aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorherbelin2003-11-14 18:00:15 +0000
committerherbelin2003-11-14 18:00:15 +0000
commitabaea95f6dd9c41d62b98e53bd0d36e4a1c75153 (patch)
tree335f0684b559a325436887ff45b2a27f41609276
parentb1104c363146c2755f43228fba377eee3fd18372 (diff)
cosmetique
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@4912 85f007b7-540e-0410-9357-904b9bb8a0f7
-rw-r--r--theories/ZArith/BinInt.v6
1 files changed, 3 insertions, 3 deletions
diff --git a/theories/ZArith/BinInt.v b/theories/ZArith/BinInt.v
index f7600c7e9e..42cb3675f5 100644
--- a/theories/ZArith/BinInt.v
+++ b/theories/ZArith/BinInt.v
@@ -685,7 +685,7 @@ Proof.
Intro x; NewDestruct x; Simpl; Try Rewrite times_x_1; Reflexivity.
Qed.
-(** Zero is absorbant for multiplication *)
+(** Zero property of multiplication *)
Theorem Zero_mult_left: (x:Z) (Zmult ZERO x) = ZERO.
Proof.
@@ -765,7 +765,7 @@ Theorem Zopp_Zmult_r : (x,y:Z)(Zopp (Zmult x y)) = (Zmult x (Zopp y)).
Intros x y; Rewrite (Zmult_sym x y); Rewrite Zopp_Zmult_l; Apply Zmult_sym.
Qed.
-Theorem Zopp_Zmult: (x,y:Z) (Zmult (Zopp x) y) = (Zopp (Zmult x y)).
+Lemma Zopp_Zmult: (x,y:Z) (Zmult (Zopp x) y) = (Zopp (Zmult x y)).
Proof.
Intros x y; Symmetry; Apply Zopp_Zmult_l.
Qed.
@@ -820,7 +820,7 @@ Intros x y z; Case x; [
Apply weak_Zmult_plus_distr_r ].
Qed.
-Lemma Zmult_plus_distr_l :
+Theorem Zmult_plus_distr_l :
(n,m,p:Z)((Zmult (Zplus n m) p)=(Zplus (Zmult n p) (Zmult m p))).
Proof.
Intros n m p;Rewrite Zmult_sym;Rewrite Zmult_plus_distr_r;