aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorClément Pit-Claudel2018-05-16 21:24:47 -0400
committerThéo Zimmermann2018-09-20 10:12:55 +0200
commita63bc54bfd697e76182044a8515818fa8f92e849 (patch)
treef1c0b461365586c855e94db7277683dcbe753fea
parentb627c7242d71c834e7a06353ced967c43598e344 (diff)
[doc] Fix a few LaTeX mistakes
-rw-r--r--doc/sphinx/language/cic.rst26
-rw-r--r--doc/sphinx/practical-tools/coqide.rst2
2 files changed, 16 insertions, 12 deletions
diff --git a/doc/sphinx/language/cic.rst b/doc/sphinx/language/cic.rst
index ac0f0f8ea6..13d6e228a6 100644
--- a/doc/sphinx/language/cic.rst
+++ b/doc/sphinx/language/cic.rst
@@ -1010,7 +1010,7 @@ the Type hierarchy.
It is possible to declare the same inductive definition in the
universe :math:`\Type`. The :g:`exType` inductive definition has type
- :math:`(\Type(i)→\Prop)→\Type(j)` with the constraint that the parameter :math:`X` of :math:`\kw{exT_intro}`
+ :math:`(\Type(i)→\Prop)→\Type(j)` with the constraint that the parameter :math:`X` of :math:`\kw{exT}_{\kw{intro}}`
has type :math:`\Type(k)` with :math:`k<j` and :math:`k≤ i`.
.. coqtop:: all
@@ -1264,14 +1264,14 @@ The |Coq| term for this proof
will be written:
.. math::
- \Match~m~\with~(c_1~x_{11} ... x_{1p_1} ) ⇒ f_1 | … | (c_n~x_{n1} ... x_{np_n} ) ⇒ f_n \endkw
+ \Match~m~\with~(c_1~x_{11} ... x_{1p_1} ) ⇒ f_1 | … | (c_n~x_{n1} ... x_{np_n} ) ⇒ f_n \kwend
In this expression, if :math:`m` eventually happens to evaluate to
:math:`(c_i~u_1 … u_{p_i})` then the expression will behave as specified in its :math:`i`-th branch
and it will reduce to :math:`f_i` where the :math:`x_{i1} …x_{ip_i}` are replaced by the
:math:`u_1 … u_{p_i}` according to the ι-reduction.
-Actually, for type checking a :math:`\Match…\with…\endkw` expression we also need
+Actually, for type checking a :math:`\Match…\with…\kwend` expression we also need
to know the predicate P to be proved by case analysis. In the general
case where :math:`I` is an inductively defined :math:`n`-ary relation, :math:`P` is a predicate
over :math:`n+1` arguments: the :math:`n` first ones correspond to the arguments of :math:`I`
@@ -1285,7 +1285,7 @@ using the syntax:
.. math::
\Match~m~\as~x~\In~I~\_~a~\return~P~\with~
(c_1~x_{11} ... x_{1p_1} ) ⇒ f_1 | …
- | (c_n~x_{n1} ... x_{np_n} ) ⇒ f_n~\endkw
+ | (c_n~x_{n1} ... x_{np_n} ) ⇒ f_n~\kwend
The :math:`\as` part can be omitted if either the result type does not depend
on :math:`m` (non-dependent elimination) or :math:`m` is a variable (in this case, :math:`m`
@@ -1471,6 +1471,8 @@ We write :math:`\{c\}^P` for :math:`\{c:C\}^P` with :math:`C` the type of :math:
where
.. math::
+ :nowrap:
+
\begin{eqnarray*}
P & = & \lambda~l~.~P^\prime\\
f_1 & = & t_1\\
@@ -1711,13 +1713,15 @@ for primitive recursive operators. The following reductions are now
possible:
.. math::
- \def\plus{\mathsf{plus}}
- \def\tri{\triangleright_\iota}
- \begin{eqnarray*}
- \plus~(\nS~(\nS~\nO))~(\nS~\nO) & \tri & \nS~(\plus~(\nS~\nO)~(\nS~\nO))\\
- & \tri & \nS~(\nS~(\plus~\nO~(\nS~\nO)))\\
- & \tri & \nS~(\nS~(\nS~\nO))\\
- \end{eqnarray*}
+ :nowrap:
+
+ {\def\plus{\mathsf{plus}}
+ \def\tri{\triangleright_\iota}
+ \begin{eqnarray*}
+ \plus~(\nS~(\nS~\nO))~(\nS~\nO) & \tri & \nS~(\plus~(\nS~\nO)~(\nS~\nO))\\
+ & \tri & \nS~(\nS~(\plus~\nO~(\nS~\nO)))\\
+ & \tri & \nS~(\nS~(\nS~\nO))\\
+ \end{eqnarray*}}
.. _Mutual-induction:
diff --git a/doc/sphinx/practical-tools/coqide.rst b/doc/sphinx/practical-tools/coqide.rst
index bc6a074a27..e8fc29dece 100644
--- a/doc/sphinx/practical-tools/coqide.rst
+++ b/doc/sphinx/practical-tools/coqide.rst
@@ -263,7 +263,7 @@ for the ∀ symbol. A list of symbol codes is available at
An alternative method which does not require to know the hexadecimal
code of the character is to use an Input Method Editor. On POSIX
systems (Linux distributions, BSD variants and MacOS X), you can
-use `uim` version 1.6 or later which provides a :math:`\LaTeX`-style input
+use `uim` version 1.6 or later which provides a LaTeX-style input
method.
To configure uim, execute uim-pref-gtk as your regular user. In the