diff options
| author | Maxime Dénès | 2015-06-30 16:39:26 +0200 |
|---|---|---|
| committer | Maxime Dénès | 2015-06-30 16:39:26 +0200 |
| commit | a28d9981e5baf812de14e62de8d904e545e804e5 (patch) | |
| tree | c5cd04344242c7adf0b8b43dc1f4abec3c109d05 | |
| parent | 319f1dfc8c316c79d068e18c58711a66b66db4ef (diff) | |
Another missing Fail and comment in test-suite.
| -rw-r--r-- | test-suite/success/decl_mode2.v | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/test-suite/success/decl_mode2.v b/test-suite/success/decl_mode2.v index edee439f00..3ed622bf7f 100644 --- a/test-suite/success/decl_mode2.v +++ b/test-suite/success/decl_mode2.v @@ -146,7 +146,7 @@ Abort. Theorem T: forall (P:nat -> Prop), forall x, P x -> P x. proof. let P:(nat -> Prop). -let x. (* fails because x's type is not clear *) +Fail let x. (* fails because x's type is not clear *) let x be such that HP:(P x). (* here x's type is inferred from (P x) *) Abort. @@ -169,7 +169,7 @@ let P:(nat -> Prop),A:Prop be such that H:(exists x, P x /\ A). consider x such that HP:(P x) and HA:A from H. Abort. -Here is an example with pairs: +(* Here is an example with pairs: *) Theorem T: forall p:(nat * nat)%type, (fst p >= snd p) \/ (fst p < snd p). proof. @@ -243,4 +243,4 @@ suppose it is (S m) and H:thesis for m. then (S (m + 0) = S m). thus =~ (S m + 0). end induction. -Abort. +Abort.
\ No newline at end of file |
