Qed. Theorem Zrel_prime_neq_mod_0: forall a b, 1 < b -> rel_prime a b -> a mod b <> 0. @@ -544,7 +562,8 @@ Proof. intros a b H H1 H2. case (not_rel_prime_0 _ H). rewrite <- H2. - apply rel_prime_mod; auto with zarith. + apply rel_prime_mod; auto. + now transitivity 1. Qed. (** * Primality *) @@ -563,25 +582,56 @@ Proof. assert (a = - p \/ - p < a < -1 \/ a = -1 \/ a = 0 \/ a = 1 \/ 1 < a < p \/ a = p). { assert (Z.abs a <= Z.abs p) as H2. - apply Zdivide_bounds; [ assumption | omega ]. + apply Zdivide_bounds; [ assumption | now intros -> ]. revert H2. pattern (Z.abs a); apply Zabs_ind; pattern (Z.abs p); apply Zabs_ind; - intros; omega. } + intros H2 H3 H4. + - destruct (Zle_lt_or_eq _ _ H4) as [H5 | H5]; try intuition. + destruct (Zle_lt_or_eq _ _ (Z.ge_le _ _ H3)) as [H6 | H6]; try intuition. + destruct (Zle_lt_or_eq _ _ (Zlt_le_succ _ _ H6)) as [H7 | H7]; intuition. + - contradict H2; apply Zlt_not_le; apply Z.lt_trans with (2 := H); red; auto. + - destruct (Zle_lt_or_eq _ _ H4) as [H5 | H5]. + + destruct (Zle_lt_or_eq _ _ H3) as [H6 | H6]; try intuition. + assert (H7 : a <= Z.pred 0) by (apply Z.lt_le_pred; auto). + destruct (Zle_lt_or_eq _ _ H7) as [H8 | H8]; intuition. + assert (- p < a < -1); try intuition. + now apply Z.opp_lt_mono; rewrite Z.opp_involutive. + + now left; rewrite <- H5, Z.opp_involutive. + - contradict H2. + apply Zlt_not_le; apply Z.lt_trans with (2 := H); red; auto. + } intuition idtac. (* -p < a < -1 *) - - absurd (rel_prime (- a) p); intuition. - inversion H2. - assert (- a | - a) by auto with zarith. - assert (- a | p) by auto with zarith. - apply H7, Z.divide_1_r in H8; intuition. + - absurd (rel_prime (- a) p). + + intros [H1p H2p H3p]. + assert (- a | - a) by auto with zarith. + assert (- a | p) by auto with zarith. + apply H3p, Z.divide_1_r in H5; auto with zarith. + destruct H5. + * contradict H4; rewrite <- (Z.opp_involutive a), H5 . + apply Z.lt_irrefl. + * contradict H4; rewrite <- (Z.opp_involutive a), H5 . + discriminate. + + apply H0; split. + * now apply Z.opp_le_mono; rewrite Z.opp_involutive; apply Z.lt_le_incl. + * now apply Z.opp_lt_mono; rewrite Z.opp_involutive. (* a = 0 *) - - inversion H1. subst a; omega. + - contradict H. + replace p with 0; try discriminate. + now apply sym_equal, Z.divide_0_l; rewrite <-H2. (* 1 < a < p *) - - absurd (rel_prime a p); intuition. - inversion H2. - assert (a | a) by auto with zarith. - assert (a | p) by auto with zarith. - apply H7, Z.divide_1_r in H8; intuition. + - absurd (rel_prime a p). + + intros [H1p H2p H3p]. + assert (a | a) by auto with zarith. + assert (a | p) by auto with zarith. + apply H3p, Z.divide_1_r in H5; auto with zarith. + destruct H5. + * contradict H3; rewrite <- (Z.opp_involutive a), H5 . + apply Z.lt_irrefl. + * contradict H3; rewrite <- (Z.opp_involutive a), H5 . + discriminate. + + apply H0; split; auto. + now apply Z.lt_le_incl. Qed. (** A prime number is relatively prime with any number it does not divide *) @@ -605,12 +655,17 @@ Proof. intros a p Hp [H1 H2]. apply rel_prime_sym; apply prime_rel_prime; auto. intros [q Hq]; subst a. - case (Z.le_gt_cases q 0); intros Hl. - absurd (q * p <= 0 * p); auto with zarith. - absurd (1 * p <= q * p); auto with zarith. + destruct Hp as [H3 H4]. + contradict H2; apply Zle_not_lt. + rewrite <- (Z.mul_1_l p) at 1. + apply Zmult_le_compat_r. + - apply (Zlt_le_succ 0). + apply Zmult_lt_0_reg_r with p. + + apply Z.le_succ_l, Z.lt_le_incl; auto. + + now apply Z.le_succ_l. + - apply Z.lt_le_incl, Z.le_succ_l, Z.lt_le_incl; auto. Qed. - (** If a prime [p] divides [ab] then it divides either [a] or [b] *) Lemma prime_mult : @@ -623,38 +678,44 @@ Qed. Lemma not_prime_0: ~ prime 0. Proof. - intros H1; case (prime_divisors _ H1 2); auto with zarith. + intros H1; case (prime_divisors _ H1 2); auto with zarith; intuition; discriminate. Qed. Lemma not_prime_1: ~ prime 1. Proof. - intros H1; absurd (1 < 1); auto with zarith. + intros H1; absurd (1 < 1). discriminate. inversion H1; auto. Qed. Lemma prime_2: prime 2. Proof. - apply prime_intro; auto with zarith. - intros n (H,H'); Z.le_elim H; auto with zarith. - - contradict H'; auto with zarith. - - subst n. constructor; auto with zarith. + apply prime_intro. + - red; auto. + - intros n (H,H'); Z.le_elim H; auto with zarith. + + contradict H'; auto with zarith. + now apply Zle_not_lt, (Zlt_le_succ 1). + + subst n. constructor; auto with zarith. Qed. Theorem prime_3: prime 3. Proof. apply prime_intro; auto with zarith. - intros n (H,H'); Z.le_elim H; auto with zarith. - - replace n with 2 by omega. - constructor; auto with zarith. - intros x (q,Hq) (q',Hq'). - exists (q' - q). ring_simplify. now rewrite <- Hq, <- Hq'. - - replace n with 1 by trivial. - constructor; auto with zarith. + - red; auto. + - intros n (H,H'); Z.le_elim H; auto with zarith. + + replace n with 2. + * constructor; auto with zarith. + intros x (q,Hq) (q',Hq'). + exists (q' - q). ring_simplify. now rewrite <- Hq, <- Hq'. + * apply Z.le_antisymm. + ++ now apply (Zlt_le_succ 1). + ++ now apply (Z.lt_le_pred _ 3). + + replace n with 1 by trivial. + constructor; auto with zarith. Qed. Theorem prime_ge_2 p : prime p -> 2 <= p. Proof. - intros (Hp,_); auto with zarith. + now intros (Hp,_); apply (Zlt_le_succ 1). Qed. Definition prime' p := 1<p /\ (forall n, 1<n<p -> ~ (n|p)). @@ -675,17 +736,24 @@ Proof. assert (Hx := Z.abs_nonneg x). set (y:=Z.abs x) in *; clearbody y; clear x; rename y into x. destruct (Z_0_1_more x Hx) as [->|[->|Hx']]. - + exfalso. apply Z.divide_0_l in Hxn. omega. + + exfalso. apply Z.divide_0_l in Hxn. + absurd (1 <= n). + * rewrite Hxn; red; auto. + * intuition. + now exists 1. + elim (H x); auto. split; trivial. - apply Z.le_lt_trans with n; auto with zarith. + apply Z.le_lt_trans with n; try intuition. apply Z.divide_pos_le; auto with zarith. + apply Z.lt_le_trans with (2 := H0); red; auto. - (* prime' -> prime *) constructor; trivial. intros n Hn Hnp. - case (Zis_gcd_unique n p n 1); auto with zarith. - constructor; auto with zarith. - apply H; auto with zarith. + case (Zis_gcd_unique n p n 1). + + constructor; auto with zarith. + + apply H; auto with zarith. + now intuition; apply Z.lt_le_incl. + + intros H1; intuition; subst n; discriminate. + + intros H1; intuition; subst n; discriminate. Qed. Theorem square_not_prime: forall a, ~ prime (a * a). @@ -698,7 +766,9 @@ Proof. assert (H' : 1 < a) by now apply (Z.square_lt_simpl_nonneg 1). apply (Ha' a). + split; trivial. - rewrite <- (Z.mul_1_l a) at 1. apply Z.mul_lt_mono_pos_r; omega. + rewrite <- (Z.mul_1_l a) at 1. + apply Z.mul_lt_mono_pos_r; auto. + apply Z.lt_trans with (2 := H'); red; auto. + exists a; auto. Qed. @@ -709,10 +779,11 @@ Proof. assert (Hp: 0 < p); try apply Z.lt_le_trans with 2; try apply prime_ge_2; auto with zarith. assert (Hq: 0 < q); try apply Z.lt_le_trans with 2; try apply prime_ge_2; auto with zarith. case prime_divisors with (2 := H2); auto. - intros H4; contradict Hp; subst; auto with zarith. - intros [H4| [H4 | H4]]; subst; auto. - contradict H; auto; apply not_prime_1. - contradict Hp; auto with zarith. + - intros H4; contradict Hp; subst; discriminate. + - intros [H4| [H4 | H4]]; subst; auto. + + contradict H; auto; apply not_prime_1. + + contradict Hp; apply Zle_not_lt, (Z.opp_le_mono _ 0). + now rewrite Z.opp_involutive; apply Z.lt_le_incl. Qed. (** we now prove that [Z.gcd] is indeed a gcd in @@ -748,6 +819,9 @@ Proof. apply Zgcd_is_gcd; auto. Z.le_elim H1. - generalize (Z.gcd_nonneg a b); auto with zarith. + intros H3 H4; contradict H3. + rewrite <- (Z.opp_involutive (Z.gcd a b)), <- H4. + now apply Zlt_not_le, Z.opp_lt_mono; rewrite Z.opp_involutive. - subst. now case (Z.gcd a b). Qed. @@ -801,7 +875,8 @@ Proof. case (Zis_gcd_unique a b (Z.gcd a b) 1); auto. apply Zgcd_is_gcd. intros H2; absurd (0 <= Z.gcd a b); auto with zarith. - generalize (Z.gcd_nonneg a b); auto with zarith. + - rewrite H2; red; auto. + - generalize (Z.gcd_nonneg a b); auto with zarith. Qed. Definition rel_prime_dec: forall a b, @@ -819,18 +894,25 @@ Definition prime_dec_aux: Proof. intros p m. case (Z_lt_dec 1 m); intros H1; - [ | left; intros; exfalso; omega ]. + [ | left; intros; exfalso; + contradict H1; apply Z.lt_trans with n; intuition]. pattern m; apply natlike_rec; auto with zarith. - left; intros; exfalso; omega. - intros x Hx IH; destruct IH as [F|E]. - destruct (rel_prime_dec x p) as [Y|N]. - left; intros n [HH1 HH2]. - rewrite Z.lt_succ_r in HH2. - Z.le_elim HH2; subst; auto with zarith. - - case (Z_lt_dec 1 x); intros HH1. - * right; exists x; split; auto with zarith. - * left; intros n [HHH1 HHH2]; contradict HHH1; auto with zarith. - - right; destruct E as (n,((H0,H2),H3)); exists n; auto with zarith. + - left; intros; exfalso. + absurd (1 < 0); try discriminate. + apply Z.lt_trans with n; intuition. + - intros x Hx IH; destruct IH as [F|E]. + + destruct (rel_prime_dec x p) as [Y|N]. + * left; intros n [HH1 HH2]. + rewrite Z.lt_succ_r in HH2. + Z.le_elim HH2; subst; auto with zarith. + * case (Z_lt_dec 1 x); intros HH1. + -- right; exists x; split; auto with zarith. + -- left; intros n [HHH1 HHH2]; contradict HHH1; auto with zarith. + apply Zle_not_lt; apply Z.le_trans with x. + ++ now apply Zlt_succ_le. + ++ now apply Znot_gt_le; contradict HH1; apply Z.gt_lt. + + right; destruct E as (n,((H0,H2),H3)); exists n; auto with zarith. + - apply Z.le_trans with (2 := Z.lt_le_incl _ _ H1); discriminate. Defined. Definition prime_dec: forall p, { prime p }+{ ~ prime p }. @@ -842,6 +924,7 @@ Proof. constructor; auto with zarith. * right; intros H3; inversion_clear H3 as [Hp1 Hp2]. case H2; intros n [Hn1 Hn2]; case Hn2; auto with zarith. + now apply Hp2; intuition; apply Z.lt_le_incl. + right; intros H3; inversion_clear H3 as [Hp1 Hp2]; case H1; auto. Defined. @@ -856,10 +939,15 @@ Proof. subst n; constructor; auto with zarith. - case H1; intros n (Hn1,Hn2). destruct (Z_0_1_more _ (Z.gcd_nonneg n p)) as [H|[H|H]]. - + exfalso. apply Z.gcd_eq_0_l in H. omega. + + exfalso. apply Z.gcd_eq_0_l in H. + absurd (1 < n). + * rewrite H; discriminate. + * now intuition. + elim Hn2. red. rewrite <- H. apply Zgcd_is_gcd. + exists (Z.gcd n p); split; [ split; auto | apply Z.gcd_divide_r ]. apply Z.le_lt_trans with n; auto with zarith. - apply Z.divide_pos_le; auto with zarith. - apply Z.gcd_divide_l. + * apply Z.divide_pos_le; auto with zarith. + -- apply Z.lt_trans with 1; intuition. + -- apply Z.gcd_divide_l. + * intuition. Qed. diff --git a/theories/ZArith/Zpow_facts.v b/theories/ZArith/Zpow_facts.v index 66e246616f..e65eb7cdc7 100644 --- a/theories/ZArith/Zpow_facts.v +++ b/theories/ZArith/Zpow_facts.v @@ -8,7 +8,7 @@ (* * (see LICENSE file for the text of the license) *) (************************************************************************) -Require Import ZArith_base ZArithRing Zcomplements Zdiv Znumtheory. +Require Import ZArith_base ZArithRing Omega Zcomplements Zdiv Znumtheory. Require Export Zpower. Local Open Scope Z_scope. diff --git a/theories/ZArith/Zpower.v b/theories/ZArith/Zpower.v index f80d075b67..da8a9402dd 100644 --- a/theories/ZArith/Zpower.v +++ b/theories/ZArith/Zpower.v @@ -8,7 +8,7 @@ (* * (see LICENSE file for the text of the license) *) (************************************************************************) -Require Import Wf_nat ZArith_base Omega Zcomplements. +Require Import Wf_nat ZArith_base Zcomplements. Require Export Zpow_def. Local Open Scope Z_scope. @@ -220,7 +220,8 @@ Section Powers_of_2. Lemma two_p_pred x : 0 <= x -> two_p (Z.pred x) < two_p x. Proof. - rewrite !two_p_equiv. intros. apply Z.pow_lt_mono_r; auto with zarith. + rewrite !two_p_equiv. intros. apply Z.pow_lt_mono_r; auto using Z.lt_pred_l. + reflexivity. Qed. End Powers_of_2. @@ -265,17 +266,45 @@ Section power_div_with_rest. let '(q,r,d) := Pos.iter Zdiv_rest_aux (x, 0, 1) p in x = q * d + r /\ 0 <= r < d. Proof. - apply Pos.iter_invariant; [|omega]. - intros ((q,r),d) (H,H'). unfold Zdiv_rest_aux. - destruct q as [ |[q|q| ]|[q|q| ]]; try omega. + apply Pos.iter_invariant; [|rewrite Z.mul_1_r, Z.add_0_r; repeat split; auto; discriminate]. + intros ((q,r),d) (H,(H1',H2')). unfold Zdiv_rest_aux. + assert (H1 : 0 < d) by now apply Z.le_lt_trans with (1 := H1'). + assert (H2 : 0 <= d + r) by now apply Z.add_nonneg_nonneg; auto; apply Z.lt_le_incl. + assert (H3 : d + r < 2 * d) + by now rewrite <-Z.add_diag; apply Zplus_lt_compat_l. + assert (H4 : r < 2 * d) by now + apply Z.lt_le_trans with (1 * d); [ + rewrite Z.mul_1_l; auto | + apply Zmult_le_compat_r; try discriminate; + now apply Z.lt_le_incl]. + destruct q as [ |[q|q| ]|[q|q| ]]. + - repeat split; auto. - rewrite Pos2Z.inj_xI, Z.mul_add_distr_r in H. - rewrite Z.mul_shuffle3, Z.mul_assoc. omega. + rewrite Z.mul_shuffle3, Z.mul_assoc. + rewrite Z.mul_1_l in H; rewrite Z.add_assoc. + repeat split; auto with zarith. - rewrite Pos2Z.inj_xO in H. - rewrite Z.mul_shuffle3, Z.mul_assoc. omega. + rewrite Z.mul_shuffle3, Z.mul_assoc. + repeat split; auto. + - rewrite Z.mul_1_l in H; repeat split; auto. - rewrite Pos2Z.neg_xI, Z.mul_sub_distr_r in H. - rewrite Z.mul_sub_distr_r, Z.mul_shuffle3, Z.mul_assoc. omega. + rewrite Z.mul_sub_distr_r, Z.mul_shuffle3, Z.mul_assoc. + repeat split; auto. + rewrite !Z.mul_1_l, H, Z.add_assoc. + apply f_equal2 with (f := Z.add); auto. + rewrite <- Z.sub_sub_distr, <- !Z.add_diag, Z.add_simpl_r. + now rewrite Z.mul_1_l. - rewrite Pos2Z.neg_xO in H. - rewrite Z.mul_shuffle3, Z.mul_assoc. omega. + rewrite Z.mul_shuffle3, Z.mul_assoc. + repeat split; auto. + - repeat split; auto. + rewrite H, (Z.mul_opp_l 1), Z.mul_1_l, Z.add_assoc. + apply f_equal2 with (f := Z.add); auto. + rewrite Z.add_comm, <- Z.add_diag. + rewrite Z.mul_add_distr_l. + replace (-1 * d) with (-d). + + now rewrite Z.add_assoc, Z.add_opp_diag_r . + + now rewrite (Z.mul_opp_l 1), <-(Z.mul_opp_l 1). Qed. (** Old-style rich specification by proof of existence *) |
