aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorVincent Laporte2019-10-10 13:37:12 +0000
committerVincent Laporte2019-10-22 06:39:10 +0000
commita357060331b8806fc2a493e2abc426109f9522a6 (patch)
tree48970154f18f936c0f023900cb7eb1e972a1ad45
parent956889d99f58cc63544fca70d81c3242860c7222 (diff)
OrderedTypeEx: do not use “omega”
-rw-r--r--theories/Structures/OrderedTypeEx.v7
1 files changed, 3 insertions, 4 deletions
diff --git a/theories/Structures/OrderedTypeEx.v b/theories/Structures/OrderedTypeEx.v
index a8e6993a63..cc216b21f8 100644
--- a/theories/Structures/OrderedTypeEx.v
+++ b/theories/Structures/OrderedTypeEx.v
@@ -12,7 +12,6 @@ Require Import OrderedType.
Require Import ZArith.
Require Import PeanoNat.
Require Import Ascii String.
-Require Import Omega.
Require Import NArith Ndec.
Require Import Compare_dec.
@@ -55,7 +54,7 @@ Module Nat_as_OT <: UsualOrderedType.
Proof. unfold lt; intros; apply lt_trans with y; auto. Qed.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
- Proof. unfold lt, eq; intros; omega. Qed.
+ Proof. unfold lt, eq; intros ? ? LT ->; revert LT; apply Nat.lt_irrefl. Qed.
Definition compare x y : Compare lt eq x y.
Proof.
@@ -85,10 +84,10 @@ Module Z_as_OT <: UsualOrderedType.
Definition lt (x y:Z) := (x<y).
Lemma lt_trans : forall x y z, x<y -> y<z -> x<z.
- Proof. intros; omega. Qed.
+ Proof. exact Z.lt_trans. Qed.
Lemma lt_not_eq : forall x y, x<y -> ~ x=y.
- Proof. intros; omega. Qed.
+ Proof. intros x y LT ->; revert LT; apply Z.lt_irrefl. Qed.
Definition compare x y : Compare lt eq x y.
Proof.