diff options
| author | Clément Pit-Claudel | 2018-05-16 21:24:47 -0400 |
|---|---|---|
| committer | Théo Zimmermann | 2018-09-20 10:12:55 +0200 |
| commit | a63bc54bfd697e76182044a8515818fa8f92e849 (patch) | |
| tree | f1c0b461365586c855e94db7277683dcbe753fea | |
| parent | b627c7242d71c834e7a06353ced967c43598e344 (diff) | |
[doc] Fix a few LaTeX mistakes
| -rw-r--r-- | doc/sphinx/language/cic.rst | 26 | ||||
| -rw-r--r-- | doc/sphinx/practical-tools/coqide.rst | 2 |
2 files changed, 16 insertions, 12 deletions
diff --git a/doc/sphinx/language/cic.rst b/doc/sphinx/language/cic.rst index ac0f0f8ea6..13d6e228a6 100644 --- a/doc/sphinx/language/cic.rst +++ b/doc/sphinx/language/cic.rst @@ -1010,7 +1010,7 @@ the Type hierarchy. It is possible to declare the same inductive definition in the universe :math:`\Type`. The :g:`exType` inductive definition has type - :math:`(\Type(i)→\Prop)→\Type(j)` with the constraint that the parameter :math:`X` of :math:`\kw{exT_intro}` + :math:`(\Type(i)→\Prop)→\Type(j)` with the constraint that the parameter :math:`X` of :math:`\kw{exT}_{\kw{intro}}` has type :math:`\Type(k)` with :math:`k<j` and :math:`k≤ i`. .. coqtop:: all @@ -1264,14 +1264,14 @@ The |Coq| term for this proof will be written: .. math:: - \Match~m~\with~(c_1~x_{11} ... x_{1p_1} ) ⇒ f_1 | … | (c_n~x_{n1} ... x_{np_n} ) ⇒ f_n \endkw + \Match~m~\with~(c_1~x_{11} ... x_{1p_1} ) ⇒ f_1 | … | (c_n~x_{n1} ... x_{np_n} ) ⇒ f_n \kwend In this expression, if :math:`m` eventually happens to evaluate to :math:`(c_i~u_1 … u_{p_i})` then the expression will behave as specified in its :math:`i`-th branch and it will reduce to :math:`f_i` where the :math:`x_{i1} …x_{ip_i}` are replaced by the :math:`u_1 … u_{p_i}` according to the ι-reduction. -Actually, for type checking a :math:`\Match…\with…\endkw` expression we also need +Actually, for type checking a :math:`\Match…\with…\kwend` expression we also need to know the predicate P to be proved by case analysis. In the general case where :math:`I` is an inductively defined :math:`n`-ary relation, :math:`P` is a predicate over :math:`n+1` arguments: the :math:`n` first ones correspond to the arguments of :math:`I` @@ -1285,7 +1285,7 @@ using the syntax: .. math:: \Match~m~\as~x~\In~I~\_~a~\return~P~\with~ (c_1~x_{11} ... x_{1p_1} ) ⇒ f_1 | … - | (c_n~x_{n1} ... x_{np_n} ) ⇒ f_n~\endkw + | (c_n~x_{n1} ... x_{np_n} ) ⇒ f_n~\kwend The :math:`\as` part can be omitted if either the result type does not depend on :math:`m` (non-dependent elimination) or :math:`m` is a variable (in this case, :math:`m` @@ -1471,6 +1471,8 @@ We write :math:`\{c\}^P` for :math:`\{c:C\}^P` with :math:`C` the type of :math: where .. math:: + :nowrap: + \begin{eqnarray*} P & = & \lambda~l~.~P^\prime\\ f_1 & = & t_1\\ @@ -1711,13 +1713,15 @@ for primitive recursive operators. The following reductions are now possible: .. math:: - \def\plus{\mathsf{plus}} - \def\tri{\triangleright_\iota} - \begin{eqnarray*} - \plus~(\nS~(\nS~\nO))~(\nS~\nO) & \tri & \nS~(\plus~(\nS~\nO)~(\nS~\nO))\\ - & \tri & \nS~(\nS~(\plus~\nO~(\nS~\nO)))\\ - & \tri & \nS~(\nS~(\nS~\nO))\\ - \end{eqnarray*} + :nowrap: + + {\def\plus{\mathsf{plus}} + \def\tri{\triangleright_\iota} + \begin{eqnarray*} + \plus~(\nS~(\nS~\nO))~(\nS~\nO) & \tri & \nS~(\plus~(\nS~\nO)~(\nS~\nO))\\ + & \tri & \nS~(\nS~(\plus~\nO~(\nS~\nO)))\\ + & \tri & \nS~(\nS~(\nS~\nO))\\ + \end{eqnarray*}} .. _Mutual-induction: diff --git a/doc/sphinx/practical-tools/coqide.rst b/doc/sphinx/practical-tools/coqide.rst index bc6a074a27..e8fc29dece 100644 --- a/doc/sphinx/practical-tools/coqide.rst +++ b/doc/sphinx/practical-tools/coqide.rst @@ -263,7 +263,7 @@ for the ∀ symbol. A list of symbol codes is available at An alternative method which does not require to know the hexadecimal code of the character is to use an Input Method Editor. On POSIX systems (Linux distributions, BSD variants and MacOS X), you can -use `uim` version 1.6 or later which provides a :math:`\LaTeX`-style input +use `uim` version 1.6 or later which provides a LaTeX-style input method. To configure uim, execute uim-pref-gtk as your regular user. In the |
