diff options
| author | herbelin | 2003-11-14 18:00:15 +0000 |
|---|---|---|
| committer | herbelin | 2003-11-14 18:00:15 +0000 |
| commit | abaea95f6dd9c41d62b98e53bd0d36e4a1c75153 (patch) | |
| tree | 335f0684b559a325436887ff45b2a27f41609276 | |
| parent | b1104c363146c2755f43228fba377eee3fd18372 (diff) | |
cosmetique
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@4912 85f007b7-540e-0410-9357-904b9bb8a0f7
| -rw-r--r-- | theories/ZArith/BinInt.v | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/theories/ZArith/BinInt.v b/theories/ZArith/BinInt.v index f7600c7e9e..42cb3675f5 100644 --- a/theories/ZArith/BinInt.v +++ b/theories/ZArith/BinInt.v @@ -685,7 +685,7 @@ Proof. Intro x; NewDestruct x; Simpl; Try Rewrite times_x_1; Reflexivity. Qed. -(** Zero is absorbant for multiplication *) +(** Zero property of multiplication *) Theorem Zero_mult_left: (x:Z) (Zmult ZERO x) = ZERO. Proof. @@ -765,7 +765,7 @@ Theorem Zopp_Zmult_r : (x,y:Z)(Zopp (Zmult x y)) = (Zmult x (Zopp y)). Intros x y; Rewrite (Zmult_sym x y); Rewrite Zopp_Zmult_l; Apply Zmult_sym. Qed. -Theorem Zopp_Zmult: (x,y:Z) (Zmult (Zopp x) y) = (Zopp (Zmult x y)). +Lemma Zopp_Zmult: (x,y:Z) (Zmult (Zopp x) y) = (Zopp (Zmult x y)). Proof. Intros x y; Symmetry; Apply Zopp_Zmult_l. Qed. @@ -820,7 +820,7 @@ Intros x y z; Case x; [ Apply weak_Zmult_plus_distr_r ]. Qed. -Lemma Zmult_plus_distr_l : +Theorem Zmult_plus_distr_l : (n,m,p:Z)((Zmult (Zplus n m) p)=(Zplus (Zmult n p) (Zmult m p))). Proof. Intros n m p;Rewrite Zmult_sym;Rewrite Zmult_plus_distr_r; |
