aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorletouzey2010-01-25 10:20:34 +0000
committerletouzey2010-01-25 10:20:34 +0000
commita7f249760f2c093bd5ce77af264c052f227fb169 (patch)
treecbc80c5695a97a9fef5ab8827df519111d97174c
parent92877ef3b0f1ffecc90f19f8adc5ef14ed235d98 (diff)
NMake: several things need not be macro-generated
The macro-generated .v file is now NMake_gen.v, while NMake.v now contain the static things (i.e. definition of gcd via mod). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12687 85f007b7-540e-0410-9357-904b9bb8a0f7
-rw-r--r--.gitignore2
-rw-r--r--Makefile.build2
-rw-r--r--theories/Numbers/Natural/BigN/NMake.v524
-rw-r--r--theories/Numbers/Natural/BigN/NMake_gen.ml594
-rw-r--r--theories/Numbers/vo.itarget1
5 files changed, 545 insertions, 578 deletions
diff --git a/.gitignore b/.gitignore
index 458ebed341..81a332a344 100644
--- a/.gitignore
+++ b/.gitignore
@@ -58,7 +58,7 @@ kernel/byterun/dllcoqrun.so
kernel/copcodes.ml
scripts/tolink.ml
states/initial.coq
-theories/Numbers/Natural/BigN/NMake.v
+theories/Numbers/Natural/BigN/NMake_gen.v
tools/coqdep_lexer.ml
tools/coqdoc/index.ml
tools/coqdoc/cpretty.ml
diff --git a/Makefile.build b/Makefile.build
index bd33b71d9f..864f6f27bf 100644
--- a/Makefile.build
+++ b/Makefile.build
@@ -433,7 +433,7 @@ theories/Init/%.vo theories/Init/%.glob: theories/Init/%.v $(VO_TOOLS_STRICT) |
$(HIDE)rm -f theories/Init/$*.glob
$(HIDE)$(BOOTCOQTOP) -nois -compile theories/Init/$*
-theories/Numbers/Natural/BigN/NMake.v: theories/Numbers/Natural/BigN/NMake_gen.ml
+theories/Numbers/Natural/BigN/NMake_gen.v: theories/Numbers/Natural/BigN/NMake_gen.ml
$(OCAML) $< > $@
###########################################################################
diff --git a/theories/Numbers/Natural/BigN/NMake.v b/theories/Numbers/Natural/BigN/NMake.v
new file mode 100644
index 0000000000..b5a4db91c1
--- /dev/null
+++ b/theories/Numbers/Natural/BigN/NMake.v
@@ -0,0 +1,524 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(** * NMake *)
+
+(** From a cyclic Z/nZ representation to arbitrary precision natural numbers.*)
+
+(** NB: This file contain the part which is independent from the underlying
+ representation. The representation-dependent (and macro-generated) part
+ is now in [NMake_gen]. *)
+
+Require Import BigNumPrelude ZArith CyclicAxioms.
+Require Import Nbasic Wf_nat StreamMemo NSig NMake_gen.
+
+Module Make (Import W0:CyclicType) <: NType.
+
+ (** Macro-generated part *)
+
+ Include NMake_gen.Make W0.
+
+
+ (** * Predecessor *)
+
+ Lemma spec_pred : forall x, [pred x] = Zmax 0 ([x]-1).
+ Proof.
+ intros. destruct (Zle_lt_or_eq _ _ (spec_pos x)).
+ rewrite Zmax_r; auto with zarith.
+ apply spec_pred_pos; auto.
+ rewrite <- H; apply spec_pred0; auto.
+ Qed.
+
+
+ (** * Subtraction *)
+
+ Lemma spec_sub : forall x y, [sub x y] = Zmax 0 ([x]-[y]).
+ Proof.
+ intros. destruct (Zle_or_lt [y] [x]).
+ rewrite Zmax_r; auto with zarith. apply spec_sub_pos; auto.
+ rewrite Zmax_l; auto with zarith. apply spec_sub0; auto.
+ Qed.
+
+ (** * Comparison *)
+
+ Theorem spec_compare : forall x y, compare x y = Zcompare [x] [y].
+ Proof.
+ intros x y. generalize (spec_compare_aux x y); destruct compare;
+ intros; symmetry; try rewrite Zcompare_Eq_iff_eq; assumption.
+ Qed.
+
+ Definition eq_bool x y :=
+ match compare x y with
+ | Eq => true
+ | _ => false
+ end.
+
+ Theorem spec_eq_bool : forall x y, eq_bool x y = Zeq_bool [x] [y].
+ Proof.
+ intros. unfold eq_bool, Zeq_bool. rewrite spec_compare; reflexivity.
+ Qed.
+
+ Theorem spec_eq_bool_aux: forall x y,
+ if eq_bool x y then [x] = [y] else [x] <> [y].
+ Proof.
+ intros x y; unfold eq_bool.
+ generalize (spec_compare_aux x y); case compare; auto with zarith.
+ Qed.
+
+ Definition lt n m := [n] < [m].
+ Definition le n m := [n] <= [m].
+
+ Definition min n m := match compare n m with Gt => m | _ => n end.
+ Definition max n m := match compare n m with Lt => m | _ => n end.
+
+ Theorem spec_max : forall n m, [max n m] = Zmax [n] [m].
+ Proof.
+ intros. unfold max, Zmax. rewrite spec_compare; destruct Zcompare; reflexivity.
+ Qed.
+
+ Theorem spec_min : forall n m, [min n m] = Zmin [n] [m].
+ Proof.
+ intros. unfold min, Zmin. rewrite spec_compare; destruct Zcompare; reflexivity.
+ Qed.
+
+
+ (** * Power *)
+
+ Fixpoint power_pos (x:t) (p:positive) {struct p} : t :=
+ match p with
+ | xH => x
+ | xO p => square (power_pos x p)
+ | xI p => mul (square (power_pos x p)) x
+ end.
+
+ Theorem spec_power_pos: forall x n, [power_pos x n] = [x] ^ Zpos n.
+ Proof.
+ intros x n; generalize x; elim n; clear n x; simpl power_pos.
+ intros; rewrite spec_mul; rewrite spec_square; rewrite H.
+ rewrite Zpos_xI; rewrite Zpower_exp; auto with zarith.
+ rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith.
+ rewrite Zpower_2; rewrite Zpower_1_r; auto.
+ intros; rewrite spec_square; rewrite H.
+ rewrite Zpos_xO; auto with zarith.
+ rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith.
+ rewrite Zpower_2; auto.
+ intros; rewrite Zpower_1_r; auto.
+ Qed.
+
+ Definition power x (n:N) := match n with
+ | BinNat.N0 => one
+ | BinNat.Npos p => power_pos x p
+ end.
+
+ Theorem spec_power: forall x n, [power x n] = [x] ^ Z_of_N n.
+ Proof.
+ destruct n; simpl. apply (spec_1 w0_spec).
+ apply spec_power_pos.
+ Qed.
+
+
+ (** * Div *)
+
+ Definition div_eucl x y :=
+ if eq_bool y zero then (zero,zero) else
+ match compare x y with
+ | Eq => (one, zero)
+ | Lt => (zero, x)
+ | Gt => div_gt x y
+ end.
+
+ Theorem spec_div_eucl: forall x y,
+ let (q,r) := div_eucl x y in
+ ([q], [r]) = Zdiv_eucl [x] [y].
+ Proof.
+ assert (F0: [zero] = 0).
+ exact (spec_0 w0_spec).
+ assert (F1: [one] = 1).
+ exact (spec_1 w0_spec).
+ intros x y. unfold div_eucl.
+ generalize (spec_eq_bool_aux y zero). destruct eq_bool; rewrite F0.
+ intro H. rewrite H. destruct [x]; auto.
+ intro H'.
+ assert (0 < [y]) by (generalize (spec_pos y); auto with zarith).
+ clear H'.
+ generalize (spec_compare_aux x y); case compare; try rewrite F0;
+ try rewrite F1; intros; auto with zarith.
+ rewrite H0; generalize (Z_div_same [y] (Zlt_gt _ _ H))
+ (Z_mod_same [y] (Zlt_gt _ _ H));
+ unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto.
+ assert (F2: 0 <= [x] < [y]).
+ generalize (spec_pos x); auto.
+ generalize (Zdiv_small _ _ F2)
+ (Zmod_small _ _ F2);
+ unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto.
+ generalize (spec_div_gt _ _ H0 H); auto.
+ unfold Zdiv, Zmod; case Zdiv_eucl; case div_gt.
+ intros a b c d (H1, H2); subst; auto.
+ Qed.
+
+ Definition div x y := fst (div_eucl x y).
+
+ Theorem spec_div:
+ forall x y, [div x y] = [x] / [y].
+ Proof.
+ intros x y; unfold div; generalize (spec_div_eucl x y);
+ case div_eucl; simpl fst.
+ intros xx yy; unfold Zdiv; case Zdiv_eucl; intros qq rr H;
+ injection H; auto.
+ Qed.
+
+
+ (** * Modulo *)
+
+ Definition modulo x y :=
+ if eq_bool y zero then zero else
+ match compare x y with
+ | Eq => zero
+ | Lt => x
+ | Gt => mod_gt x y
+ end.
+
+ Theorem spec_modulo:
+ forall x y, [modulo x y] = [x] mod [y].
+ Proof.
+ assert (F0: [zero] = 0).
+ exact (spec_0 w0_spec).
+ assert (F1: [one] = 1).
+ exact (spec_1 w0_spec).
+ intros x y. unfold modulo.
+ generalize (spec_eq_bool_aux y zero). destruct eq_bool; rewrite F0.
+ intro H; rewrite H. destruct [x]; auto.
+ intro H'.
+ assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith).
+ clear H'.
+ generalize (spec_compare_aux x y); case compare; try rewrite F0;
+ try rewrite F1; intros; try split; auto with zarith.
+ rewrite H0; apply sym_equal; apply Z_mod_same; auto with zarith.
+ apply sym_equal; apply Zmod_small; auto with zarith.
+ generalize (spec_pos x); auto with zarith.
+ apply spec_mod_gt; auto.
+ Qed.
+
+
+ (** * Gcd *)
+
+ Definition gcd_gt_body a b cont :=
+ match compare b zero with
+ | Gt =>
+ let r := mod_gt a b in
+ match compare r zero with
+ | Gt => cont r (mod_gt b r)
+ | _ => b
+ end
+ | _ => a
+ end.
+
+ Theorem Zspec_gcd_gt_body: forall a b cont p,
+ [a] > [b] -> [a] < 2 ^ p ->
+ (forall a1 b1, [a1] < 2 ^ (p - 1) -> [a1] > [b1] ->
+ Zis_gcd [a1] [b1] [cont a1 b1]) ->
+ Zis_gcd [a] [b] [gcd_gt_body a b cont].
+ Proof.
+ assert (F1: [zero] = 0).
+ unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto.
+ intros a b cont p H2 H3 H4; unfold gcd_gt_body.
+ generalize (spec_compare_aux b zero); case compare; try rewrite F1.
+ intros HH; rewrite HH; apply Zis_gcd_0.
+ intros HH; absurd (0 <= [b]); auto with zarith.
+ case (spec_digits b); auto with zarith.
+ intros H5; generalize (spec_compare_aux (mod_gt a b) zero);
+ case compare; try rewrite F1.
+ intros H6; rewrite <- (Zmult_1_r [b]).
+ rewrite (Z_div_mod_eq [a] [b]); auto with zarith.
+ rewrite <- spec_mod_gt; auto with zarith.
+ rewrite H6; rewrite Zplus_0_r.
+ apply Zis_gcd_mult; apply Zis_gcd_1.
+ intros; apply False_ind.
+ case (spec_digits (mod_gt a b)); auto with zarith.
+ intros H6; apply DoubleDiv.Zis_gcd_mod; auto with zarith.
+ apply DoubleDiv.Zis_gcd_mod; auto with zarith.
+ rewrite <- spec_mod_gt; auto with zarith.
+ assert (F2: [b] > [mod_gt a b]).
+ case (Z_mod_lt [a] [b]); auto with zarith.
+ repeat rewrite <- spec_mod_gt; auto with zarith.
+ assert (F3: [mod_gt a b] > [mod_gt b (mod_gt a b)]).
+ case (Z_mod_lt [b] [mod_gt a b]); auto with zarith.
+ rewrite <- spec_mod_gt; auto with zarith.
+ repeat rewrite <- spec_mod_gt; auto with zarith.
+ apply H4; auto with zarith.
+ apply Zmult_lt_reg_r with 2; auto with zarith.
+ apply Zle_lt_trans with ([b] + [mod_gt a b]); auto with zarith.
+ apply Zle_lt_trans with (([a]/[b]) * [b] + [mod_gt a b]); auto with zarith.
+ apply Zplus_le_compat_r.
+ pattern [b] at 1; rewrite <- (Zmult_1_l [b]).
+ apply Zmult_le_compat_r; auto with zarith.
+ case (Zle_lt_or_eq 0 ([a]/[b])); auto with zarith.
+ intros HH; rewrite (Z_div_mod_eq [a] [b]) in H2;
+ try rewrite <- HH in H2; auto with zarith.
+ case (Z_mod_lt [a] [b]); auto with zarith.
+ rewrite Zmult_comm; rewrite spec_mod_gt; auto with zarith.
+ rewrite <- Z_div_mod_eq; auto with zarith.
+ pattern 2 at 2; rewrite <- (Zpower_1_r 2).
+ rewrite <- Zpower_exp; auto with zarith.
+ ring_simplify (p - 1 + 1); auto.
+ case (Zle_lt_or_eq 0 p); auto with zarith.
+ generalize H3; case p; simpl Zpower; auto with zarith.
+ intros HH; generalize H3; rewrite <- HH; simpl Zpower; auto with zarith.
+ Qed.
+
+ Fixpoint gcd_gt_aux (p:positive) (cont:t->t->t) (a b:t) {struct p} : t :=
+ gcd_gt_body a b
+ (fun a b =>
+ match p with
+ | xH => cont a b
+ | xO p => gcd_gt_aux p (gcd_gt_aux p cont) a b
+ | xI p => gcd_gt_aux p (gcd_gt_aux p cont) a b
+ end).
+
+ Theorem Zspec_gcd_gt_aux: forall p n a b cont,
+ [a] > [b] -> [a] < 2 ^ (Zpos p + n) ->
+ (forall a1 b1, [a1] < 2 ^ n -> [a1] > [b1] ->
+ Zis_gcd [a1] [b1] [cont a1 b1]) ->
+ Zis_gcd [a] [b] [gcd_gt_aux p cont a b].
+ intros p; elim p; clear p.
+ intros p Hrec n a b cont H2 H3 H4.
+ unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xI p) + n); auto.
+ intros a1 b1 H6 H7.
+ apply Hrec with (Zpos p + n); auto.
+ replace (Zpos p + (Zpos p + n)) with
+ (Zpos (xI p) + n - 1); auto.
+ rewrite Zpos_xI; ring.
+ intros a2 b2 H9 H10.
+ apply Hrec with n; auto.
+ intros p Hrec n a b cont H2 H3 H4.
+ unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xO p) + n); auto.
+ intros a1 b1 H6 H7.
+ apply Hrec with (Zpos p + n - 1); auto.
+ replace (Zpos p + (Zpos p + n - 1)) with
+ (Zpos (xO p) + n - 1); auto.
+ rewrite Zpos_xO; ring.
+ intros a2 b2 H9 H10.
+ apply Hrec with (n - 1); auto.
+ replace (Zpos p + (n - 1)) with
+ (Zpos p + n - 1); auto with zarith.
+ intros a3 b3 H12 H13; apply H4; auto with zarith.
+ apply Zlt_le_trans with (1 := H12).
+ case (Zle_or_lt 1 n); intros HH.
+ apply Zpower_le_monotone; auto with zarith.
+ apply Zle_trans with 0; auto with zarith.
+ assert (HH1: n - 1 < 0); auto with zarith.
+ generalize HH1; case (n - 1); auto with zarith.
+ intros p1 HH2; discriminate.
+ intros n a b cont H H2 H3.
+ simpl gcd_gt_aux.
+ apply Zspec_gcd_gt_body with (n + 1); auto with zarith.
+ rewrite Zplus_comm; auto.
+ intros a1 b1 H5 H6; apply H3; auto.
+ replace n with (n + 1 - 1); auto; try ring.
+ Qed.
+
+ Definition gcd_cont a b :=
+ match compare one b with
+ | Eq => one
+ | _ => a
+ end.
+
+ Definition gcd_gt a b := gcd_gt_aux (digits a) gcd_cont a b.
+
+ Theorem spec_gcd_gt: forall a b,
+ [a] > [b] -> [gcd_gt a b] = Zgcd [a] [b].
+ Proof.
+ intros a b H2.
+ case (spec_digits (gcd_gt a b)); intros H3 H4.
+ case (spec_digits a); intros H5 H6.
+ apply sym_equal; apply Zis_gcd_gcd; auto with zarith.
+ unfold gcd_gt; apply Zspec_gcd_gt_aux with 0; auto with zarith.
+ intros a1 a2; rewrite Zpower_0_r.
+ case (spec_digits a2); intros H7 H8;
+ intros; apply False_ind; auto with zarith.
+ Qed.
+
+ Definition gcd a b :=
+ match compare a b with
+ | Eq => a
+ | Lt => gcd_gt b a
+ | Gt => gcd_gt a b
+ end.
+
+ Theorem spec_gcd: forall a b, [gcd a b] = Zgcd [a] [b].
+ Proof.
+ intros a b.
+ case (spec_digits a); intros H1 H2.
+ case (spec_digits b); intros H3 H4.
+ unfold gcd; generalize (spec_compare_aux a b); case compare.
+ intros HH; rewrite HH; apply sym_equal; apply Zis_gcd_gcd; auto.
+ apply Zis_gcd_refl.
+ intros; apply trans_equal with (Zgcd [b] [a]).
+ apply spec_gcd_gt; auto with zarith.
+ apply Zis_gcd_gcd; auto with zarith.
+ apply Zgcd_is_pos.
+ apply Zis_gcd_sym; apply Zgcd_is_gcd.
+ intros; apply spec_gcd_gt; auto.
+ Qed.
+
+
+ (** * Conversion *)
+
+ Definition of_N x :=
+ match x with
+ | BinNat.N0 => zero
+ | Npos p => of_pos p
+ end.
+
+ Theorem spec_of_N: forall x,
+ [of_N x] = Z_of_N x.
+ Proof.
+ intros x; case x.
+ simpl of_N.
+ unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto.
+ intros p; exact (spec_of_pos p).
+ Qed.
+
+
+ (** * Shift *)
+
+ Definition safe_shiftr n x :=
+ match compare n (Ndigits x) with
+ | Lt => shiftr n x
+ | _ => N0 w_0
+ end.
+
+ Theorem spec_safe_shiftr: forall n x,
+ [safe_shiftr n x] = [x] / 2 ^ [n].
+ Proof.
+ intros n x; unfold safe_shiftr;
+ generalize (spec_compare_aux n (Ndigits x)); case compare; intros H.
+ apply trans_equal with (1 := spec_0 w0_spec).
+ apply sym_equal; apply Zdiv_small; rewrite H.
+ rewrite spec_Ndigits; exact (spec_digits x).
+ rewrite <- spec_shiftr; auto with zarith.
+ apply trans_equal with (1 := spec_0 w0_spec).
+ apply sym_equal; apply Zdiv_small.
+ rewrite spec_Ndigits in H; case (spec_digits x); intros H1 H2.
+ split; auto.
+ apply Zlt_le_trans with (1 := H2).
+ apply Zpower_le_monotone; auto with zarith.
+ Qed.
+
+ Definition safe_shiftl_aux_body cont n x :=
+ match compare n (head0 x) with
+ Gt => cont n (double_size x)
+ | _ => shiftl n x
+ end.
+
+ Theorem spec_safe_shift_aux_body: forall n p x cont,
+ 2^ Zpos p <= [head0 x] ->
+ (forall x, 2 ^ (Zpos p + 1) <= [head0 x]->
+ [cont n x] = [x] * 2 ^ [n]) ->
+ [safe_shiftl_aux_body cont n x] = [x] * 2 ^ [n].
+ Proof.
+ intros n p x cont H1 H2; unfold safe_shiftl_aux_body.
+ generalize (spec_compare_aux n (head0 x)); case compare; intros H.
+ apply spec_shiftl; auto with zarith.
+ apply spec_shiftl; auto with zarith.
+ rewrite H2.
+ rewrite spec_double_size; auto.
+ rewrite Zplus_comm; rewrite Zpower_exp; auto with zarith.
+ apply Zle_trans with (2 := spec_double_size_head0 x).
+ rewrite Zpower_1_r; apply Zmult_le_compat_l; auto with zarith.
+ Qed.
+
+ Fixpoint safe_shiftl_aux p cont n x {struct p} :=
+ safe_shiftl_aux_body
+ (fun n x => match p with
+ | xH => cont n x
+ | xO p => safe_shiftl_aux p (safe_shiftl_aux p cont) n x
+ | xI p => safe_shiftl_aux p (safe_shiftl_aux p cont) n x
+ end) n x.
+
+ Theorem spec_safe_shift_aux: forall p q n x cont,
+ 2 ^ (Zpos q) <= [head0 x] ->
+ (forall x, 2 ^ (Zpos p + Zpos q) <= [head0 x] ->
+ [cont n x] = [x] * 2 ^ [n]) ->
+ [safe_shiftl_aux p cont n x] = [x] * 2 ^ [n].
+ Proof.
+ intros p; elim p; unfold safe_shiftl_aux; fold safe_shiftl_aux; clear p.
+ intros p Hrec q n x cont H1 H2.
+ apply spec_safe_shift_aux_body with (q); auto.
+ intros x1 H3; apply Hrec with (q + 1)%positive; auto.
+ intros x2 H4; apply Hrec with (p + q + 1)%positive; auto.
+ rewrite <- Pplus_assoc.
+ rewrite Zpos_plus_distr; auto.
+ intros x3 H5; apply H2.
+ rewrite Zpos_xI.
+ replace (2 * Zpos p + 1 + Zpos q) with (Zpos p + Zpos (p + q + 1));
+ auto.
+ repeat rewrite Zpos_plus_distr; ring.
+ intros p Hrec q n x cont H1 H2.
+ apply spec_safe_shift_aux_body with (q); auto.
+ intros x1 H3; apply Hrec with (q); auto.
+ apply Zle_trans with (2 := H3); auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ intros x2 H4; apply Hrec with (p + q)%positive; auto.
+ intros x3 H5; apply H2.
+ rewrite (Zpos_xO p).
+ replace (2 * Zpos p + Zpos q) with (Zpos p + Zpos (p + q));
+ auto.
+ repeat rewrite Zpos_plus_distr; ring.
+ intros q n x cont H1 H2.
+ apply spec_safe_shift_aux_body with (q); auto.
+ rewrite Zplus_comm; auto.
+ Qed.
+
+ Definition safe_shiftl n x :=
+ safe_shiftl_aux_body
+ (safe_shiftl_aux_body
+ (safe_shiftl_aux (digits n) shiftl)) n x.
+
+ Theorem spec_safe_shift: forall n x,
+ [safe_shiftl n x] = [x] * 2 ^ [n].
+ Proof.
+ intros n x; unfold safe_shiftl, safe_shiftl_aux_body.
+ generalize (spec_compare_aux n (head0 x)); case compare; intros H.
+ apply spec_shiftl; auto with zarith.
+ apply spec_shiftl; auto with zarith.
+ rewrite <- (spec_double_size x).
+ generalize (spec_compare_aux n (head0 (double_size x))); case compare; intros H1.
+ apply spec_shiftl; auto with zarith.
+ apply spec_shiftl; auto with zarith.
+ rewrite <- (spec_double_size (double_size x)).
+ apply spec_safe_shift_aux with 1%positive.
+ apply Zle_trans with (2 := spec_double_size_head0 (double_size x)).
+ replace (2 ^ 1) with (2 * 1).
+ apply Zmult_le_compat_l; auto with zarith.
+ generalize (spec_double_size_head0_pos x); auto with zarith.
+ rewrite Zpower_1_r; ring.
+ intros x1 H2; apply spec_shiftl.
+ apply Zle_trans with (2 := H2).
+ apply Zle_trans with (2 ^ Zpos (digits n)); auto with zarith.
+ case (spec_digits n); auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ Qed.
+
+
+ (** * Zero and One *)
+
+ Theorem spec_0: [zero] = 0.
+ Proof.
+ exact (spec_0 w0_spec).
+ Qed.
+
+ Theorem spec_1: [one] = 1.
+ Proof.
+ exact (spec_1 w0_spec).
+ Qed.
+
+
+End Make.
diff --git a/theories/Numbers/Natural/BigN/NMake_gen.ml b/theories/Numbers/Natural/BigN/NMake_gen.ml
index 9a385437b4..e045c068cd 100644
--- a/theories/Numbers/Natural/BigN/NMake_gen.ml
+++ b/theories/Numbers/Natural/BigN/NMake_gen.ml
@@ -69,19 +69,11 @@ let _ =
pr "";
pr "(** Remark: File automatically generated by NMake_gen.ml, DO NOT EDIT ! *)";
pr "";
- pr "Require Import BigNumPrelude.";
- pr "Require Import ZArith.";
- pr "Require Import CyclicAxioms.";
- pr "Require Import DoubleType.";
- pr "Require Import DoubleMul.";
- pr "Require Import DoubleDivn1.";
- pr "Require Import DoubleCyclic.";
- pr "Require Import Nbasic.";
- pr "Require Import Wf_nat.";
- pr "Require Import StreamMemo.";
- pr "Require Import NSig.";
+ pr "Require Import BigNumPrelude ZArith CyclicAxioms";
+ pr " DoubleType DoubleMul DoubleDivn1 DoubleCyclic Nbasic";
+ pr " Wf_nat StreamMemo NSig.";
pr "";
- pr "Module Make (Import W0:CyclicType) <: NType.";
+ pr "Module Make (Import W0:CyclicType). (*<: NType (now just almost) *)";
pr "";
pr " Definition w0 := W0.w.";
@@ -897,7 +889,7 @@ let _ =
pr " (***************************************************************)";
pr " (* *)";
- pr " (* Reduction *)";
+ pr " (** * Reduction *)";
pr " (* *)";
pr " (***************************************************************)";
pr "";
@@ -963,7 +955,7 @@ let _ =
pr " (***************************************************************)";
pr " (* *)";
- pr " (* Successor *)";
+ pr " (** * Successor *)";
pr " (* *)";
pr " (***************************************************************)";
pr "";
@@ -1027,7 +1019,7 @@ let _ =
pr " (***************************************************************)";
pr " (* *)";
- pr " (* Adddition *)";
+ pr " (** * Adddition *)";
pr " (* *)";
pr " (***************************************************************)";
pr "";
@@ -1101,7 +1093,7 @@ let _ =
pr " (***************************************************************)";
pr " (* *)";
- pr " (* Predecessor *)";
+ pr " (** * Predecessor *)";
pr " (* *)";
pr " (***************************************************************)";
pr "";
@@ -1174,19 +1166,9 @@ let _ =
pp " Qed.";
pr "";
- pr " Lemma spec_pred : forall x, [pred x] = Zmax 0 ([x]-1).";
- pa " Admitted.";
- pp " Proof.";
- pp " intros. destruct (Zle_lt_or_eq _ _ (spec_pos x)).";
- pp " rewrite Zmax_r; auto with zarith.";
- pp " apply spec_pred_pos; auto.";
- pp " rewrite <- H; apply spec_pred0; auto.";
- pp " Qed.";
- pr "";
-
pr " (***************************************************************)";
pr " (* *)";
- pr " (* Subtraction *)";
+ pr " (** * Subtraction *)";
pr " (* *)";
pr " (***************************************************************)";
pr "";
@@ -1295,20 +1277,10 @@ let _ =
pp " Qed.";
pr "";
- pr " Lemma spec_sub : forall x y, [sub x y] = Zmax 0 ([x]-[y]).";
- pa " Admitted.";
- pp " Proof.";
- pp " intros. destruct (Zle_or_lt [y] [x]).";
- pp " rewrite Zmax_r; auto with zarith. apply spec_sub_pos; auto.";
- pp " rewrite Zmax_l; auto with zarith. apply spec_sub0; auto.";
- pp " Qed.";
- pr "";
-
-
pr " (***************************************************************)";
pr " (* *)";
- pr " (* Comparison *)";
+ pr " (** * Comparison *)";
pr " (* *)";
pr " (***************************************************************)";
pr "";
@@ -1415,62 +1387,9 @@ let _ =
pp " Qed.";
pr "";
- pr " Theorem spec_compare : forall x y, compare x y = Zcompare [x] [y].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x y. generalize (spec_compare_aux x y); destruct compare;";
- pp " intros; symmetry; try rewrite Zcompare_Eq_iff_eq; assumption.";
- pp " Qed.";
- pr "";
-
-
- pr " Definition eq_bool x y :=";
- pr " match compare x y with";
- pr " | Eq => true";
- pr " | _ => false";
- pr " end.";
- pr "";
-
- pr " Theorem spec_eq_bool : forall x y, eq_bool x y = Zeq_bool [x] [y].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros. unfold eq_bool, Zeq_bool. rewrite spec_compare; reflexivity.";
- pp " Qed.";
- pr "";
-
- pr " Theorem spec_eq_bool_aux: forall x y,";
- pr " if eq_bool x y then [x] = [y] else [x] <> [y].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x y; unfold eq_bool.";
- pp " generalize (spec_compare_aux x y); case compare; auto with zarith.";
- pp " Qed.";
- pr "";
-
- pr " Definition lt n m := [n] < [m].";
- pr " Definition le n m := [n] <= [m].";
- pr "";
- pr " Definition min n m := match compare n m with Gt => m | _ => n end.";
- pr " Definition max n m := match compare n m with Lt => m | _ => n end.";
- pr "";
-
- pr " Theorem spec_max : forall n m, [max n m] = Zmax [n] [m].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros. unfold max, Zmax. rewrite spec_compare; destruct Zcompare; reflexivity.";
- pp " Qed.";
- pr "";
-
- pr " Theorem spec_min : forall n m, [min n m] = Zmin [n] [m].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros. unfold min, Zmin. rewrite spec_compare; destruct Zcompare; reflexivity.";
- pp " Qed.";
- pr "";
-
pr " (***************************************************************)";
pr " (* *)";
- pr " (* Multiplication *)";
+ pr " (** * Multiplication *)";
pr " (* *)";
pr " (***************************************************************)";
pr "";
@@ -1711,7 +1630,7 @@ let _ =
pr " (***************************************************************)";
pr " (* *)";
- pr " (* Square *)";
+ pr " (** * Square *)";
pr " (* *)";
pr " (***************************************************************)";
pr "";
@@ -1750,56 +1669,9 @@ let _ =
pp "Qed.";
pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (* Power *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- pr " Fixpoint power_pos (x:%s) (p:positive) {struct p} : %s :=" t t;
- pr " match p with";
- pr " | xH => x";
- pr " | xO p => square (power_pos x p)";
- pr " | xI p => mul (square (power_pos x p)) x";
- pr " end.";
- pr "";
-
- pr " Theorem spec_power_pos: forall x n, [power_pos x n] = [x] ^ Zpos n.";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x n; generalize x; elim n; clear n x; simpl power_pos.";
- pp " intros; rewrite spec_mul; rewrite spec_square; rewrite H.";
- pp " rewrite Zpos_xI; rewrite Zpower_exp; auto with zarith.";
- pp " rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith.";
- pp " rewrite Zpower_2; rewrite Zpower_1_r; auto.";
- pp " intros; rewrite spec_square; rewrite H.";
- pp " rewrite Zpos_xO; auto with zarith.";
- pp " rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith.";
- pp " rewrite Zpower_2; auto.";
- pp " intros; rewrite Zpower_1_r; auto.";
- pp " Qed.";
- pp "";
-
- pr " Definition power x (n:N) := match n with";
- pr " | BinNat.N0 => one";
- pr " | BinNat.Npos p => power_pos x p";
- pr " end.";
- pr "";
-
- pr " Theorem spec_power: forall x n, [power x n] = [x] ^ Z_of_N n.";
- pa " Admitted.";
- pp " Proof.";
- pp " destruct n; simpl. apply (spec_1 w0_spec).";
- pp " apply spec_power_pos.";
- pp " Qed.";
- pr "";
- pr "";
-
pr " (***************************************************************)";
pr " (* *)";
- pr " (* Square root *)";
+ pr " (** * Square root *)";
pr " (* *)";
pr " (***************************************************************)";
pr "";
@@ -1834,7 +1706,7 @@ let _ =
pr " (***************************************************************)";
pr " (* *)";
- pr " (* Division *)";
+ pr " (** * Division *)";
pr " (* *)";
pr " (***************************************************************)";
pr "";
@@ -1998,63 +1870,9 @@ let _ =
pp " Qed.";
pr "";
- pr " Definition div_eucl x y :=";
- pr " if eq_bool y zero then (zero,zero) else";
- pr " match compare x y with";
- pr " | Eq => (one, zero)";
- pr " | Lt => (zero, x)";
- pr " | Gt => div_gt x y";
- pr " end.";
- pr "";
-
- pr " Theorem spec_div_eucl: forall x y,";
- pr " let (q,r) := div_eucl x y in";
- pr " ([q], [r]) = Zdiv_eucl [x] [y].";
- pa " Admitted.";
- pp " Proof.";
- pp " assert (F0: [zero] = 0).";
- pp " exact (spec_0 w0_spec).";
- pp " assert (F1: [one] = 1).";
- pp " exact (spec_1 w0_spec).";
- pp " intros x y. unfold div_eucl.";
- pp " generalize (spec_eq_bool_aux y zero). destruct eq_bool; rewrite F0.";
- pp " intro H. rewrite H. destruct [x]; auto.";
- pp " intro H'.";
- pp " assert (0 < [y]) by (generalize (spec_pos y); auto with zarith).";
- pp " clear H'.";
- pp " generalize (spec_compare_aux x y); case compare; try rewrite F0;";
- pp " try rewrite F1; intros; auto with zarith.";
- pp " rewrite H0; generalize (Z_div_same [y] (Zlt_gt _ _ H))";
- pp " (Z_mod_same [y] (Zlt_gt _ _ H));";
- pp " unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto.";
- pp " assert (F2: 0 <= [x] < [y]).";
- pp " generalize (spec_pos x); auto.";
- pp " generalize (Zdiv_small _ _ F2)";
- pp " (Zmod_small _ _ F2);";
- pp " unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto.";
- pp " generalize (spec_div_gt _ _ H0 H); auto.";
- pp " unfold Zdiv, Zmod; case Zdiv_eucl; case div_gt.";
- pp " intros a b c d (H1, H2); subst; auto.";
- pp " Qed.";
- pr "";
-
- pr " Definition div x y := fst (div_eucl x y).";
- pr "";
-
- pr " Theorem spec_div:";
- pr " forall x y, [div x y] = [x] / [y].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x y; unfold div; generalize (spec_div_eucl x y);";
- pp " case div_eucl; simpl fst.";
- pp " intros xx yy; unfold Zdiv; case Zdiv_eucl; intros qq rr H;";
- pp " injection H; auto.";
- pp " Qed.";
- pr "";
-
pr " (***************************************************************)";
pr " (* *)";
- pr " (* Modulo *)";
+ pr " (** * Modulo *)";
pr " (* *)";
pr " (***************************************************************)";
pr "";
@@ -2146,43 +1964,7 @@ let _ =
pp " Qed.";
pr "";
- pr " Definition modulo x y :=";
- pr " if eq_bool y zero then zero else";
- pr " match compare x y with";
- pr " | Eq => zero";
- pr " | Lt => x";
- pr " | Gt => mod_gt x y";
- pr " end.";
- pr "";
-
- pr " Theorem spec_modulo:";
- pr " forall x y, [modulo x y] = [x] mod [y].";
- pa " Admitted.";
- pp " Proof.";
- pp " assert (F0: [zero] = 0).";
- pp " exact (spec_0 w0_spec).";
- pp " assert (F1: [one] = 1).";
- pp " exact (spec_1 w0_spec).";
- pp " intros x y. unfold modulo.";
- pp " generalize (spec_eq_bool_aux y zero). destruct eq_bool; rewrite F0.";
- pp " intro H; rewrite H. destruct [x]; auto.";
- pp " intro H'.";
- pp " assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith).";
- pp " clear H'.";
- pp " generalize (spec_compare_aux x y); case compare; try rewrite F0;";
- pp " try rewrite F1; intros; try split; auto with zarith.";
- pp " rewrite H0; apply sym_equal; apply Z_mod_same; auto with zarith.";
- pp " apply sym_equal; apply Zmod_small; auto with zarith.";
- pp " generalize (spec_pos x); auto with zarith.";
- pp " apply spec_mod_gt; auto.";
- pp " Qed.";
- pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (* Gcd *)";
- pr " (* *)";
- pr " (***************************************************************)";
+ pr " (** digits: a measure for gcd *)";
pr "";
pr " Definition digits x :=";
@@ -2207,180 +1989,9 @@ let _ =
pp " Qed.";
pr "";
- pr " Definition gcd_gt_body a b cont :=";
- pr " match compare b zero with";
- pr " | Gt =>";
- pr " let r := mod_gt a b in";
- pr " match compare r zero with";
- pr " | Gt => cont r (mod_gt b r)";
- pr " | _ => b";
- pr " end";
- pr " | _ => a";
- pr " end.";
- pr "";
-
- pp " Theorem Zspec_gcd_gt_body: forall a b cont p,";
- pp " [a] > [b] -> [a] < 2 ^ p ->";
- pp " (forall a1 b1, [a1] < 2 ^ (p - 1) -> [a1] > [b1] ->";
- pp " Zis_gcd [a1] [b1] [cont a1 b1]) ->";
- pp " Zis_gcd [a] [b] [gcd_gt_body a b cont].";
- pp " Proof.";
- pp " assert (F1: [zero] = 0).";
- pp " unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto.";
- pp " intros a b cont p H2 H3 H4; unfold gcd_gt_body.";
- pp " generalize (spec_compare_aux b zero); case compare; try rewrite F1.";
- pp " intros HH; rewrite HH; apply Zis_gcd_0.";
- pp " intros HH; absurd (0 <= [b]); auto with zarith.";
- pp " case (spec_digits b); auto with zarith.";
- pp " intros H5; generalize (spec_compare_aux (mod_gt a b) zero);";
- pp " case compare; try rewrite F1.";
- pp " intros H6; rewrite <- (Zmult_1_r [b]).";
- pp " rewrite (Z_div_mod_eq [a] [b]); auto with zarith.";
- pp " rewrite <- spec_mod_gt; auto with zarith.";
- pp " rewrite H6; rewrite Zplus_0_r.";
- pp " apply Zis_gcd_mult; apply Zis_gcd_1.";
- pp " intros; apply False_ind.";
- pp " case (spec_digits (mod_gt a b)); auto with zarith.";
- pp " intros H6; apply DoubleDiv.Zis_gcd_mod; auto with zarith.";
- pp " apply DoubleDiv.Zis_gcd_mod; auto with zarith.";
- pp " rewrite <- spec_mod_gt; auto with zarith.";
- pp " assert (F2: [b] > [mod_gt a b]).";
- pp " case (Z_mod_lt [a] [b]); auto with zarith.";
- pp " repeat rewrite <- spec_mod_gt; auto with zarith.";
- pp " assert (F3: [mod_gt a b] > [mod_gt b (mod_gt a b)]).";
- pp " case (Z_mod_lt [b] [mod_gt a b]); auto with zarith.";
- pp " rewrite <- spec_mod_gt; auto with zarith.";
- pp " repeat rewrite <- spec_mod_gt; auto with zarith.";
- pp " apply H4; auto with zarith.";
- pp " apply Zmult_lt_reg_r with 2; auto with zarith.";
- pp " apply Zle_lt_trans with ([b] + [mod_gt a b]); auto with zarith.";
- pp " apply Zle_lt_trans with (([a]/[b]) * [b] + [mod_gt a b]); auto with zarith.";
- pp " apply Zplus_le_compat_r.";
- pp " pattern [b] at 1; rewrite <- (Zmult_1_l [b]).";
- pp " apply Zmult_le_compat_r; auto with zarith.";
- pp " case (Zle_lt_or_eq 0 ([a]/[b])); auto with zarith.";
- pp " intros HH; rewrite (Z_div_mod_eq [a] [b]) in H2;";
- pp " try rewrite <- HH in H2; auto with zarith.";
- pp " case (Z_mod_lt [a] [b]); auto with zarith.";
- pp " rewrite Zmult_comm; rewrite spec_mod_gt; auto with zarith.";
- pp " rewrite <- Z_div_mod_eq; auto with zarith.";
- pp " pattern 2 at 2; rewrite <- (Zpower_1_r 2).";
- pp " rewrite <- Zpower_exp; auto with zarith.";
- pp " ring_simplify (p - 1 + 1); auto.";
- pp " case (Zle_lt_or_eq 0 p); auto with zarith.";
- pp " generalize H3; case p; simpl Zpower; auto with zarith.";
- pp " intros HH; generalize H3; rewrite <- HH; simpl Zpower; auto with zarith.";
- pp " Qed.";
- pp "";
-
- pr " Fixpoint gcd_gt_aux (p:positive) (cont:t->t->t) (a b:t) {struct p} : t :=";
- pr " gcd_gt_body a b";
- pr " (fun a b =>";
- pr " match p with";
- pr " | xH => cont a b";
- pr " | xO p => gcd_gt_aux p (gcd_gt_aux p cont) a b";
- pr " | xI p => gcd_gt_aux p (gcd_gt_aux p cont) a b";
- pr " end).";
- pr "";
-
- pp " Theorem Zspec_gcd_gt_aux: forall p n a b cont,";
- pp " [a] > [b] -> [a] < 2 ^ (Zpos p + n) ->";
- pp " (forall a1 b1, [a1] < 2 ^ n -> [a1] > [b1] ->";
- pp " Zis_gcd [a1] [b1] [cont a1 b1]) ->";
- pp " Zis_gcd [a] [b] [gcd_gt_aux p cont a b].";
- pp " intros p; elim p; clear p.";
- pp " intros p Hrec n a b cont H2 H3 H4.";
- pp " unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xI p) + n); auto.";
- pp " intros a1 b1 H6 H7.";
- pp " apply Hrec with (Zpos p + n); auto.";
- pp " replace (Zpos p + (Zpos p + n)) with";
- pp " (Zpos (xI p) + n - 1); auto.";
- pp " rewrite Zpos_xI; ring.";
- pp " intros a2 b2 H9 H10.";
- pp " apply Hrec with n; auto.";
- pp " intros p Hrec n a b cont H2 H3 H4.";
- pp " unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xO p) + n); auto.";
- pp " intros a1 b1 H6 H7.";
- pp " apply Hrec with (Zpos p + n - 1); auto.";
- pp " replace (Zpos p + (Zpos p + n - 1)) with";
- pp " (Zpos (xO p) + n - 1); auto.";
- pp " rewrite Zpos_xO; ring.";
- pp " intros a2 b2 H9 H10.";
- pp " apply Hrec with (n - 1); auto.";
- pp " replace (Zpos p + (n - 1)) with";
- pp " (Zpos p + n - 1); auto with zarith.";
- pp " intros a3 b3 H12 H13; apply H4; auto with zarith.";
- pp " apply Zlt_le_trans with (1 := H12).";
- pp " case (Zle_or_lt 1 n); intros HH.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " apply Zle_trans with 0; auto with zarith.";
- pp " assert (HH1: n - 1 < 0); auto with zarith.";
- pp " generalize HH1; case (n - 1); auto with zarith.";
- pp " intros p1 HH2; discriminate.";
- pp " intros n a b cont H H2 H3.";
- pp " simpl gcd_gt_aux.";
- pp " apply Zspec_gcd_gt_body with (n + 1); auto with zarith.";
- pp " rewrite Zplus_comm; auto.";
- pp " intros a1 b1 H5 H6; apply H3; auto.";
- pp " replace n with (n + 1 - 1); auto; try ring.";
- pp " Qed.";
- pp "";
-
- pr " Definition gcd_cont a b :=";
- pr " match compare one b with";
- pr " | Eq => one";
- pr " | _ => a";
- pr " end.";
- pr "";
-
- pr " Definition gcd_gt a b := gcd_gt_aux (digits a) gcd_cont a b.";
- pr "";
-
- pr " Theorem spec_gcd_gt: forall a b,";
- pr " [a] > [b] -> [gcd_gt a b] = Zgcd [a] [b].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros a b H2.";
- pp " case (spec_digits (gcd_gt a b)); intros H3 H4.";
- pp " case (spec_digits a); intros H5 H6.";
- pp " apply sym_equal; apply Zis_gcd_gcd; auto with zarith.";
- pp " unfold gcd_gt; apply Zspec_gcd_gt_aux with 0; auto with zarith.";
- pp " intros a1 a2; rewrite Zpower_0_r.";
- pp " case (spec_digits a2); intros H7 H8;";
- pp " intros; apply False_ind; auto with zarith.";
- pp " Qed.";
- pr "";
-
- pr " Definition gcd a b :=";
- pr " match compare a b with";
- pr " | Eq => a";
- pr " | Lt => gcd_gt b a";
- pr " | Gt => gcd_gt a b";
- pr " end.";
- pr "";
-
- pr " Theorem spec_gcd: forall a b, [gcd a b] = Zgcd [a] [b].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros a b.";
- pp " case (spec_digits a); intros H1 H2.";
- pp " case (spec_digits b); intros H3 H4.";
- pp " unfold gcd; generalize (spec_compare_aux a b); case compare.";
- pp " intros HH; rewrite HH; apply sym_equal; apply Zis_gcd_gcd; auto.";
- pp " apply Zis_gcd_refl.";
- pp " intros; apply trans_equal with (Zgcd [b] [a]).";
- pp " apply spec_gcd_gt; auto with zarith.";
- pp " apply Zis_gcd_gcd; auto with zarith.";
- pp " apply Zgcd_is_pos.";
- pp " apply Zis_gcd_sym; apply Zgcd_is_gcd.";
- pp " intros; apply spec_gcd_gt; auto.";
- pp " Qed.";
- pr "";
-
-
pr " (***************************************************************)";
pr " (* *)";
- pr " (* Conversion *)";
+ pr " (** * Conversion *)";
pr " (* *)";
pr " (***************************************************************)";
pr "";
@@ -2473,27 +2084,9 @@ let _ =
pp " Qed.";
pr "";
- pr " Definition of_N x :=";
- pr " match x with";
- pr " | BinNat.N0 => zero";
- pr " | Npos p => of_pos p";
- pr " end.";
- pr "";
-
- pr " Theorem spec_of_N: forall x,";
- pr " [of_N x] = Z_of_N x.";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x.";
- pp " simpl of_N.";
- pp " unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto.";
- pp " intros p; exact (spec_of_pos p).";
- pp " Qed.";
- pr "";
-
pr " (***************************************************************)";
pr " (* *)";
- pr " (* Shift *)";
+ pr " (** * Shift *)";
pr " (* *)";
pr " (***************************************************************)";
pr "";
@@ -2757,35 +2350,6 @@ let _ =
pp " Qed.";
pr "";
- pr " Definition safe_shiftr n x :=";
- pr " match compare n (Ndigits x) with";
- pr " | Lt => shiftr n x";
- pr " | _ => %s0 w_0" c;
- pr " end.";
- pr "";
-
-
- pr " Theorem spec_safe_shiftr: forall n x,";
- pr " [safe_shiftr n x] = [x] / 2 ^ [n].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros n x; unfold safe_shiftr;";
- pp " generalize (spec_compare_aux n (Ndigits x)); case compare; intros H.";
- pp " apply trans_equal with (1 := spec_0 w0_spec).";
- pp " apply sym_equal; apply Zdiv_small; rewrite H.";
- pp " rewrite spec_Ndigits; exact (spec_digits x).";
- pp " rewrite <- spec_shiftr; auto with zarith.";
- pp " apply trans_equal with (1 := spec_0 w0_spec).";
- pp " apply sym_equal; apply Zdiv_small.";
- pp " rewrite spec_Ndigits in H; case (spec_digits x); intros H1 H2.";
- pp " split; auto.";
- pp " apply Zlt_le_trans with (1 := H2).";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " Qed.";
- pr "";
-
- pr "";
-
(* Shiftl *)
for i = 0 to size do
pr " Definition shiftl%i n x := w%i_op.(znz_add_mul_div) n x w%i_op.(znz_0)." i i i
@@ -3088,114 +2652,6 @@ let _ =
pp " Qed.";
pr "";
-
- (* Safe shiftl *)
-
- pr " Definition safe_shiftl_aux_body cont n x :=";
- pr " match compare n (head0 x) with";
- pr " Gt => cont n (double_size x)";
- pr " | _ => shiftl n x";
- pr " end.";
- pr "";
-
- pr " Theorem spec_safe_shift_aux_body: forall n p x cont,";
- pr " 2^ Zpos p <= [head0 x] ->";
- pr " (forall x, 2 ^ (Zpos p + 1) <= [head0 x]->";
- pr " [cont n x] = [x] * 2 ^ [n]) ->";
- pr " [safe_shiftl_aux_body cont n x] = [x] * 2 ^ [n].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros n p x cont H1 H2; unfold safe_shiftl_aux_body.";
- pp " generalize (spec_compare_aux n (head0 x)); case compare; intros H.";
- pp " apply spec_shiftl; auto with zarith.";
- pp " apply spec_shiftl; auto with zarith.";
- pp " rewrite H2.";
- pp " rewrite spec_double_size; auto.";
- pp " rewrite Zplus_comm; rewrite Zpower_exp; auto with zarith.";
- pp " apply Zle_trans with (2 := spec_double_size_head0 x).";
- pp " rewrite Zpower_1_r; apply Zmult_le_compat_l; auto with zarith.";
- pp " Qed.";
- pr "";
-
- pr " Fixpoint safe_shiftl_aux p cont n x {struct p} :=";
- pr " safe_shiftl_aux_body";
- pr " (fun n x => match p with";
- pr " | xH => cont n x";
- pr " | xO p => safe_shiftl_aux p (safe_shiftl_aux p cont) n x";
- pr " | xI p => safe_shiftl_aux p (safe_shiftl_aux p cont) n x";
- pr " end) n x.";
- pr "";
-
- pr " Theorem spec_safe_shift_aux: forall p q n x cont,";
- pr " 2 ^ (Zpos q) <= [head0 x] ->";
- pr " (forall x, 2 ^ (Zpos p + Zpos q) <= [head0 x] ->";
- pr " [cont n x] = [x] * 2 ^ [n]) ->";
- pr " [safe_shiftl_aux p cont n x] = [x] * 2 ^ [n].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros p; elim p; unfold safe_shiftl_aux; fold safe_shiftl_aux; clear p.";
- pp " intros p Hrec q n x cont H1 H2.";
- pp " apply spec_safe_shift_aux_body with (q); auto.";
- pp " intros x1 H3; apply Hrec with (q + 1)%spositive; auto." "%";
- pp " intros x2 H4; apply Hrec with (p + q + 1)%spositive; auto." "%";
- pp " rewrite <- Pplus_assoc.";
- pp " rewrite Zpos_plus_distr; auto.";
- pp " intros x3 H5; apply H2.";
- pp " rewrite Zpos_xI.";
- pp " replace (2 * Zpos p + 1 + Zpos q) with (Zpos p + Zpos (p + q + 1));";
- pp " auto.";
- pp " repeat rewrite Zpos_plus_distr; ring.";
- pp " intros p Hrec q n x cont H1 H2.";
- pp " apply spec_safe_shift_aux_body with (q); auto.";
- pp " intros x1 H3; apply Hrec with (q); auto.";
- pp " apply Zle_trans with (2 := H3); auto with zarith.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " intros x2 H4; apply Hrec with (p + q)%spositive; auto." "%";
- pp " intros x3 H5; apply H2.";
- pp " rewrite (Zpos_xO p).";
- pp " replace (2 * Zpos p + Zpos q) with (Zpos p + Zpos (p + q));";
- pp " auto.";
- pp " repeat rewrite Zpos_plus_distr; ring.";
- pp " intros q n x cont H1 H2.";
- pp " apply spec_safe_shift_aux_body with (q); auto.";
- pp " rewrite Zplus_comm; auto.";
- pp " Qed.";
- pr "";
-
-
- pr " Definition safe_shiftl n x :=";
- pr " safe_shiftl_aux_body";
- pr " (safe_shiftl_aux_body";
- pr " (safe_shiftl_aux (digits n) shiftl)) n x.";
- pr "";
-
- pr " Theorem spec_safe_shift: forall n x,";
- pr " [safe_shiftl n x] = [x] * 2 ^ [n].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros n x; unfold safe_shiftl, safe_shiftl_aux_body.";
- pp " generalize (spec_compare_aux n (head0 x)); case compare; intros H.";
- pp " apply spec_shiftl; auto with zarith.";
- pp " apply spec_shiftl; auto with zarith.";
- pp " rewrite <- (spec_double_size x).";
- pp " generalize (spec_compare_aux n (head0 (double_size x))); case compare; intros H1.";
- pp " apply spec_shiftl; auto with zarith.";
- pp " apply spec_shiftl; auto with zarith.";
- pp " rewrite <- (spec_double_size (double_size x)).";
- pp " apply spec_safe_shift_aux with 1%spositive." "%";
- pp " apply Zle_trans with (2 := spec_double_size_head0 (double_size x)).";
- pp " replace (2 ^ 1) with (2 * 1).";
- pp " apply Zmult_le_compat_l; auto with zarith.";
- pp " generalize (spec_double_size_head0_pos x); auto with zarith.";
- pp " rewrite Zpower_1_r; ring.";
- pp " intros x1 H2; apply spec_shiftl.";
- pp " apply Zle_trans with (2 := H2).";
- pp " apply Zle_trans with (2 ^ Zpos (digits n)); auto with zarith.";
- pp " case (spec_digits n); auto with zarith.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " Qed.";
- pr "";
-
(* even *)
pr " Definition is_even x :=";
pr " match x with";
@@ -3219,20 +2675,6 @@ let _ =
pp " Qed.";
pr "";
- pr " Theorem spec_0: [zero] = 0.";
- pa " Admitted.";
- pp " Proof.";
- pp " exact (spec_0 w0_spec).";
- pp " Qed.";
- pr "";
-
- pr " Theorem spec_1: [one] = 1.";
- pa " Admitted.";
- pp " Proof.";
- pp " exact (spec_1 w0_spec).";
- pp " Qed.";
- pr "";
-
pr "End Make.";
pr "";
diff --git a/theories/Numbers/vo.itarget b/theories/Numbers/vo.itarget
index 25f8570baa..175a15e926 100644
--- a/theories/Numbers/vo.itarget
+++ b/theories/Numbers/vo.itarget
@@ -58,6 +58,7 @@ Natural/Abstract/NProperties.vo
Natural/Abstract/NDiv.vo
Natural/BigN/BigN.vo
Natural/BigN/Nbasic.vo
+Natural/BigN/NMake_gen.vo
Natural/BigN/NMake.vo
Natural/Binary/NBinary.vo
Natural/Peano/NPeano.vo