aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorVincent Laporte2018-09-11 14:32:22 +0200
committerVincent Laporte2018-09-25 09:45:55 +0000
commita1f10626bed1db14ce116e9201ed05dadfc366b4 (patch)
treee8f35a49caa3a8b8f6c96a84344fd666401a17e9
parent7eb8a7eb8d23ffaf149f71a46fb1b089b90db7f8 (diff)
Remove romega
-rw-r--r--CHANGES4
-rw-r--r--META.coq.in12
-rw-r--r--Makefile.common5
-rw-r--r--Makefile.dev3
-rw-r--r--dev/ocamldebug-coq.run2
-rw-r--r--dev/v8-syntax/syntax-v8.tex2
-rw-r--r--doc/sphinx/addendum/micromega.rst13
-rw-r--r--doc/sphinx/addendum/omega.rst7
-rw-r--r--plugins/btauto/Reflect.v2
-rw-r--r--plugins/romega/README6
-rw-r--r--plugins/romega/ROmega.v14
-rw-r--r--plugins/romega/ReflOmegaCore.v1874
-rw-r--r--plugins/romega/const_omega.ml332
-rw-r--r--plugins/romega/const_omega.mli124
-rw-r--r--plugins/romega/g_romega.mlg63
-rw-r--r--plugins/romega/plugin_base.dune5
-rw-r--r--plugins/romega/refl_omega.ml1071
-rw-r--r--plugins/romega/romega_plugin.mlpack3
-rw-r--r--test-suite/bugs/closed/4717.v4
-rw-r--r--test-suite/success/ROmega.v29
-rw-r--r--test-suite/success/ROmega0.v76
-rw-r--r--test-suite/success/ROmega2.v8
-rw-r--r--test-suite/success/ROmega3.v8
-rw-r--r--test-suite/success/ROmegaPre.v50
24 files changed, 102 insertions, 3615 deletions
diff --git a/CHANGES b/CHANGES
index 87cf86e1eb..45dba33a90 100644
--- a/CHANGES
+++ b/CHANGES
@@ -8,6 +8,10 @@ Plugins
externally, the Coq development team can provide assistance for extracting
the plugin and setting up a new repository.
+Tactics
+
+- Removed the deprecated `romega` tactics.
+
Changes from 8.8.2 to 8.9+beta1
===============================
diff --git a/META.coq.in b/META.coq.in
index a7bf08ec49..1ccde1338f 100644
--- a/META.coq.in
+++ b/META.coq.in
@@ -301,18 +301,6 @@ package "plugins" (
archive(native) = "omega_plugin.cmx"
)
- package "romega" (
-
- description = "Coq romega plugin"
- version = "8.10"
-
- requires = "coq.plugins.omega"
- directory = "romega"
-
- archive(byte) = "romega_plugin.cmo"
- archive(native) = "romega_plugin.cmx"
- )
-
package "micromega" (
description = "Coq micromega plugin"
diff --git a/Makefile.common b/Makefile.common
index 69dea1d284..f90919a4bc 100644
--- a/Makefile.common
+++ b/Makefile.common
@@ -95,7 +95,7 @@ CORESRCDIRS:=\
tactics vernac stm toplevel
PLUGINDIRS:=\
- omega romega micromega \
+ omega micromega \
setoid_ring extraction \
cc funind firstorder derive \
rtauto nsatz syntax btauto \
@@ -129,7 +129,6 @@ GRAMMARCMA:=grammar/grammar.cma
###########################################################################
OMEGACMO:=plugins/omega/omega_plugin.cmo
-ROMEGACMO:=plugins/romega/romega_plugin.cmo
MICROMEGACMO:=plugins/micromega/micromega_plugin.cmo
RINGCMO:=plugins/setoid_ring/newring_plugin.cmo
NSATZCMO:=plugins/nsatz/nsatz_plugin.cmo
@@ -150,7 +149,7 @@ LTACCMO:=plugins/ltac/ltac_plugin.cmo plugins/ltac/tauto_plugin.cmo
SSRMATCHINGCMO:=plugins/ssrmatching/ssrmatching_plugin.cmo
SSRCMO:=plugins/ssr/ssreflect_plugin.cmo
-PLUGINSCMO:=$(LTACCMO) $(OMEGACMO) $(ROMEGACMO) $(MICROMEGACMO) \
+PLUGINSCMO:=$(LTACCMO) $(OMEGACMO) $(MICROMEGACMO) \
$(RINGCMO) \
$(EXTRACTIONCMO) \
$(CCCMO) $(FOCMO) $(RTAUTOCMO) $(BTAUTOCMO) \
diff --git a/Makefile.dev b/Makefile.dev
index 2a7e61126a..82b81908ac 100644
--- a/Makefile.dev
+++ b/Makefile.dev
@@ -169,7 +169,6 @@ noreal: unicode logic arith bool zarith qarith lists sets fsets \
################
OMEGAVO:=$(filter plugins/omega/%, $(PLUGINSVO))
-ROMEGAVO:=$(filter plugins/romega/%, $(PLUGINSVO))
MICROMEGAVO:=$(filter plugins/micromega/%, $(PLUGINSVO))
RINGVO:=$(filter plugins/setoid_ring/%, $(PLUGINSVO))
NSATZVO:=$(filter plugins/nsatz/%, $(PLUGINSVO))
@@ -181,7 +180,7 @@ CCVO:=
DERIVEVO:=$(filter plugins/derive/%, $(PLUGINSVO))
LTACVO:=$(filter plugins/ltac/%, $(PLUGINSVO))
-omega: $(OMEGAVO) $(OMEGACMO) $(ROMEGAVO) $(ROMEGACMO)
+omega: $(OMEGAVO) $(OMEGACMO)
micromega: $(MICROMEGAVO) $(MICROMEGACMO) $(CSDPCERT)
setoid_ring: $(RINGVO) $(RINGCMO)
nsatz: $(NSATZVO) $(NSATZCMO)
diff --git a/dev/ocamldebug-coq.run b/dev/ocamldebug-coq.run
index bccd3fefb4..85bb04efe0 100644
--- a/dev/ocamldebug-coq.run
+++ b/dev/ocamldebug-coq.run
@@ -37,7 +37,7 @@ if [ -z "$GUESS_CHECKER" ]; then
-I $COQTOP/plugins/funind -I $COQTOP/plugins/groebner \
-I $COQTOP/plugins/interface -I $COQTOP/plugins/micromega \
-I $COQTOP/plugins/omega -I $COQTOP/plugins/quote \
- -I $COQTOP/plugins/ring -I $COQTOP/plugins/romega \
+ -I $COQTOP/plugins/ring \
-I $COQTOP/plugins/rtauto -I $COQTOP/plugins/setoid_ring \
-I $COQTOP/plugins/subtac -I $COQTOP/plugins/syntax \
-I $COQTOP/plugins/xml -I $COQTOP/plugins/ltac \
diff --git a/dev/v8-syntax/syntax-v8.tex b/dev/v8-syntax/syntax-v8.tex
index 6b7960c92f..dd3908c25f 100644
--- a/dev/v8-syntax/syntax-v8.tex
+++ b/dev/v8-syntax/syntax-v8.tex
@@ -765,8 +765,6 @@ Conflicts exists between integers and constrs.
%% plugins/ring
\nlsep \TERM{quote}~\NT{ident}~\OPTGR{\KWD{[}~\PLUS{\NT{ident}}~\KWD{]}}
\nlsep \TERM{ring}~\STAR{\tacconstr}
-%% plugins/romega
-\nlsep \TERM{romega}
\SEPDEF
\DEFNT{orient}
\KWD{$\rightarrow$}~\mid~\KWD{$\leftarrow$}
diff --git a/doc/sphinx/addendum/micromega.rst b/doc/sphinx/addendum/micromega.rst
index d03a31c044..3b9760f586 100644
--- a/doc/sphinx/addendum/micromega.rst
+++ b/doc/sphinx/addendum/micromega.rst
@@ -112,11 +112,11 @@ and checked to be :math:`-1`.
.. tacn:: lia
:name: lia
-This tactic offers an alternative to the :tacn:`omega` and :tacn:`romega`
-tactics. Roughly speaking, the deductive power of lia is the combined deductive
-power of :tacn:`ring_simplify` and :tacn:`omega`. However, it solves linear
-goals that :tacn:`omega` and :tacn:`romega` do not solve, such as the following
-so-called *omega nightmare* :cite:`TheOmegaPaper`.
+ This tactic offers an alternative to the :tacn:`omega` tactic. Roughly
+ speaking, the deductive power of lia is the combined deductive power of
+ :tacn:`ring_simplify` and :tacn:`omega`. However, it solves linear goals
+ that :tacn:`omega` does not solve, such as the following so-called *omega
+ nightmare* :cite:`TheOmegaPaper`.
.. coqtop:: in
@@ -124,8 +124,7 @@ so-called *omega nightmare* :cite:`TheOmegaPaper`.
27 <= 11 * x + 13 * y <= 45 ->
-10 <= 7 * x - 9 * y <= 4 -> False.
-The estimation of the relative efficiency of :tacn:`lia` *vs* :tacn:`omega` and
-:tacn:`romega` is under evaluation.
+The estimation of the relative efficiency of :tacn:`lia` *vs* :tacn:`omega` is under evaluation.
High level view of `lia`
~~~~~~~~~~~~~~~~~~~~~~~~
diff --git a/doc/sphinx/addendum/omega.rst b/doc/sphinx/addendum/omega.rst
index 828505b850..03d4f148e3 100644
--- a/doc/sphinx/addendum/omega.rst
+++ b/doc/sphinx/addendum/omega.rst
@@ -23,13 +23,6 @@ Description of ``omega``
If the tactic cannot solve the goal, it fails with an error message.
In any case, the computation eventually stops.
-.. tacv:: romega
- :name: romega
-
- .. deprecated:: 8.9
-
- Use :tacn:`lia` instead.
-
Arithmetical goals recognized by ``omega``
------------------------------------------
diff --git a/plugins/btauto/Reflect.v b/plugins/btauto/Reflect.v
index 3bd7cd622c..d82e8ae8ad 100644
--- a/plugins/btauto/Reflect.v
+++ b/plugins/btauto/Reflect.v
@@ -1,4 +1,4 @@
-Require Import Bool DecidableClass Algebra Ring PArith ROmega Omega.
+Require Import Bool DecidableClass Algebra Ring PArith Omega.
Section Bool.
diff --git a/plugins/romega/README b/plugins/romega/README
deleted file mode 100644
index 86c9e58afd..0000000000
--- a/plugins/romega/README
+++ /dev/null
@@ -1,6 +0,0 @@
-This work was done for the RNRT Project Calife.
-As such it is distributed under the LGPL licence.
-
-Report bugs to :
- pierre.cregut@francetelecom.com
-
diff --git a/plugins/romega/ROmega.v b/plugins/romega/ROmega.v
deleted file mode 100644
index 657aae90e8..0000000000
--- a/plugins/romega/ROmega.v
+++ /dev/null
@@ -1,14 +0,0 @@
-(*************************************************************************
-
- PROJET RNRT Calife - 2001
- Author: Pierre Crégut - France Télécom R&D
- Licence : LGPL version 2.1
-
- *************************************************************************)
-
-Require Import ReflOmegaCore.
-Require Export Setoid.
-Require Export PreOmega.
-Require Export ZArith_base.
-Require Import OmegaPlugin.
-Declare ML Module "romega_plugin".
diff --git a/plugins/romega/ReflOmegaCore.v b/plugins/romega/ReflOmegaCore.v
deleted file mode 100644
index da86f4274d..0000000000
--- a/plugins/romega/ReflOmegaCore.v
+++ /dev/null
@@ -1,1874 +0,0 @@
-(* -*- coding: utf-8 -*- *)
-(*************************************************************************
-
- PROJET RNRT Calife - 2001
- Author: Pierre Crégut - France Télécom R&D
- Licence du projet : LGPL version 2.1
-
- *************************************************************************)
-
-Require Import List Bool Sumbool EqNat Setoid Ring_theory Decidable ZArith_base.
-Declare Scope Int_scope.
-Delimit Scope Int_scope with I.
-
-(** * Abstract Integers. *)
-
-Module Type Int.
-
- Parameter t : Set.
-
- Bind Scope Int_scope with t.
-
- Parameter Inline zero : t.
- Parameter Inline one : t.
- Parameter Inline plus : t -> t -> t.
- Parameter Inline opp : t -> t.
- Parameter Inline minus : t -> t -> t.
- Parameter Inline mult : t -> t -> t.
-
- Notation "0" := zero : Int_scope.
- Notation "1" := one : Int_scope.
- Infix "+" := plus : Int_scope.
- Infix "-" := minus : Int_scope.
- Infix "*" := mult : Int_scope.
- Notation "- x" := (opp x) : Int_scope.
-
- Open Scope Int_scope.
-
- (** First, Int is a ring: *)
- Axiom ring : @ring_theory t 0 1 plus mult minus opp (@eq t).
-
- (** Int should also be ordered: *)
-
- Parameter Inline le : t -> t -> Prop.
- Parameter Inline lt : t -> t -> Prop.
- Parameter Inline ge : t -> t -> Prop.
- Parameter Inline gt : t -> t -> Prop.
- Notation "x <= y" := (le x y): Int_scope.
- Notation "x < y" := (lt x y) : Int_scope.
- Notation "x >= y" := (ge x y) : Int_scope.
- Notation "x > y" := (gt x y): Int_scope.
- Axiom le_lt_iff : forall i j, (i<=j) <-> ~(j<i).
- Axiom ge_le_iff : forall i j, (i>=j) <-> (j<=i).
- Axiom gt_lt_iff : forall i j, (i>j) <-> (j<i).
-
- (** Basic properties of this order *)
- Axiom lt_trans : forall i j k, i<j -> j<k -> i<k.
- Axiom lt_not_eq : forall i j, i<j -> i<>j.
-
- (** Compatibilities *)
- Axiom lt_0_1 : 0<1.
- Axiom plus_le_compat : forall i j k l, i<=j -> k<=l -> i+k<=j+l.
- Axiom opp_le_compat : forall i j, i<=j -> (-j)<=(-i).
- Axiom mult_lt_compat_l :
- forall i j k, 0 < k -> i < j -> k*i<k*j.
-
- (** We should have a way to decide the equality and the order*)
- Parameter compare : t -> t -> comparison.
- Infix "?=" := compare (at level 70, no associativity) : Int_scope.
- Axiom compare_Eq : forall i j, compare i j = Eq <-> i=j.
- Axiom compare_Lt : forall i j, compare i j = Lt <-> i<j.
- Axiom compare_Gt : forall i j, compare i j = Gt <-> i>j.
-
- (** Up to here, these requirements could be fulfilled
- by any totally ordered ring. Let's now be int-specific: *)
- Axiom le_lt_int : forall x y, x<y <-> x<=y+-(1).
-
- (** Btw, lt_0_1 could be deduced from this last axiom *)
-
- (** Now we also require a division function.
- It is deliberately underspecified, since that's enough
- for the proofs below. But the most appropriate variant
- (and the one needed to stay in sync with the omega engine)
- is "Floor" (the historical version of Coq's [Z.div]). *)
-
- Parameter diveucl : t -> t -> t * t.
- Notation "i / j" := (fst (diveucl i j)).
- Notation "i 'mod' j" := (snd (diveucl i j)).
- Axiom diveucl_spec :
- forall i j, j<>0 -> i = j * (i/j) + (i mod j).
-
-End Int.
-
-
-
-(** Of course, Z is a model for our abstract int *)
-
-Module Z_as_Int <: Int.
-
- Open Scope Z_scope.
-
- Definition t := Z.
- Definition zero := 0.
- Definition one := 1.
- Definition plus := Z.add.
- Definition opp := Z.opp.
- Definition minus := Z.sub.
- Definition mult := Z.mul.
-
- Lemma ring : @ring_theory t zero one plus mult minus opp (@eq t).
- Proof.
- constructor.
- exact Z.add_0_l.
- exact Z.add_comm.
- exact Z.add_assoc.
- exact Z.mul_1_l.
- exact Z.mul_comm.
- exact Z.mul_assoc.
- exact Z.mul_add_distr_r.
- unfold minus, Z.sub; auto.
- exact Z.add_opp_diag_r.
- Qed.
-
- Definition le := Z.le.
- Definition lt := Z.lt.
- Definition ge := Z.ge.
- Definition gt := Z.gt.
- Definition le_lt_iff := Z.le_ngt.
- Definition ge_le_iff := Z.ge_le_iff.
- Definition gt_lt_iff := Z.gt_lt_iff.
-
- Definition lt_trans := Z.lt_trans.
- Definition lt_not_eq := Z.lt_neq.
-
- Definition lt_0_1 := Z.lt_0_1.
- Definition plus_le_compat := Z.add_le_mono.
- Definition mult_lt_compat_l := Zmult_lt_compat_l.
- Lemma opp_le_compat i j : i<=j -> (-j)<=(-i).
- Proof. apply -> Z.opp_le_mono. Qed.
-
- Definition compare := Z.compare.
- Definition compare_Eq := Z.compare_eq_iff.
- Lemma compare_Lt i j : compare i j = Lt <-> i<j.
- Proof. reflexivity. Qed.
- Lemma compare_Gt i j : compare i j = Gt <-> i>j.
- Proof. reflexivity. Qed.
-
- Definition le_lt_int := Z.lt_le_pred.
-
- Definition diveucl := Z.div_eucl.
- Definition diveucl_spec := Z.div_mod.
-
-End Z_as_Int.
-
-
-(** * Properties of abstract integers *)
-
-Module IntProperties (I:Int).
- Import I.
- Local Notation int := I.t.
-
- (** Primo, some consequences of being a ring theory... *)
-
- Definition two := 1+1.
- Notation "2" := two : Int_scope.
-
- (** Aliases for properties packed in the ring record. *)
-
- Definition plus_assoc := ring.(Radd_assoc).
- Definition plus_comm := ring.(Radd_comm).
- Definition plus_0_l := ring.(Radd_0_l).
- Definition mult_assoc := ring.(Rmul_assoc).
- Definition mult_comm := ring.(Rmul_comm).
- Definition mult_1_l := ring.(Rmul_1_l).
- Definition mult_plus_distr_r := ring.(Rdistr_l).
- Definition opp_def := ring.(Ropp_def).
- Definition minus_def := ring.(Rsub_def).
-
- Opaque plus_assoc plus_comm plus_0_l mult_assoc mult_comm mult_1_l
- mult_plus_distr_r opp_def minus_def.
-
- (** More facts about [plus] *)
-
- Lemma plus_0_r : forall x, x+0 = x.
- Proof. intros; rewrite plus_comm; apply plus_0_l. Qed.
-
- Lemma plus_permute : forall x y z, x+(y+z) = y+(x+z).
- Proof. intros; do 2 rewrite plus_assoc; f_equal; apply plus_comm. Qed.
-
- Lemma plus_reg_l : forall x y z, x+y = x+z -> y = z.
- Proof.
- intros.
- rewrite <- (plus_0_r y), <- (plus_0_r z), <-(opp_def x).
- now rewrite plus_permute, plus_assoc, H, <- plus_assoc, plus_permute.
- Qed.
-
- (** More facts about [mult] *)
-
- Lemma mult_plus_distr_l : forall x y z, x*(y+z)=x*y+x*z.
- Proof.
- intros.
- rewrite (mult_comm x (y+z)), (mult_comm x y), (mult_comm x z).
- apply mult_plus_distr_r.
- Qed.
-
- Lemma mult_0_l x : 0*x = 0.
- Proof.
- assert (H := mult_plus_distr_r 0 1 x).
- rewrite plus_0_l, mult_1_l, plus_comm in H.
- apply plus_reg_l with x.
- now rewrite <- H, plus_0_r.
- Qed.
-
- Lemma mult_0_r x : x*0 = 0.
- Proof.
- rewrite mult_comm. apply mult_0_l.
- Qed.
-
- Lemma mult_1_r x : x*1 = x.
- Proof.
- rewrite mult_comm. apply mult_1_l.
- Qed.
-
- (** More facts about [opp] *)
-
- Definition plus_opp_r := opp_def.
-
- Lemma plus_opp_l : forall x, -x + x = 0.
- Proof. intros; now rewrite plus_comm, opp_def. Qed.
-
- Lemma mult_opp_comm : forall x y, - x * y = x * - y.
- Proof.
- intros.
- apply plus_reg_l with (x*y).
- rewrite <- mult_plus_distr_l, <- mult_plus_distr_r.
- now rewrite opp_def, opp_def, mult_0_l, mult_comm, mult_0_l.
- Qed.
-
- Lemma opp_eq_mult_neg_1 : forall x, -x = x * -(1).
- Proof.
- intros; now rewrite mult_comm, mult_opp_comm, mult_1_l.
- Qed.
-
- Lemma opp_involutive : forall x, -(-x) = x.
- Proof.
- intros.
- apply plus_reg_l with (-x).
- now rewrite opp_def, plus_comm, opp_def.
- Qed.
-
- Lemma opp_plus_distr : forall x y, -(x+y) = -x + -y.
- Proof.
- intros.
- apply plus_reg_l with (x+y).
- rewrite opp_def.
- rewrite plus_permute.
- do 2 rewrite plus_assoc.
- now rewrite (plus_comm (-x)), opp_def, plus_0_l, opp_def.
- Qed.
-
- Lemma opp_mult_distr_r : forall x y, -(x*y) = x * -y.
- Proof.
- intros.
- rewrite <- mult_opp_comm.
- apply plus_reg_l with (x*y).
- now rewrite opp_def, <-mult_plus_distr_r, opp_def, mult_0_l.
- Qed.
-
- Lemma egal_left n m : 0 = n+-m <-> n = m.
- Proof.
- split; intros.
- - apply plus_reg_l with (-m).
- rewrite plus_comm, <- H. symmetry. apply plus_opp_l.
- - symmetry. subst; apply opp_def.
- Qed.
-
- (** Specialized distributivities *)
-
- Hint Rewrite mult_plus_distr_l mult_plus_distr_r mult_assoc : int.
- Hint Rewrite <- plus_assoc : int.
-
- Hint Rewrite plus_0_l plus_0_r mult_0_l mult_0_r mult_1_l mult_1_r : int.
-
- Lemma OMEGA10 v c1 c2 l1 l2 k1 k2 :
- v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2) =
- (v * c1 + l1) * k1 + (v * c2 + l2) * k2.
- Proof.
- autorewrite with int; f_equal; now rewrite plus_permute.
- Qed.
-
- Lemma OMEGA11 v1 c1 l1 l2 k1 :
- v1 * (c1 * k1) + (l1 * k1 + l2) = (v1 * c1 + l1) * k1 + l2.
- Proof.
- now autorewrite with int.
- Qed.
-
- Lemma OMEGA12 v2 c2 l1 l2 k2 :
- v2 * (c2 * k2) + (l1 + l2 * k2) = l1 + (v2 * c2 + l2) * k2.
- Proof.
- autorewrite with int; now rewrite plus_permute.
- Qed.
-
- Lemma sum1 a b c d : 0 = a -> 0 = b -> 0 = a * c + b * d.
- Proof.
- intros; subst. now autorewrite with int.
- Qed.
-
-
- (** Secondo, some results about order (and equality) *)
-
- Lemma lt_irrefl : forall n, ~ n<n.
- Proof.
- intros n H.
- elim (lt_not_eq _ _ H); auto.
- Qed.
-
- Lemma lt_antisym : forall n m, n<m -> m<n -> False.
- Proof.
- intros; elim (lt_irrefl _ (lt_trans _ _ _ H H0)); auto.
- Qed.
-
- Lemma lt_le_weak : forall n m, n<m -> n<=m.
- Proof.
- intros; rewrite le_lt_iff; intro H'; eapply lt_antisym; eauto.
- Qed.
-
- Lemma le_refl : forall n, n<=n.
- Proof.
- intros; rewrite le_lt_iff; apply lt_irrefl; auto.
- Qed.
-
- Lemma le_antisym : forall n m, n<=m -> m<=n -> n=m.
- Proof.
- intros n m; do 2 rewrite le_lt_iff; intros.
- rewrite <- compare_Lt in H0.
- rewrite <- gt_lt_iff, <- compare_Gt in H.
- rewrite <- compare_Eq.
- destruct compare; intuition.
- Qed.
-
- Lemma lt_eq_lt_dec : forall n m, { n<m }+{ n=m }+{ m<n }.
- Proof.
- intros.
- generalize (compare_Lt n m)(compare_Eq n m)(compare_Gt n m).
- destruct compare; [ left; right | left; left | right ]; intuition.
- rewrite gt_lt_iff in H1; intuition.
- Qed.
-
- Lemma lt_dec : forall n m: int, { n<m } + { ~n<m }.
- Proof.
- intros.
- generalize (compare_Lt n m)(compare_Eq n m)(compare_Gt n m).
- destruct compare; [ right | left | right ]; intuition discriminate.
- Qed.
-
- Lemma lt_le_iff : forall n m, (n<m) <-> ~(m<=n).
- Proof.
- intros.
- rewrite le_lt_iff.
- destruct (lt_dec n m); intuition.
- Qed.
-
- Lemma le_dec : forall n m: int, { n<=m } + { ~n<=m }.
- Proof.
- intros; destruct (lt_dec m n); [right|left]; rewrite le_lt_iff; intuition.
- Qed.
-
- Lemma le_lt_dec : forall n m, { n<=m } + { m<n }.
- Proof.
- intros; destruct (le_dec n m); [left|right]; auto; now rewrite lt_le_iff.
- Qed.
-
-
- Definition beq i j := match compare i j with Eq => true | _ => false end.
-
- Infix "=?" := beq : Int_scope.
-
- Lemma beq_iff i j : (i =? j) = true <-> i=j.
- Proof.
- unfold beq. rewrite <- (compare_Eq i j). now destruct compare.
- Qed.
-
- Lemma beq_reflect i j : reflect (i=j) (i =? j).
- Proof.
- apply iff_reflect. symmetry. apply beq_iff.
- Qed.
-
- Lemma eq_dec : forall n m:int, { n=m } + { n<>m }.
- Proof.
- intros n m; generalize (beq_iff n m); destruct beq; [left|right]; intuition.
- Qed.
-
- Definition blt i j := match compare i j with Lt => true | _ => false end.
-
- Infix "<?" := blt : Int_scope.
-
- Lemma blt_iff i j : (i <? j) = true <-> i<j.
- Proof.
- unfold blt. rewrite <- (compare_Lt i j). now destruct compare.
- Qed.
-
- Lemma blt_reflect i j : reflect (i<j) (i <? j).
- Proof.
- apply iff_reflect. symmetry. apply blt_iff.
- Qed.
-
- Lemma le_is_lt_or_eq : forall n m, n<=m -> { n<m } + { n=m }.
- Proof.
- intros n m Hnm.
- destruct (eq_dec n m) as [H'|H'].
- - right; intuition.
- - left; rewrite lt_le_iff.
- contradict H'.
- now apply le_antisym.
- Qed.
-
- Lemma le_neq_lt : forall n m, n<=m -> n<>m -> n<m.
- Proof.
- intros n m H. now destruct (le_is_lt_or_eq _ _ H).
- Qed.
-
- Lemma le_trans : forall n m p, n<=m -> m<=p -> n<=p.
- Proof.
- intros n m p; rewrite 3 le_lt_iff; intros A B C.
- destruct (lt_eq_lt_dec p m) as [[H|H]|H]; subst; auto.
- generalize (lt_trans _ _ _ H C); intuition.
- Qed.
-
- Lemma not_eq (a b:int) : ~ a <> b <-> a = b.
- Proof.
- destruct (eq_dec a b); intuition.
- Qed.
-
- (** Order and operations *)
-
- Lemma le_0_neg n : n <= 0 <-> 0 <= -n.
- Proof.
- rewrite <- (mult_0_l (-(1))) at 2.
- rewrite <- opp_eq_mult_neg_1.
- split; intros.
- - now apply opp_le_compat.
- - rewrite <-(opp_involutive 0), <-(opp_involutive n).
- now apply opp_le_compat.
- Qed.
-
- Lemma plus_le_reg_r : forall n m p, n + p <= m + p -> n <= m.
- Proof.
- intros.
- replace n with ((n+p)+-p).
- replace m with ((m+p)+-p).
- apply plus_le_compat; auto.
- apply le_refl.
- now rewrite <- plus_assoc, opp_def, plus_0_r.
- now rewrite <- plus_assoc, opp_def, plus_0_r.
- Qed.
-
- Lemma plus_le_lt_compat : forall n m p q, n<=m -> p<q -> n+p<m+q.
- Proof.
- intros.
- apply le_neq_lt.
- apply plus_le_compat; auto.
- apply lt_le_weak; auto.
- rewrite lt_le_iff in H0.
- contradict H0.
- apply plus_le_reg_r with m.
- rewrite (plus_comm q m), <-H0, (plus_comm p m).
- apply plus_le_compat; auto.
- apply le_refl; auto.
- Qed.
-
- Lemma plus_lt_compat : forall n m p q, n<m -> p<q -> n+p<m+q.
- Proof.
- intros.
- apply plus_le_lt_compat; auto.
- apply lt_le_weak; auto.
- Qed.
-
- Lemma opp_lt_compat : forall n m, n<m -> -m < -n.
- Proof.
- intros n m; do 2 rewrite lt_le_iff; intros H; contradict H.
- rewrite <-(opp_involutive m), <-(opp_involutive n).
- apply opp_le_compat; auto.
- Qed.
-
- Lemma lt_0_neg n : n < 0 <-> 0 < -n.
- Proof.
- rewrite <- (mult_0_l (-(1))) at 2.
- rewrite <- opp_eq_mult_neg_1.
- split; intros.
- - now apply opp_lt_compat.
- - rewrite <-(opp_involutive 0), <-(opp_involutive n).
- now apply opp_lt_compat.
- Qed.
-
- Lemma mult_lt_0_compat : forall n m, 0 < n -> 0 < m -> 0 < n*m.
- Proof.
- intros.
- rewrite <- (mult_0_l n), mult_comm.
- apply mult_lt_compat_l; auto.
- Qed.
-
- Lemma mult_integral_r n m : 0 < n -> n * m = 0 -> m = 0.
- Proof.
- intros Hn H.
- destruct (lt_eq_lt_dec 0 m) as [[Hm| <- ]|Hm]; auto; exfalso.
- - generalize (mult_lt_0_compat _ _ Hn Hm).
- rewrite H.
- exact (lt_irrefl 0).
- - rewrite lt_0_neg in Hm.
- generalize (mult_lt_0_compat _ _ Hn Hm).
- rewrite <- opp_mult_distr_r, opp_eq_mult_neg_1, H, mult_0_l.
- exact (lt_irrefl 0).
- Qed.
-
- Lemma mult_integral n m : n * m = 0 -> n = 0 \/ m = 0.
- Proof.
- intros H.
- destruct (lt_eq_lt_dec 0 n) as [[Hn|Hn]|Hn].
- - right; apply (mult_integral_r n m); trivial.
- - now left.
- - right; apply (mult_integral_r (-n) m).
- + now apply lt_0_neg.
- + rewrite mult_comm, <- opp_mult_distr_r, mult_comm, H.
- now rewrite opp_eq_mult_neg_1, mult_0_l.
- Qed.
-
- Lemma mult_le_compat_l i j k :
- 0<=k -> i<=j -> k*i <= k*j.
- Proof.
- intros Hk Hij.
- apply le_is_lt_or_eq in Hk. apply le_is_lt_or_eq in Hij.
- destruct Hk as [Hk | <-], Hij as [Hij | <-];
- rewrite ? mult_0_l; try apply le_refl.
- now apply lt_le_weak, mult_lt_compat_l.
- Qed.
-
- Lemma mult_le_compat i j k l :
- i<=j -> k<=l -> 0<=i -> 0<=k -> i*k<=j*l.
- Proof.
- intros Hij Hkl Hi Hk.
- apply le_trans with (i*l).
- - now apply mult_le_compat_l.
- - rewrite (mult_comm i), (mult_comm j).
- apply mult_le_compat_l; trivial.
- now apply le_trans with k.
- Qed.
-
- Lemma sum5 a b c d : 0 <> c -> 0 <> a -> 0 = b -> 0 <> a * c + b * d.
- Proof.
- intros Hc Ha <-. autorewrite with int. contradict Hc.
- symmetry in Hc. destruct (mult_integral _ _ Hc); congruence.
- Qed.
-
- Lemma le_left n m : n <= m <-> 0 <= m + - n.
- Proof.
- split; intros.
- - rewrite <- (opp_def m).
- apply plus_le_compat.
- apply le_refl.
- apply opp_le_compat; auto.
- - apply plus_le_reg_r with (-n).
- now rewrite plus_opp_r.
- Qed.
-
- Lemma OMEGA8 x y : 0 <= x -> 0 <= y -> x = - y -> x = 0.
- Proof.
- intros.
- assert (y=-x).
- subst x; symmetry; apply opp_involutive.
- clear H1; subst y.
- destruct (eq_dec 0 x) as [H'|H']; auto.
- assert (H'':=le_neq_lt _ _ H H').
- generalize (plus_le_lt_compat _ _ _ _ H0 H'').
- rewrite plus_opp_l, plus_0_l.
- intros.
- elim (lt_not_eq _ _ H1); auto.
- Qed.
-
- Lemma sum2 a b c d :
- 0 <= d -> 0 = a -> 0 <= b -> 0 <= a * c + b * d.
- Proof.
- intros Hd <- Hb. autorewrite with int.
- rewrite <- (mult_0_l 0).
- apply mult_le_compat; auto; apply le_refl.
- Qed.
-
- Lemma sum3 a b c d :
- 0 <= c -> 0 <= d -> 0 <= a -> 0 <= b -> 0 <= a * c + b * d.
- Proof.
- intros.
- rewrite <- (plus_0_l 0).
- apply plus_le_compat; auto.
- rewrite <- (mult_0_l 0).
- apply mult_le_compat; auto; apply le_refl.
- rewrite <- (mult_0_l 0).
- apply mult_le_compat; auto; apply le_refl.
- Qed.
-
- (** Lemmas specific to integers (they use [le_lt_int]) *)
-
- Lemma lt_left n m : n < m <-> 0 <= m + -n + -(1).
- Proof.
- rewrite <- plus_assoc, (plus_comm (-n)), plus_assoc.
- rewrite <- le_left.
- apply le_lt_int.
- Qed.
-
- Lemma OMEGA4 x y z : 0 < x -> x < y -> z * y + x <> 0.
- Proof.
- intros H H0 H'.
- assert (0 < y) by now apply lt_trans with x.
- destruct (lt_eq_lt_dec z 0) as [[G|G]|G].
-
- - generalize (plus_le_lt_compat _ _ _ _ (le_refl (z*y)) H0).
- rewrite H'.
- rewrite <-(mult_1_l y) at 2. rewrite <-mult_plus_distr_r.
- apply le_lt_iff.
- rewrite mult_comm. rewrite <- (mult_0_r y).
- apply mult_le_compat_l; auto using lt_le_weak.
- apply le_0_neg. rewrite opp_plus_distr.
- apply le_lt_int. now apply lt_0_neg.
-
- - apply (lt_not_eq 0 (z*y+x)); auto.
- subst. now autorewrite with int.
-
- - apply (lt_not_eq 0 (z*y+x)); auto.
- rewrite <- (plus_0_l 0).
- auto using plus_lt_compat, mult_lt_0_compat.
- Qed.
-
- Lemma OMEGA19 x : x<>0 -> 0 <= x + -(1) \/ 0 <= x * -(1) + -(1).
- Proof.
- intros.
- do 2 rewrite <- le_lt_int.
- rewrite <- opp_eq_mult_neg_1.
- destruct (lt_eq_lt_dec 0 x) as [[H'|H']|H'].
- auto.
- congruence.
- right.
- rewrite <-(mult_0_l (-(1))), <-(opp_eq_mult_neg_1 0).
- apply opp_lt_compat; auto.
- Qed.
-
- Lemma mult_le_approx n m p :
- 0 < n -> p < n -> 0 <= m * n + p -> 0 <= m.
- Proof.
- do 2 rewrite le_lt_iff; intros Hn Hpn H Hm. destruct H.
- apply lt_0_neg, le_lt_int, le_left in Hm.
- rewrite lt_0_neg.
- rewrite opp_plus_distr, mult_comm, opp_mult_distr_r.
- rewrite le_lt_int. apply lt_left.
- rewrite le_lt_int.
- apply le_trans with (n+-(1)); [ now apply le_lt_int | ].
- apply plus_le_compat; [ | apply le_refl ].
- rewrite <- (mult_1_r n) at 1.
- apply mult_le_compat_l; auto using lt_le_weak.
- Qed.
-
- (** Some decidabilities *)
-
- Lemma dec_eq : forall i j:int, decidable (i=j).
- Proof.
- red; intros; destruct (eq_dec i j); auto.
- Qed.
-
- Lemma dec_ne : forall i j:int, decidable (i<>j).
- Proof.
- red; intros; destruct (eq_dec i j); auto.
- Qed.
-
- Lemma dec_le : forall i j:int, decidable (i<=j).
- Proof.
- red; intros; destruct (le_dec i j); auto.
- Qed.
-
- Lemma dec_lt : forall i j:int, decidable (i<j).
- Proof.
- red; intros; destruct (lt_dec i j); auto.
- Qed.
-
- Lemma dec_ge : forall i j:int, decidable (i>=j).
- Proof.
- red; intros; rewrite ge_le_iff; destruct (le_dec j i); auto.
- Qed.
-
- Lemma dec_gt : forall i j:int, decidable (i>j).
- Proof.
- red; intros; rewrite gt_lt_iff; destruct (lt_dec j i); auto.
- Qed.
-
-End IntProperties.
-
-
-(** * The Coq side of the romega tactic *)
-
-Module IntOmega (I:Int).
-Import I.
-Module IP:=IntProperties(I).
-Import IP.
-Local Notation int := I.t.
-
-(* ** Definition of reified integer expressions
-
- Terms are either:
- - integers [Tint]
- - variables [Tvar]
- - operation over integers (addition, product, opposite, subtraction)
-
- Opposite and subtraction are translated in additions and products.
- Note that we'll only deal with products for which at least one side
- is [Tint]. *)
-
-Inductive term : Set :=
- | Tint : int -> term
- | Tplus : term -> term -> term
- | Tmult : term -> term -> term
- | Tminus : term -> term -> term
- | Topp : term -> term
- | Tvar : N -> term.
-
-Declare Scope romega_scope.
-Bind Scope romega_scope with term.
-Delimit Scope romega_scope with term.
-Arguments Tint _%I.
-Arguments Tplus (_ _)%term.
-Arguments Tmult (_ _)%term.
-Arguments Tminus (_ _)%term.
-Arguments Topp _%term.
-
-Infix "+" := Tplus : romega_scope.
-Infix "*" := Tmult : romega_scope.
-Infix "-" := Tminus : romega_scope.
-Notation "- x" := (Topp x) : romega_scope.
-Notation "[ x ]" := (Tvar x) (at level 0) : romega_scope.
-
-(* ** Definition of reified goals
-
- Very restricted definition of handled predicates that should be extended
- to cover a wider set of operations.
- Taking care of negations and disequations require solving more than a
- goal in parallel. This is a major improvement over previous versions. *)
-
-Inductive proposition : Set :=
- (** First, basic equations, disequations, inequations *)
- | EqTerm : term -> term -> proposition
- | NeqTerm : term -> term -> proposition
- | LeqTerm : term -> term -> proposition
- | GeqTerm : term -> term -> proposition
- | GtTerm : term -> term -> proposition
- | LtTerm : term -> term -> proposition
- (** Then, the supported logical connectors *)
- | TrueTerm : proposition
- | FalseTerm : proposition
- | Tnot : proposition -> proposition
- | Tor : proposition -> proposition -> proposition
- | Tand : proposition -> proposition -> proposition
- | Timp : proposition -> proposition -> proposition
- (** Everything else is left as a propositional atom (and ignored). *)
- | Tprop : nat -> proposition.
-
-(** Definition of goals as a list of hypothesis *)
-Notation hyps := (list proposition).
-
-(** Definition of lists of subgoals (set of open goals) *)
-Notation lhyps := (list hyps).
-
-(** A single goal packed in a subgoal list *)
-Notation singleton := (fun a : hyps => a :: nil).
-
-(** An absurd goal *)
-Definition absurd := FalseTerm :: nil.
-
-(** ** Decidable equality on terms *)
-
-Fixpoint eq_term (t1 t2 : term) {struct t2} : bool :=
- match t1, t2 with
- | Tint i1, Tint i2 => i1 =? i2
- | (t11 + t12), (t21 + t22) => eq_term t11 t21 && eq_term t12 t22
- | (t11 * t12), (t21 * t22) => eq_term t11 t21 && eq_term t12 t22
- | (t11 - t12), (t21 - t22) => eq_term t11 t21 && eq_term t12 t22
- | (- t1), (- t2) => eq_term t1 t2
- | [v1], [v2] => N.eqb v1 v2
- | _, _ => false
- end%term.
-
-Infix "=?" := eq_term : romega_scope.
-
-Theorem eq_term_iff (t t' : term) :
- (t =? t')%term = true <-> t = t'.
-Proof.
- revert t'. induction t; destruct t'; simpl in *;
- rewrite ?andb_true_iff, ?beq_iff, ?N.eqb_eq, ?IHt, ?IHt1, ?IHt2;
- intuition congruence.
-Qed.
-
-Theorem eq_term_reflect (t t' : term) : reflect (t=t') (t =? t')%term.
-Proof.
- apply iff_reflect. symmetry. apply eq_term_iff.
-Qed.
-
-(** ** Interpretations of terms (as integers). *)
-
-Fixpoint Nnth {A} (n:N)(l:list A)(default:A) :=
- match n, l with
- | _, nil => default
- | 0%N, x::_ => x
- | _, _::l => Nnth (N.pred n) l default
- end.
-
-Fixpoint interp_term (env : list int) (t : term) : int :=
- match t with
- | Tint x => x
- | (t1 + t2)%term => interp_term env t1 + interp_term env t2
- | (t1 * t2)%term => interp_term env t1 * interp_term env t2
- | (t1 - t2)%term => interp_term env t1 - interp_term env t2
- | (- t)%term => - interp_term env t
- | [n]%term => Nnth n env 0
- end.
-
-(** ** Interpretation of predicats (as Coq propositions) *)
-
-Fixpoint interp_prop (envp : list Prop) (env : list int)
- (p : proposition) : Prop :=
- match p with
- | EqTerm t1 t2 => interp_term env t1 = interp_term env t2
- | NeqTerm t1 t2 => (interp_term env t1) <> (interp_term env t2)
- | LeqTerm t1 t2 => interp_term env t1 <= interp_term env t2
- | GeqTerm t1 t2 => interp_term env t1 >= interp_term env t2
- | GtTerm t1 t2 => interp_term env t1 > interp_term env t2
- | LtTerm t1 t2 => interp_term env t1 < interp_term env t2
- | TrueTerm => True
- | FalseTerm => False
- | Tnot p' => ~ interp_prop envp env p'
- | Tor p1 p2 => interp_prop envp env p1 \/ interp_prop envp env p2
- | Tand p1 p2 => interp_prop envp env p1 /\ interp_prop envp env p2
- | Timp p1 p2 => interp_prop envp env p1 -> interp_prop envp env p2
- | Tprop n => nth n envp True
- end.
-
-(** ** Intepretation of hypothesis lists (as Coq conjunctions) *)
-
-Fixpoint interp_hyps (envp : list Prop) (env : list int) (l : hyps)
- : Prop :=
- match l with
- | nil => True
- | p' :: l' => interp_prop envp env p' /\ interp_hyps envp env l'
- end.
-
-(** ** Interpretation of conclusion + hypotheses
-
- Here we use Coq implications : it's less easy to manipulate,
- but handy to relate to the Coq original goal (cf. the use of
- [generalize], and lighter (no repetition of types in intermediate
- conjunctions). *)
-
-Fixpoint interp_goal_concl (c : proposition) (envp : list Prop)
- (env : list int) (l : hyps) : Prop :=
- match l with
- | nil => interp_prop envp env c
- | p' :: l' =>
- interp_prop envp env p' -> interp_goal_concl c envp env l'
- end.
-
-Notation interp_goal := (interp_goal_concl FalseTerm).
-
-(** Equivalence between these two interpretations. *)
-
-Theorem goal_to_hyps :
- forall (envp : list Prop) (env : list int) (l : hyps),
- (interp_hyps envp env l -> False) -> interp_goal envp env l.
-Proof.
- induction l; simpl; auto.
-Qed.
-
-Theorem hyps_to_goal :
- forall (envp : list Prop) (env : list int) (l : hyps),
- interp_goal envp env l -> interp_hyps envp env l -> False.
-Proof.
- induction l; simpl; auto.
- intros H (H1,H2). auto.
-Qed.
-
-(** ** Interpretations of list of goals
-
- Here again, two flavours... *)
-
-Fixpoint interp_list_hyps (envp : list Prop) (env : list int)
- (l : lhyps) : Prop :=
- match l with
- | nil => False
- | h :: l' => interp_hyps envp env h \/ interp_list_hyps envp env l'
- end.
-
-Fixpoint interp_list_goal (envp : list Prop) (env : list int)
- (l : lhyps) : Prop :=
- match l with
- | nil => True
- | h :: l' => interp_goal envp env h /\ interp_list_goal envp env l'
- end.
-
-(** Equivalence between the two flavours. *)
-
-Theorem list_goal_to_hyps :
- forall (envp : list Prop) (env : list int) (l : lhyps),
- (interp_list_hyps envp env l -> False) -> interp_list_goal envp env l.
-Proof.
- induction l; simpl; intuition. now apply goal_to_hyps.
-Qed.
-
-Theorem list_hyps_to_goal :
- forall (envp : list Prop) (env : list int) (l : lhyps),
- interp_list_goal envp env l -> interp_list_hyps envp env l -> False.
-Proof.
- induction l; simpl; intuition. eapply hyps_to_goal; eauto.
-Qed.
-
-(** ** Stabiliy and validity of operations *)
-
-(** An operation on terms is stable if the interpretation is unchanged. *)
-
-Definition term_stable (f : term -> term) :=
- forall (e : list int) (t : term), interp_term e t = interp_term e (f t).
-
-(** An operation on one hypothesis is valid if this hypothesis implies
- the result of this operation. *)
-
-Definition valid1 (f : proposition -> proposition) :=
- forall (ep : list Prop) (e : list int) (p1 : proposition),
- interp_prop ep e p1 -> interp_prop ep e (f p1).
-
-Definition valid2 (f : proposition -> proposition -> proposition) :=
- forall (ep : list Prop) (e : list int) (p1 p2 : proposition),
- interp_prop ep e p1 ->
- interp_prop ep e p2 -> interp_prop ep e (f p1 p2).
-
-(** Same for lists of hypotheses, and for list of goals *)
-
-Definition valid_hyps (f : hyps -> hyps) :=
- forall (ep : list Prop) (e : list int) (lp : hyps),
- interp_hyps ep e lp -> interp_hyps ep e (f lp).
-
-Definition valid_list_hyps (f : hyps -> lhyps) :=
- forall (ep : list Prop) (e : list int) (lp : hyps),
- interp_hyps ep e lp -> interp_list_hyps ep e (f lp).
-
-Definition valid_list_goal (f : hyps -> lhyps) :=
- forall (ep : list Prop) (e : list int) (lp : hyps),
- interp_list_goal ep e (f lp) -> interp_goal ep e lp.
-
-(** Some results about these validities. *)
-
-Theorem valid_goal :
- forall (ep : list Prop) (env : list int) (l : hyps) (a : hyps -> hyps),
- valid_hyps a -> interp_goal ep env (a l) -> interp_goal ep env l.
-Proof.
- intros; simpl; apply goal_to_hyps; intro H1;
- apply (hyps_to_goal ep env (a l) H0); apply H; assumption.
-Qed.
-
-Theorem goal_valid :
- forall f : hyps -> lhyps, valid_list_hyps f -> valid_list_goal f.
-Proof.
- unfold valid_list_goal; intros f H ep e lp H1; apply goal_to_hyps;
- intro H2; apply list_hyps_to_goal with (1 := H1);
- apply (H ep e lp); assumption.
-Qed.
-
-Theorem append_valid :
- forall (ep : list Prop) (e : list int) (l1 l2 : lhyps),
- interp_list_hyps ep e l1 \/ interp_list_hyps ep e l2 ->
- interp_list_hyps ep e (l1 ++ l2).
-Proof.
- induction l1; simpl in *.
- - now intros l2 [H| H].
- - intros l2 [[H| H]| H].
- + auto.
- + right; apply IHl1; now left.
- + right; apply IHl1; now right.
-Qed.
-
-(** ** Valid operations on hypotheses *)
-
-(** Extract an hypothesis from the list *)
-
-Definition nth_hyps (n : nat) (l : hyps) := nth n l TrueTerm.
-
-Theorem nth_valid :
- forall (ep : list Prop) (e : list int) (i : nat) (l : hyps),
- interp_hyps ep e l -> interp_prop ep e (nth_hyps i l).
-Proof.
- unfold nth_hyps. induction i; destruct l; simpl in *; try easy.
- intros (H1,H2). now apply IHi.
-Qed.
-
-(** Apply a valid operation on two hypotheses from the list, and
- store the result in the list. *)
-
-Definition apply_oper_2 (i j : nat)
- (f : proposition -> proposition -> proposition) (l : hyps) :=
- f (nth_hyps i l) (nth_hyps j l) :: l.
-
-Theorem apply_oper_2_valid :
- forall (i j : nat) (f : proposition -> proposition -> proposition),
- valid2 f -> valid_hyps (apply_oper_2 i j f).
-Proof.
- intros i j f Hf; unfold apply_oper_2, valid_hyps; simpl;
- intros lp Hlp; split.
- - apply Hf; apply nth_valid; assumption.
- - assumption.
-Qed.
-
-(** In-place modification of an hypothesis by application of
- a valid operation. *)
-
-Fixpoint apply_oper_1 (i : nat) (f : proposition -> proposition)
- (l : hyps) {struct i} : hyps :=
- match l with
- | nil => nil
- | p :: l' =>
- match i with
- | O => f p :: l'
- | S j => p :: apply_oper_1 j f l'
- end
- end.
-
-Theorem apply_oper_1_valid :
- forall (i : nat) (f : proposition -> proposition),
- valid1 f -> valid_hyps (apply_oper_1 i f).
-Proof.
- unfold valid_hyps.
- induction i; intros f Hf ep e [ | p lp]; simpl; intuition.
-Qed.
-
-(** ** A tactic for proving stability *)
-
-Ltac loop t :=
- match t with
- (* Global *)
- | (?X1 = ?X2) => loop X1 || loop X2
- | (_ -> ?X1) => loop X1
- (* Interpretations *)
- | (interp_hyps _ _ ?X1) => loop X1
- | (interp_list_hyps _ _ ?X1) => loop X1
- | (interp_prop _ _ ?X1) => loop X1
- | (interp_term _ ?X1) => loop X1
- (* Propositions *)
- | (EqTerm ?X1 ?X2) => loop X1 || loop X2
- | (LeqTerm ?X1 ?X2) => loop X1 || loop X2
- (* Terms *)
- | (?X1 + ?X2)%term => loop X1 || loop X2
- | (?X1 - ?X2)%term => loop X1 || loop X2
- | (?X1 * ?X2)%term => loop X1 || loop X2
- | (- ?X1)%term => loop X1
- | (Tint ?X1) => loop X1
- (* Eliminations *)
- | (if ?X1 =? ?X2 then _ else _) =>
- let H := fresh "H" in
- case (beq_reflect X1 X2); intro H;
- try (rewrite H in *; clear H); simpl; auto; Simplify
- | (if ?X1 <? ?X2 then _ else _) =>
- case (blt_reflect X1 X2); intro; simpl; auto; Simplify
- | (if (?X1 =? ?X2)%term then _ else _) =>
- let H := fresh "H" in
- case (eq_term_reflect X1 X2); intro H;
- try (rewrite H in *; clear H); simpl; auto; Simplify
- | (if _ && _ then _ else _) => rewrite andb_if; Simplify
- | (if negb _ then _ else _) => rewrite negb_if; Simplify
- | match N.compare ?X1 ?X2 with _ => _ end =>
- destruct (N.compare_spec X1 X2); Simplify
- | match ?X1 with _ => _ end => destruct X1; auto; Simplify
- | _ => fail
- end
-
-with Simplify := match goal with
- | |- ?X1 => try loop X1
- | _ => idtac
- end.
-
-(** ** Operations on equation bodies *)
-
-(** The operations below handle in priority _normalized_ terms, i.e.
- terms of the form:
- [([v1]*Tint k1 + ([v2]*Tint k2 + (... + Tint cst)))]
- with [v1>v2>...] and all [ki<>0].
- See [normalize] below for a way to put terms in this form.
-
- These operations also produce a correct (but suboptimal)
- result in case of non-normalized input terms, but this situation
- should normally not happen when running [romega].
-
- /!\ Do not modify this section (especially [fusion] and [normalize])
- without tweaking the corresponding functions in [refl_omega.ml].
-*)
-
-(** Multiplication and sum by two constants. Invariant: [k1<>0]. *)
-
-Fixpoint scalar_mult_add (t : term) (k1 k2 : int) : term :=
- match t with
- | v1 * Tint x1 + l1 =>
- v1 * Tint (x1 * k1) + scalar_mult_add l1 k1 k2
- | Tint x => Tint (k1 * x + k2)
- | _ => t * Tint k1 + Tint k2 (* shouldn't happen *)
- end%term.
-
-Theorem scalar_mult_add_stable e t k1 k2 :
- interp_term e (scalar_mult_add t k1 k2) =
- interp_term e (t * Tint k1 + Tint k2).
-Proof.
- induction t; simpl; Simplify; simpl; auto. f_equal. apply mult_comm.
- rewrite IHt2. simpl. apply OMEGA11.
-Qed.
-
-(** Multiplication by a (non-nul) constant. *)
-
-Definition scalar_mult (t : term) (k : int) := scalar_mult_add t k 0.
-
-Theorem scalar_mult_stable e t k :
- interp_term e (scalar_mult t k) =
- interp_term e (t * Tint k).
-Proof.
- unfold scalar_mult. rewrite scalar_mult_add_stable. simpl.
- apply plus_0_r.
-Qed.
-
-(** Adding a constant
-
- Instead of using [scalar_norm_add t 1 k], the following
- definition spares some computations.
- *)
-
-Fixpoint scalar_add (t : term) (k : int) : term :=
- match t with
- | m + l => m + scalar_add l k
- | Tint x => Tint (x + k)
- | _ => t + Tint k
- end%term.
-
-Theorem scalar_add_stable e t k :
- interp_term e (scalar_add t k) = interp_term e (t + Tint k).
-Proof.
- induction t; simpl; Simplify; simpl; auto.
- rewrite IHt2. simpl. apply plus_assoc.
-Qed.
-
-(** Division by a constant
-
- All the non-constant coefficients should be exactly dividable *)
-
-Fixpoint scalar_div (t : term) (k : int) : option (term * int) :=
- match t with
- | v * Tint x + l =>
- let (q,r) := diveucl x k in
- if (r =? 0)%I then
- match scalar_div l k with
- | None => None
- | Some (u,c) => Some (v * Tint q + u, c)
- end
- else None
- | Tint x =>
- let (q,r) := diveucl x k in
- Some (Tint q, r)
- | _ => None
- end%term.
-
-Lemma scalar_div_stable e t k u c : k<>0 ->
- scalar_div t k = Some (u,c) ->
- interp_term e (u * Tint k + Tint c) = interp_term e t.
-Proof.
- revert u c.
- induction t; simpl; Simplify; try easy.
- - intros u c Hk. assert (H := diveucl_spec t0 k Hk).
- simpl in H.
- destruct diveucl as (q,r). simpl in H. rewrite H.
- injection 1 as <- <-. simpl. f_equal. apply mult_comm.
- - intros u c Hk.
- destruct t1; simpl; Simplify; try easy.
- destruct t1_2; simpl; Simplify; try easy.
- assert (H := diveucl_spec t0 k Hk).
- simpl in H.
- destruct diveucl as (q,r). simpl in H. rewrite H.
- case beq_reflect; [intros -> | easy].
- destruct (scalar_div t2 k) as [(u',c')|] eqn:E; [|easy].
- injection 1 as <- ->. simpl.
- rewrite <- (IHt2 u' c Hk); simpl; auto.
- rewrite plus_0_r , (mult_comm k q). symmetry. apply OMEGA11.
-Qed.
-
-
-(** Fusion of two equations.
-
- From two normalized equations, this fusion will produce
- a normalized output corresponding to the coefficiented sum.
- Invariant: [k1<>0] and [k2<>0].
-*)
-
-Fixpoint fusion (t1 t2 : term) (k1 k2 : int) : term :=
- match t1 with
- | [v1] * Tint x1 + l1 =>
- (fix fusion_t1 t2 : term :=
- match t2 with
- | [v2] * Tint x2 + l2 =>
- match N.compare v1 v2 with
- | Eq =>
- let k := (k1 * x1 + k2 * x2)%I in
- if (k =? 0)%I then fusion l1 l2 k1 k2
- else [v1] * Tint k + fusion l1 l2 k1 k2
- | Lt => [v2] * Tint (k2 * x2) + fusion_t1 l2
- | Gt => [v1] * Tint (k1 * x1) + fusion l1 t2 k1 k2
- end
- | Tint x2 => [v1] * Tint (k1 * x1) + fusion l1 t2 k1 k2
- | _ => t1 * Tint k1 + t2 * Tint k2 (* shouldn't happen *)
- end) t2
- | Tint x1 => scalar_mult_add t2 k2 (k1 * x1)
- | _ => t1 * Tint k1 + t2 * Tint k2 (* shouldn't happen *)
- end%term.
-
-Theorem fusion_stable e t1 t2 k1 k2 :
- interp_term e (fusion t1 t2 k1 k2) =
- interp_term e (t1 * Tint k1 + t2 * Tint k2).
-Proof.
- revert t2; induction t1; simpl; Simplify; simpl; auto.
- - intros; rewrite scalar_mult_add_stable. simpl.
- rewrite plus_comm. f_equal. apply mult_comm.
- - intros. Simplify. induction t2; simpl; Simplify; simpl; auto.
- + rewrite IHt1_2. simpl. rewrite (mult_comm k1); apply OMEGA11.
- + rewrite IHt1_2. simpl. subst n0.
- rewrite (mult_comm k1), (mult_comm k2) in H0.
- rewrite <- OMEGA10, H0. now autorewrite with int.
- + rewrite IHt1_2. simpl. subst n0.
- rewrite (mult_comm k1), (mult_comm k2); apply OMEGA10.
- + rewrite IHt2_2. simpl. rewrite (mult_comm k2); apply OMEGA12.
- + rewrite IHt1_2. simpl. rewrite (mult_comm k1); apply OMEGA11.
-Qed.
-
-(** Term normalization.
-
- Precondition: all [Tmult] should be on at least one [Tint].
- Postcondition: a normalized equivalent term (see below).
-*)
-
-Fixpoint normalize t :=
- match t with
- | Tint n => Tint n
- | [n]%term => ([n] * Tint 1 + Tint 0)%term
- | (t + t')%term => fusion (normalize t) (normalize t') 1 1
- | (- t)%term => scalar_mult (normalize t) (-(1))
- | (t - t')%term => fusion (normalize t) (normalize t') 1 (-(1))
- | (Tint k * t)%term | (t * Tint k)%term =>
- if k =? 0 then Tint 0 else scalar_mult (normalize t) k
- | (t1 * t2)%term => (t1 * t2)%term (* shouldn't happen *)
- end.
-
-Theorem normalize_stable : term_stable normalize.
-Proof.
- intros e t.
- induction t; simpl; Simplify; simpl;
- rewrite ?scalar_mult_stable; simpl in *; rewrite <- ?IHt1;
- rewrite ?fusion_stable; simpl; autorewrite with int; auto.
- - now f_equal.
- - rewrite mult_comm. now f_equal.
- - rewrite <- opp_eq_mult_neg_1, <-minus_def. now f_equal.
- - rewrite <- opp_eq_mult_neg_1. now f_equal.
-Qed.
-
-(** ** Normalization of a proposition.
-
- The only basic facts left after normalization are
- [0 = ...] or [0 <> ...] or [0 <= ...].
- When a fact is in negative position, we factorize a [Tnot]
- out of it, and normalize the reversed fact inside.
-
- /!\ Here again, do not change this code without corresponding
- modifications in [refl_omega.ml].
-*)
-
-Fixpoint normalize_prop (negated:bool)(p:proposition) :=
- match p with
- | EqTerm t1 t2 =>
- if negated then Tnot (NeqTerm (Tint 0) (normalize (t1-t2)))
- else EqTerm (Tint 0) (normalize (t1-t2))
- | NeqTerm t1 t2 =>
- if negated then Tnot (EqTerm (Tint 0) (normalize (t1-t2)))
- else NeqTerm (Tint 0) (normalize (t1-t2))
- | LeqTerm t1 t2 =>
- if negated then Tnot (LeqTerm (Tint 0) (normalize (t1-t2+Tint (-(1)))))
- else LeqTerm (Tint 0) (normalize (t2-t1))
- | GeqTerm t1 t2 =>
- if negated then Tnot (LeqTerm (Tint 0) (normalize (t2-t1+Tint (-(1)))))
- else LeqTerm (Tint 0) (normalize (t1-t2))
- | LtTerm t1 t2 =>
- if negated then Tnot (LeqTerm (Tint 0) (normalize (t1-t2)))
- else LeqTerm (Tint 0) (normalize (t2-t1+Tint (-(1))))
- | GtTerm t1 t2 =>
- if negated then Tnot (LeqTerm (Tint 0) (normalize (t2-t1)))
- else LeqTerm (Tint 0) (normalize (t1-t2+Tint (-(1))))
- | Tnot p => Tnot (normalize_prop (negb negated) p)
- | Tor p p' => Tor (normalize_prop negated p) (normalize_prop negated p')
- | Tand p p' => Tand (normalize_prop negated p) (normalize_prop negated p')
- | Timp p p' => Timp (normalize_prop (negb negated) p)
- (normalize_prop negated p')
- | Tprop _ | TrueTerm | FalseTerm => p
- end.
-
-Definition normalize_hyps := List.map (normalize_prop false).
-
-Local Ltac simp := cbn -[normalize].
-
-Theorem normalize_prop_valid b e ep p :
- interp_prop e ep (normalize_prop b p) <-> interp_prop e ep p.
-Proof.
- revert b.
- induction p; intros; simp; try tauto.
- - destruct b; simp;
- rewrite <- ?normalize_stable; simpl; rewrite ?minus_def.
- + rewrite not_eq. apply egal_left.
- + apply egal_left.
- - destruct b; simp;
- rewrite <- ?normalize_stable; simpl; rewrite ?minus_def;
- apply not_iff_compat, egal_left.
- - destruct b; simp;
- rewrite <- ? normalize_stable; simpl; rewrite ?minus_def.
- + symmetry. rewrite le_lt_iff. apply not_iff_compat, lt_left.
- + now rewrite <- le_left.
- - destruct b; simp;
- rewrite <- ? normalize_stable; simpl; rewrite ?minus_def.
- + symmetry. rewrite ge_le_iff, le_lt_iff.
- apply not_iff_compat, lt_left.
- + rewrite ge_le_iff. now rewrite <- le_left.
- - destruct b; simp;
- rewrite <- ? normalize_stable; simpl; rewrite ?minus_def.
- + rewrite gt_lt_iff, lt_le_iff. apply not_iff_compat.
- now rewrite <- le_left.
- + symmetry. rewrite gt_lt_iff. apply lt_left.
- - destruct b; simp;
- rewrite <- ? normalize_stable; simpl; rewrite ?minus_def.
- + rewrite lt_le_iff. apply not_iff_compat.
- now rewrite <- le_left.
- + symmetry. apply lt_left.
- - now rewrite IHp.
- - now rewrite IHp1, IHp2.
- - now rewrite IHp1, IHp2.
- - now rewrite IHp1, IHp2.
-Qed.
-
-Theorem normalize_hyps_valid : valid_hyps normalize_hyps.
-Proof.
- intros e ep l. induction l; simpl; intuition.
- now rewrite normalize_prop_valid.
-Qed.
-
-Theorem normalize_hyps_goal (ep : list Prop) (env : list int) (l : hyps) :
- interp_goal ep env (normalize_hyps l) -> interp_goal ep env l.
-Proof.
- intros; apply valid_goal with (2 := H); apply normalize_hyps_valid.
-Qed.
-
-(** ** A simple decidability checker
-
- For us, everything is considered decidable except
- propositional atoms [Tprop _]. *)
-
-Fixpoint decidability (p : proposition) : bool :=
- match p with
- | Tnot t => decidability t
- | Tand t1 t2 => decidability t1 && decidability t2
- | Timp t1 t2 => decidability t1 && decidability t2
- | Tor t1 t2 => decidability t1 && decidability t2
- | Tprop _ => false
- | _ => true
- end.
-
-Theorem decidable_correct :
- forall (ep : list Prop) (e : list int) (p : proposition),
- decidability p = true -> decidable (interp_prop ep e p).
-Proof.
- induction p; simpl; intros Hp; try destruct (andb_prop _ _ Hp).
- - apply dec_eq.
- - apply dec_ne.
- - apply dec_le.
- - apply dec_ge.
- - apply dec_gt.
- - apply dec_lt.
- - left; auto.
- - right; unfold not; auto.
- - apply dec_not; auto.
- - apply dec_or; auto.
- - apply dec_and; auto.
- - apply dec_imp; auto.
- - discriminate.
-Qed.
-
-(** ** Omega steps
-
- The following inductive type describes steps as they can be
- found in the trace coming from the decision procedure Omega.
- We consider here only normalized equations [0=...], disequations
- [0<>...] or inequations [0<=...].
-
- First, the final steps leading to a contradiction:
- - [O_BAD_CONSTANT i] : hypothesis i has a constant body
- and this constant is not compatible with the kind of i.
- - [O_NOT_EXACT_DIVIDE i k] :
- equation i can be factorized as some [k*t+c] with [0<c<k].
-
- Now, the intermediate steps leading to a new hypothesis:
- - [O_DIVIDE i k cont] :
- the body of hypothesis i could be factorized as [k*t+c]
- with either [k<>0] and [c=0] for a (dis)equation, or
- [0<k] and [c<k] for an inequation. We change in-place the
- body of i for [t].
- - [O_SUM k1 i1 k2 i2 cont] : creates a new hypothesis whose
- kind depends on the kind of hypotheses [i1] and [i2], and
- whose body is [k1*body(i1) + k2*body(i2)]. Depending of the
- situation, [k1] or [k2] might have to be positive or non-nul.
- - [O_MERGE_EQ i j cont] :
- inequations i and j have opposite bodies, we add an equation
- with one these bodies.
- - [O_SPLIT_INEQ i cont1 cont2] :
- disequation i is split into a disjonction of inequations.
-*)
-
-Definition idx := nat. (** Index of an hypothesis in the list *)
-
-Inductive t_omega : Set :=
- | O_BAD_CONSTANT : idx -> t_omega
- | O_NOT_EXACT_DIVIDE : idx -> int -> t_omega
-
- | O_DIVIDE : idx -> int -> t_omega -> t_omega
- | O_SUM : int -> idx -> int -> idx -> t_omega -> t_omega
- | O_MERGE_EQ : idx -> idx -> t_omega -> t_omega
- | O_SPLIT_INEQ : idx -> t_omega -> t_omega -> t_omega.
-
-(** ** Actual resolution steps of an omega normalized goal *)
-
-(** First, the final steps, leading to a contradiction *)
-
-(** [O_BAD_CONSTANT] *)
-
-Definition bad_constant (i : nat) (h : hyps) :=
- match nth_hyps i h with
- | EqTerm (Tint Nul) (Tint n) => if n =? Nul then h else absurd
- | NeqTerm (Tint Nul) (Tint n) => if n =? Nul then absurd else h
- | LeqTerm (Tint Nul) (Tint n) => if n <? Nul then absurd else h
- | _ => h
- end.
-
-Theorem bad_constant_valid i : valid_hyps (bad_constant i).
-Proof.
- unfold valid_hyps, bad_constant; intros ep e lp H.
- generalize (nth_valid ep e i lp H); Simplify.
- rewrite le_lt_iff. intuition.
-Qed.
-
-(** [O_NOT_EXACT_DIVIDE] *)
-
-Definition not_exact_divide (i : nat) (k : int) (l : hyps) :=
- match nth_hyps i l with
- | EqTerm (Tint Nul) b =>
- match scalar_div b k with
- | Some (body,c) =>
- if (Nul =? 0) && (0 <? c) && (c <? k) then absurd
- else l
- | None => l
- end
- | _ => l
- end.
-
-Theorem not_exact_divide_valid i k :
- valid_hyps (not_exact_divide i k).
-Proof.
- unfold valid_hyps, not_exact_divide; intros.
- generalize (nth_valid ep e i lp).
- destruct (nth_hyps i lp); simpl; auto.
- destruct t0; auto.
- destruct (scalar_div t1 k) as [(body,c)|] eqn:E; auto.
- Simplify.
- assert (k <> 0).
- { intro. apply (lt_not_eq 0 k); eauto using lt_trans. }
- apply (scalar_div_stable e) in E; auto. simpl in E.
- intros H'; rewrite <- H' in E; auto.
- exfalso. revert E. now apply OMEGA4.
-Qed.
-
-(** Now, the steps generating a new equation. *)
-
-(** [O_DIVIDE] *)
-
-Definition divide (k : int) (prop : proposition) :=
- match prop with
- | EqTerm (Tint o) b =>
- match scalar_div b k with
- | Some (body,c) =>
- if (o =? 0) && (c =? 0) && negb (k =? 0)
- then EqTerm (Tint 0) body
- else TrueTerm
- | None => TrueTerm
- end
- | NeqTerm (Tint o) b =>
- match scalar_div b k with
- | Some (body,c) =>
- if (o =? 0) && (c =? 0) && negb (k =? 0)
- then NeqTerm (Tint 0) body
- else TrueTerm
- | None => TrueTerm
- end
- | LeqTerm (Tint o) b =>
- match scalar_div b k with
- | Some (body,c) =>
- if (o =? 0) && (0 <? k) && (c <? k)
- then LeqTerm (Tint 0) body
- else prop
- | None => prop
- end
- | _ => TrueTerm
- end.
-
-Theorem divide_valid k : valid1 (divide k).
-Proof.
- unfold valid1, divide; intros ep e p;
- destruct p; simpl; auto;
- destruct t0; simpl; auto;
- destruct scalar_div as [(body,c)|] eqn:E; simpl; Simplify; auto.
- - apply (scalar_div_stable e) in E; auto. simpl in E.
- intros H'; rewrite <- H' in E. rewrite plus_0_r in E.
- apply mult_integral in E. intuition.
- - apply (scalar_div_stable e) in E; auto. simpl in E.
- intros H' H''. now rewrite <- H'', mult_0_l, plus_0_l in E.
- - assert (k <> 0).
- { intro. apply (lt_not_eq 0 k); eauto using lt_trans. }
- apply (scalar_div_stable e) in E; auto. simpl in E. rewrite <- E.
- intro H'. now apply mult_le_approx with (3 := H').
-Qed.
-
-(** [O_SUM]. Invariant: [k1] and [k2] non-nul. *)
-
-Definition sum (k1 k2 : int) (prop1 prop2 : proposition) :=
- match prop1 with
- | EqTerm (Tint o) b1 =>
- match prop2 with
- | EqTerm (Tint o') b2 =>
- if (o =? 0) && (o' =? 0)
- then EqTerm (Tint 0) (fusion b1 b2 k1 k2)
- else TrueTerm
- | LeqTerm (Tint o') b2 =>
- if (o =? 0) && (o' =? 0) && (0 <? k2)
- then LeqTerm (Tint 0) (fusion b1 b2 k1 k2)
- else TrueTerm
- | NeqTerm (Tint o') b2 =>
- if (o =? 0) && (o' =? 0) && negb (k2 =? 0)
- then NeqTerm (Tint 0) (fusion b1 b2 k1 k2)
- else TrueTerm
- | _ => TrueTerm
- end
- | LeqTerm (Tint o) b1 =>
- if (o =? 0) && (0 <? k1)
- then match prop2 with
- | EqTerm (Tint o') b2 =>
- if o' =? 0 then
- LeqTerm (Tint 0) (fusion b1 b2 k1 k2)
- else TrueTerm
- | LeqTerm (Tint o') b2 =>
- if (o' =? 0) && (0 <? k2)
- then LeqTerm (Tint 0) (fusion b1 b2 k1 k2)
- else TrueTerm
- | _ => TrueTerm
- end
- else TrueTerm
- | NeqTerm (Tint o) b1 =>
- match prop2 with
- | EqTerm (Tint o') b2 =>
- if (o =? 0) && (o' =? 0) && negb (k1 =? 0)
- then NeqTerm (Tint 0) (fusion b1 b2 k1 k2)
- else TrueTerm
- | _ => TrueTerm
- end
- | _ => TrueTerm
- end.
-
-Theorem sum_valid :
- forall (k1 k2 : int), valid2 (sum k1 k2).
-Proof.
- unfold valid2; intros k1 k2 t ep e p1 p2; unfold sum;
- Simplify; simpl; rewrite ?fusion_stable;
- simpl; intros; auto.
- - apply sum1; auto.
- - rewrite plus_comm. apply sum5; auto.
- - apply sum2; auto using lt_le_weak.
- - apply sum5; auto.
- - rewrite plus_comm. apply sum2; auto using lt_le_weak.
- - apply sum3; auto using lt_le_weak.
-Qed.
-
-(** [MERGE_EQ] *)
-
-Definition merge_eq (prop1 prop2 : proposition) :=
- match prop1 with
- | LeqTerm (Tint o) b1 =>
- match prop2 with
- | LeqTerm (Tint o') b2 =>
- if (o =? 0) && (o' =? 0) &&
- (b1 =? scalar_mult b2 (-(1)))%term
- then EqTerm (Tint 0) b1
- else TrueTerm
- | _ => TrueTerm
- end
- | _ => TrueTerm
- end.
-
-Theorem merge_eq_valid : valid2 merge_eq.
-Proof.
- unfold valid2, merge_eq; intros ep e p1 p2; Simplify; simpl; auto.
- rewrite scalar_mult_stable. simpl.
- intros; symmetry ; apply OMEGA8 with (2 := H0).
- - assumption.
- - elim opp_eq_mult_neg_1; trivial.
-Qed.
-
-(** [O_SPLIT_INEQ] (only step to produce two subgoals). *)
-
-Definition split_ineq (i : nat) (f1 f2 : hyps -> lhyps) (l : hyps) :=
- match nth_hyps i l with
- | NeqTerm (Tint o) b1 =>
- if o =? 0 then
- f1 (LeqTerm (Tint 0) (scalar_add b1 (-(1))) :: l) ++
- f2 (LeqTerm (Tint 0) (scalar_mult_add b1 (-(1)) (-(1))) :: l)
- else l :: nil
- | _ => l :: nil
- end.
-
-Theorem split_ineq_valid :
- forall (i : nat) (f1 f2 : hyps -> lhyps),
- valid_list_hyps f1 ->
- valid_list_hyps f2 -> valid_list_hyps (split_ineq i f1 f2).
-Proof.
- unfold valid_list_hyps, split_ineq; intros i f1 f2 H1 H2 ep e lp H;
- generalize (nth_valid _ _ i _ H); case (nth_hyps i lp);
- simpl; auto; intros t1 t2; case t1; simpl;
- auto; intros z; simpl; auto; intro H3.
- Simplify.
- apply append_valid; elim (OMEGA19 (interp_term e t2)).
- - intro H4; left; apply H1; simpl; rewrite scalar_add_stable;
- simpl; auto.
- - intro H4; right; apply H2; simpl; rewrite scalar_mult_add_stable;
- simpl; auto.
- - generalize H3; unfold not; intros E1 E2; apply E1;
- symmetry ; trivial.
-Qed.
-
-(** ** Replaying the resolution trace *)
-
-Fixpoint execute_omega (t : t_omega) (l : hyps) : lhyps :=
- match t with
- | O_BAD_CONSTANT i => singleton (bad_constant i l)
- | O_NOT_EXACT_DIVIDE i k => singleton (not_exact_divide i k l)
- | O_DIVIDE i k cont =>
- execute_omega cont (apply_oper_1 i (divide k) l)
- | O_SUM k1 i1 k2 i2 cont =>
- execute_omega cont (apply_oper_2 i1 i2 (sum k1 k2) l)
- | O_MERGE_EQ i1 i2 cont =>
- execute_omega cont (apply_oper_2 i1 i2 merge_eq l)
- | O_SPLIT_INEQ i cont1 cont2 =>
- split_ineq i (execute_omega cont1) (execute_omega cont2) l
- end.
-
-Theorem omega_valid : forall tr : t_omega, valid_list_hyps (execute_omega tr).
-Proof.
- simple induction tr; unfold valid_list_hyps, valid_hyps; simpl.
- - intros; left; now apply bad_constant_valid.
- - intros; left; now apply not_exact_divide_valid.
- - intros m k t' Ht' ep e lp H; apply Ht';
- apply
- (apply_oper_1_valid m (divide k)
- (divide_valid k) ep e lp H).
- - intros k1 i1 k2 i2 t' Ht' ep e lp H; apply Ht';
- apply
- (apply_oper_2_valid i1 i2 (sum k1 k2) (sum_valid k1 k2) ep e
- lp H).
- - intros i1 i2 t' Ht' ep e lp H; apply Ht';
- apply
- (apply_oper_2_valid i1 i2 merge_eq merge_eq_valid ep e
- lp H).
- - intros i k1 H1 k2 H2 ep e lp H;
- apply
- (split_ineq_valid i (execute_omega k1) (execute_omega k2) H1 H2 ep e
- lp H).
-Qed.
-
-
-(** ** Rules for decomposing the hypothesis
-
- This type allows navigation in the logical constructors that
- form the predicats of the hypothesis in order to decompose them.
- This allows in particular to extract one hypothesis from a conjunction.
- NB: negations are now silently traversed. *)
-
-Inductive direction : Set :=
- | D_left : direction
- | D_right : direction.
-
-(** This type allows extracting useful components from hypothesis, either
- hypothesis generated by splitting a disjonction, or equations.
- The last constructor indicates how to solve the obtained system
- via the use of the trace type of Omega [t_omega] *)
-
-Inductive e_step : Set :=
- | E_SPLIT : nat -> list direction -> e_step -> e_step -> e_step
- | E_EXTRACT : nat -> list direction -> e_step -> e_step
- | E_SOLVE : t_omega -> e_step.
-
-(** Selection of a basic fact inside an hypothesis. *)
-
-Fixpoint extract_hyp_pos (s : list direction) (p : proposition) :
- proposition :=
- match p, s with
- | Tand x y, D_left :: l => extract_hyp_pos l x
- | Tand x y, D_right :: l => extract_hyp_pos l y
- | Tnot x, _ => extract_hyp_neg s x
- | _, _ => p
- end
-
- with extract_hyp_neg (s : list direction) (p : proposition) :
- proposition :=
- match p, s with
- | Tor x y, D_left :: l => extract_hyp_neg l x
- | Tor x y, D_right :: l => extract_hyp_neg l y
- | Timp x y, D_left :: l =>
- if decidability x then extract_hyp_pos l x else Tnot p
- | Timp x y, D_right :: l => extract_hyp_neg l y
- | Tnot x, _ => if decidability x then extract_hyp_pos s x else Tnot p
- | _, _ => Tnot p
- end.
-
-Theorem extract_valid :
- forall s : list direction, valid1 (extract_hyp_pos s).
-Proof.
- assert (forall p s ep e,
- (interp_prop ep e p ->
- interp_prop ep e (extract_hyp_pos s p)) /\
- (interp_prop ep e (Tnot p) ->
- interp_prop ep e (extract_hyp_neg s p))).
- { induction p; destruct s; simpl; auto; split; try destruct d; try easy;
- intros; (apply IHp || apply IHp1 || apply IHp2 || idtac); simpl; try tauto;
- destruct decidability eqn:D; auto;
- apply (decidable_correct ep e) in D; unfold decidable in D;
- (apply IHp || apply IHp1); tauto. }
- red. intros. now apply H.
-Qed.
-
-(** Attempt to shorten error messages if romega goes rogue...
- NB: [interp_list_goal _ _ BUG = False /\ True]. *)
-Definition BUG : lhyps := nil :: nil.
-
-(** Split and extract in hypotheses *)
-
-Fixpoint decompose_solve (s : e_step) (h : hyps) : lhyps :=
- match s with
- | E_SPLIT i dl s1 s2 =>
- match extract_hyp_pos dl (nth_hyps i h) with
- | Tor x y => decompose_solve s1 (x :: h) ++ decompose_solve s2 (y :: h)
- | Tnot (Tand x y) =>
- if decidability x
- then
- decompose_solve s1 (Tnot x :: h) ++
- decompose_solve s2 (Tnot y :: h)
- else BUG
- | Timp x y =>
- if decidability x then
- decompose_solve s1 (Tnot x :: h) ++ decompose_solve s2 (y :: h)
- else BUG
- | _ => BUG
- end
- | E_EXTRACT i dl s1 =>
- decompose_solve s1 (extract_hyp_pos dl (nth_hyps i h) :: h)
- | E_SOLVE t => execute_omega t h
- end.
-
-Theorem decompose_solve_valid (s : e_step) :
- valid_list_goal (decompose_solve s).
-Proof.
- apply goal_valid. red. induction s; simpl; intros ep e lp H.
- - assert (H' : interp_prop ep e (extract_hyp_pos l (nth_hyps n lp))).
- { now apply extract_valid, nth_valid. }
- destruct extract_hyp_pos; simpl in *; auto.
- + destruct p; simpl; auto.
- destruct decidability eqn:D; [ | simpl; auto].
- apply (decidable_correct ep e) in D.
- apply append_valid. simpl in *. destruct D.
- * right. apply IHs2. simpl; auto.
- * left. apply IHs1. simpl; auto.
- + apply append_valid. destruct H'.
- * left. apply IHs1. simpl; auto.
- * right. apply IHs2. simpl; auto.
- + destruct decidability eqn:D; [ | simpl; auto].
- apply (decidable_correct ep e) in D.
- apply append_valid. destruct D.
- * right. apply IHs2. simpl; auto.
- * left. apply IHs1. simpl; auto.
- - apply IHs; simpl; split; auto.
- now apply extract_valid, nth_valid.
- - now apply omega_valid.
-Qed.
-
-(** Reduction of subgoal list by discarding the contradictory subgoals. *)
-
-Definition valid_lhyps (f : lhyps -> lhyps) :=
- forall (ep : list Prop) (e : list int) (lp : lhyps),
- interp_list_hyps ep e lp -> interp_list_hyps ep e (f lp).
-
-Fixpoint reduce_lhyps (lp : lhyps) : lhyps :=
- match lp with
- | nil => nil
- | (FalseTerm :: nil) :: lp' => reduce_lhyps lp'
- | x :: lp' => BUG
- end.
-
-Theorem reduce_lhyps_valid : valid_lhyps reduce_lhyps.
-Proof.
- unfold valid_lhyps; intros ep e lp; elim lp.
- - simpl; auto.
- - intros a l HR; elim a.
- + simpl; tauto.
- + intros a1 l1; case l1; case a1; simpl; tauto.
-Qed.
-
-Theorem do_reduce_lhyps :
- forall (envp : list Prop) (env : list int) (l : lhyps),
- interp_list_goal envp env (reduce_lhyps l) -> interp_list_goal envp env l.
-Proof.
- intros envp env l H; apply list_goal_to_hyps; intro H1;
- apply list_hyps_to_goal with (1 := H); apply reduce_lhyps_valid;
- assumption.
-Qed.
-
-(** Pushing the conclusion into the hypotheses. *)
-
-Definition concl_to_hyp (p : proposition) :=
- if decidability p then Tnot p else TrueTerm.
-
-Definition do_concl_to_hyp :
- forall (envp : list Prop) (env : list int) (c : proposition) (l : hyps),
- interp_goal envp env (concl_to_hyp c :: l) ->
- interp_goal_concl c envp env l.
-Proof.
- induction l; simpl.
- - unfold concl_to_hyp; simpl.
- destruct decidability eqn:D; [ | simpl; tauto ].
- apply (decidable_correct envp env) in D. unfold decidable in D.
- simpl. tauto.
- - simpl in *; tauto.
-Qed.
-
-(** The omega tactic : all steps together *)
-
-Definition omega_tactic (t1 : e_step) (c : proposition) (l : hyps) :=
- reduce_lhyps (decompose_solve t1 (normalize_hyps (concl_to_hyp c :: l))).
-
-Theorem do_omega :
- forall (t : e_step) (envp : list Prop)
- (env : list int) (c : proposition) (l : hyps),
- interp_list_goal envp env (omega_tactic t c l) ->
- interp_goal_concl c envp env l.
-Proof.
- unfold omega_tactic; intros t ep e c l H.
- apply do_concl_to_hyp.
- apply normalize_hyps_goal.
- apply (decompose_solve_valid t).
- now apply do_reduce_lhyps.
-Qed.
-
-End IntOmega.
-
-(** For now, the above modular construction is instanciated on Z,
- in order to retrieve the initial ROmega. *)
-
-Module ZOmega := IntOmega(Z_as_Int).
diff --git a/plugins/romega/const_omega.ml b/plugins/romega/const_omega.ml
deleted file mode 100644
index 949cba2dbe..0000000000
--- a/plugins/romega/const_omega.ml
+++ /dev/null
@@ -1,332 +0,0 @@
-(*************************************************************************
-
- PROJET RNRT Calife - 2001
- Author: Pierre Crégut - France Télécom R&D
- Licence : LGPL version 2.1
-
- *************************************************************************)
-
-open Names
-
-let module_refl_name = "ReflOmegaCore"
-let module_refl_path = ["Coq"; "romega"; module_refl_name]
-
-type result =
- | Kvar of string
- | Kapp of string * EConstr.t list
- | Kimp of EConstr.t * EConstr.t
- | Kufo
-
-let meaningful_submodule = [ "Z"; "N"; "Pos" ]
-
-let string_of_global r =
- let dp = Nametab.dirpath_of_global r in
- let prefix = match Names.DirPath.repr dp with
- | [] -> ""
- | m::_ ->
- let s = Names.Id.to_string m in
- if Util.String.List.mem s meaningful_submodule then s^"." else ""
- in
- prefix^(Names.Id.to_string (Nametab.basename_of_global r))
-
-let destructurate sigma t =
- let c, args = EConstr.decompose_app sigma t in
- let open Constr in
- match EConstr.kind sigma c, args with
- | Const (sp,_), args ->
- Kapp (string_of_global (Globnames.ConstRef sp), args)
- | Construct (csp,_) , args ->
- Kapp (string_of_global (Globnames.ConstructRef csp), args)
- | Ind (isp,_), args ->
- Kapp (string_of_global (Globnames.IndRef isp), args)
- | Var id, [] -> Kvar(Names.Id.to_string id)
- | Prod (Anonymous,typ,body), [] -> Kimp(typ,body)
- | _ -> Kufo
-
-exception DestConstApp
-
-let dest_const_apply sigma t =
- let open Constr in
- let f,args = EConstr.decompose_app sigma t in
- let ref =
- match EConstr.kind sigma f with
- | Const (sp,_) -> Globnames.ConstRef sp
- | Construct (csp,_) -> Globnames.ConstructRef csp
- | Ind (isp,_) -> Globnames.IndRef isp
- | _ -> raise DestConstApp
- in Nametab.basename_of_global ref, args
-
-let logic_dir = ["Coq";"Logic";"Decidable"]
-
-let coq_modules =
- Coqlib.init_modules @ [logic_dir] @ Coqlib.arith_modules @ Coqlib.zarith_base_modules
- @ [["Coq"; "Lists"; "List"]]
- @ [module_refl_path]
- @ [module_refl_path@["ZOmega"]]
-
-let bin_module = [["Coq";"Numbers";"BinNums"]]
-let z_module = [["Coq";"ZArith";"BinInt"]]
-
-let init_constant x =
- EConstr.of_constr @@
- UnivGen.constr_of_global @@
- Coqlib.gen_reference_in_modules "Omega" Coqlib.init_modules x
-let constant x =
- EConstr.of_constr @@
- UnivGen.constr_of_global @@
- Coqlib.gen_reference_in_modules "Omega" coq_modules x
-let z_constant x =
- EConstr.of_constr @@
- UnivGen.constr_of_global @@
- Coqlib.gen_reference_in_modules "Omega" z_module x
-let bin_constant x =
- EConstr.of_constr @@
- UnivGen.constr_of_global @@
- Coqlib.gen_reference_in_modules "Omega" bin_module x
-
-(* Logic *)
-let coq_refl_equal = lazy(init_constant "eq_refl")
-let coq_and = lazy(init_constant "and")
-let coq_not = lazy(init_constant "not")
-let coq_or = lazy(init_constant "or")
-let coq_True = lazy(init_constant "True")
-let coq_False = lazy(init_constant "False")
-let coq_I = lazy(init_constant "I")
-
-(* ReflOmegaCore/ZOmega *)
-
-let coq_t_int = lazy (constant "Tint")
-let coq_t_plus = lazy (constant "Tplus")
-let coq_t_mult = lazy (constant "Tmult")
-let coq_t_opp = lazy (constant "Topp")
-let coq_t_minus = lazy (constant "Tminus")
-let coq_t_var = lazy (constant "Tvar")
-
-let coq_proposition = lazy (constant "proposition")
-let coq_p_eq = lazy (constant "EqTerm")
-let coq_p_leq = lazy (constant "LeqTerm")
-let coq_p_geq = lazy (constant "GeqTerm")
-let coq_p_lt = lazy (constant "LtTerm")
-let coq_p_gt = lazy (constant "GtTerm")
-let coq_p_neq = lazy (constant "NeqTerm")
-let coq_p_true = lazy (constant "TrueTerm")
-let coq_p_false = lazy (constant "FalseTerm")
-let coq_p_not = lazy (constant "Tnot")
-let coq_p_or = lazy (constant "Tor")
-let coq_p_and = lazy (constant "Tand")
-let coq_p_imp = lazy (constant "Timp")
-let coq_p_prop = lazy (constant "Tprop")
-
-let coq_s_bad_constant = lazy (constant "O_BAD_CONSTANT")
-let coq_s_divide = lazy (constant "O_DIVIDE")
-let coq_s_not_exact_divide = lazy (constant "O_NOT_EXACT_DIVIDE")
-let coq_s_sum = lazy (constant "O_SUM")
-let coq_s_merge_eq = lazy (constant "O_MERGE_EQ")
-let coq_s_split_ineq =lazy (constant "O_SPLIT_INEQ")
-
-(* construction for the [extract_hyp] tactic *)
-let coq_direction = lazy (constant "direction")
-let coq_d_left = lazy (constant "D_left")
-let coq_d_right = lazy (constant "D_right")
-
-let coq_e_split = lazy (constant "E_SPLIT")
-let coq_e_extract = lazy (constant "E_EXTRACT")
-let coq_e_solve = lazy (constant "E_SOLVE")
-
-let coq_interp_sequent = lazy (constant "interp_goal_concl")
-let coq_do_omega = lazy (constant "do_omega")
-
-(* Nat *)
-
-let coq_S = lazy(init_constant "S")
-let coq_O = lazy(init_constant "O")
-
-let rec mk_nat = function
- | 0 -> Lazy.force coq_O
- | n -> EConstr.mkApp (Lazy.force coq_S, [| mk_nat (n-1) |])
-
-(* Lists *)
-
-let mkListConst c =
- let r =
- Coqlib.coq_reference "" ["Init";"Datatypes"] c
- in
- let inst =
- if Global.is_polymorphic r then
- fun u -> EConstr.EInstance.make (Univ.Instance.of_array [|u|])
- else
- fun _ -> EConstr.EInstance.empty
- in
- fun u -> EConstr.mkConstructU (Globnames.destConstructRef r, inst u)
-
-let coq_cons univ typ = EConstr.mkApp (mkListConst "cons" univ, [|typ|])
-let coq_nil univ typ = EConstr.mkApp (mkListConst "nil" univ, [|typ|])
-
-let mk_list univ typ l =
- let rec loop = function
- | [] -> coq_nil univ typ
- | (step :: l) ->
- EConstr.mkApp (coq_cons univ typ, [| step; loop l |]) in
- loop l
-
-let mk_plist =
- let type1lev = UnivGen.new_univ_level () in
- fun l -> mk_list type1lev EConstr.mkProp l
-
-let mk_list = mk_list Univ.Level.set
-
-type parse_term =
- | Tplus of EConstr.t * EConstr.t
- | Tmult of EConstr.t * EConstr.t
- | Tminus of EConstr.t * EConstr.t
- | Topp of EConstr.t
- | Tsucc of EConstr.t
- | Tnum of Bigint.bigint
- | Tother
-
-type parse_rel =
- | Req of EConstr.t * EConstr.t
- | Rne of EConstr.t * EConstr.t
- | Rlt of EConstr.t * EConstr.t
- | Rle of EConstr.t * EConstr.t
- | Rgt of EConstr.t * EConstr.t
- | Rge of EConstr.t * EConstr.t
- | Rtrue
- | Rfalse
- | Rnot of EConstr.t
- | Ror of EConstr.t * EConstr.t
- | Rand of EConstr.t * EConstr.t
- | Rimp of EConstr.t * EConstr.t
- | Riff of EConstr.t * EConstr.t
- | Rother
-
-let parse_logic_rel sigma c = match destructurate sigma c with
- | Kapp("True",[]) -> Rtrue
- | Kapp("False",[]) -> Rfalse
- | Kapp("not",[t]) -> Rnot t
- | Kapp("or",[t1;t2]) -> Ror (t1,t2)
- | Kapp("and",[t1;t2]) -> Rand (t1,t2)
- | Kimp(t1,t2) -> Rimp (t1,t2)
- | Kapp("iff",[t1;t2]) -> Riff (t1,t2)
- | _ -> Rother
-
-(* Binary numbers *)
-
-let coq_Z = lazy (bin_constant "Z")
-let coq_xH = lazy (bin_constant "xH")
-let coq_xO = lazy (bin_constant "xO")
-let coq_xI = lazy (bin_constant "xI")
-let coq_Z0 = lazy (bin_constant "Z0")
-let coq_Zpos = lazy (bin_constant "Zpos")
-let coq_Zneg = lazy (bin_constant "Zneg")
-let coq_N0 = lazy (bin_constant "N0")
-let coq_Npos = lazy (bin_constant "Npos")
-
-let rec mk_positive n =
- if Bigint.equal n Bigint.one then Lazy.force coq_xH
- else
- let (q,r) = Bigint.euclid n Bigint.two in
- EConstr.mkApp
- ((if Bigint.equal r Bigint.zero
- then Lazy.force coq_xO else Lazy.force coq_xI),
- [| mk_positive q |])
-
-let mk_N = function
- | 0 -> Lazy.force coq_N0
- | n -> EConstr.mkApp (Lazy.force coq_Npos,
- [| mk_positive (Bigint.of_int n) |])
-
-module type Int = sig
- val typ : EConstr.t Lazy.t
- val is_int_typ : Proofview.Goal.t -> EConstr.t -> bool
- val plus : EConstr.t Lazy.t
- val mult : EConstr.t Lazy.t
- val opp : EConstr.t Lazy.t
- val minus : EConstr.t Lazy.t
-
- val mk : Bigint.bigint -> EConstr.t
- val parse_term : Evd.evar_map -> EConstr.t -> parse_term
- val parse_rel : Proofview.Goal.t -> EConstr.t -> parse_rel
- (* check whether t is built only with numbers and + * - *)
- val get_scalar : Evd.evar_map -> EConstr.t -> Bigint.bigint option
-end
-
-module Z : Int = struct
-
-let typ = coq_Z
-let plus = lazy (z_constant "Z.add")
-let mult = lazy (z_constant "Z.mul")
-let opp = lazy (z_constant "Z.opp")
-let minus = lazy (z_constant "Z.sub")
-
-let recognize_pos sigma t =
- let rec loop t =
- let f,l = dest_const_apply sigma t in
- match Id.to_string f,l with
- | "xI",[t] -> Bigint.add Bigint.one (Bigint.mult Bigint.two (loop t))
- | "xO",[t] -> Bigint.mult Bigint.two (loop t)
- | "xH",[] -> Bigint.one
- | _ -> raise DestConstApp
- in
- try Some (loop t) with DestConstApp -> None
-
-let recognize_Z sigma t =
- try
- let f,l = dest_const_apply sigma t in
- match Id.to_string f,l with
- | "Zpos",[t] -> recognize_pos sigma t
- | "Zneg",[t] -> Option.map Bigint.neg (recognize_pos sigma t)
- | "Z0",[] -> Some Bigint.zero
- | _ -> None
- with DestConstApp -> None
-
-let mk_Z n =
- if Bigint.equal n Bigint.zero then Lazy.force coq_Z0
- else if Bigint.is_strictly_pos n then
- EConstr.mkApp (Lazy.force coq_Zpos, [| mk_positive n |])
- else
- EConstr.mkApp (Lazy.force coq_Zneg, [| mk_positive (Bigint.neg n) |])
-
-let mk = mk_Z
-
-let parse_term sigma t =
- match destructurate sigma t with
- | Kapp("Z.add",[t1;t2]) -> Tplus (t1,t2)
- | Kapp("Z.sub",[t1;t2]) -> Tminus (t1,t2)
- | Kapp("Z.mul",[t1;t2]) -> Tmult (t1,t2)
- | Kapp("Z.opp",[t]) -> Topp t
- | Kapp("Z.succ",[t]) -> Tsucc t
- | Kapp("Z.pred",[t]) -> Tplus(t, mk_Z (Bigint.neg Bigint.one))
- | Kapp(("Zpos"|"Zneg"|"Z0"),_) ->
- (match recognize_Z sigma t with Some t -> Tnum t | None -> Tother)
- | _ -> Tother
-
-let is_int_typ gl t =
- Tacmach.New.pf_apply Reductionops.is_conv gl t (Lazy.force coq_Z)
-
-let parse_rel gl t =
- let sigma = Proofview.Goal.sigma gl in
- match destructurate sigma t with
- | Kapp("eq",[typ;t1;t2]) when is_int_typ gl typ -> Req (t1,t2)
- | Kapp("Zne",[t1;t2]) -> Rne (t1,t2)
- | Kapp("Z.le",[t1;t2]) -> Rle (t1,t2)
- | Kapp("Z.lt",[t1;t2]) -> Rlt (t1,t2)
- | Kapp("Z.ge",[t1;t2]) -> Rge (t1,t2)
- | Kapp("Z.gt",[t1;t2]) -> Rgt (t1,t2)
- | _ -> parse_logic_rel sigma t
-
-let rec get_scalar sigma t =
- match destructurate sigma t with
- | Kapp("Z.add", [t1;t2]) ->
- Option.lift2 Bigint.add (get_scalar sigma t1) (get_scalar sigma t2)
- | Kapp ("Z.sub",[t1;t2]) ->
- Option.lift2 Bigint.sub (get_scalar sigma t1) (get_scalar sigma t2)
- | Kapp ("Z.mul",[t1;t2]) ->
- Option.lift2 Bigint.mult (get_scalar sigma t1) (get_scalar sigma t2)
- | Kapp("Z.opp", [t]) -> Option.map Bigint.neg (get_scalar sigma t)
- | Kapp("Z.succ", [t]) -> Option.map Bigint.add_1 (get_scalar sigma t)
- | Kapp("Z.pred", [t]) -> Option.map Bigint.sub_1 (get_scalar sigma t)
- | Kapp(("Zpos"|"Zneg"|"Z0"),_) -> recognize_Z sigma t
- | _ -> None
-
-end
diff --git a/plugins/romega/const_omega.mli b/plugins/romega/const_omega.mli
deleted file mode 100644
index 64668df007..0000000000
--- a/plugins/romega/const_omega.mli
+++ /dev/null
@@ -1,124 +0,0 @@
-(*************************************************************************
-
- PROJET RNRT Calife - 2001
- Author: Pierre Crégut - France Télécom R&D
- Licence : LGPL version 2.1
-
- *************************************************************************)
-
-
-(** Coq objects used in romega *)
-
-(* from Logic *)
-val coq_refl_equal : EConstr.t lazy_t
-val coq_and : EConstr.t lazy_t
-val coq_not : EConstr.t lazy_t
-val coq_or : EConstr.t lazy_t
-val coq_True : EConstr.t lazy_t
-val coq_False : EConstr.t lazy_t
-val coq_I : EConstr.t lazy_t
-
-(* from ReflOmegaCore/ZOmega *)
-
-val coq_t_int : EConstr.t lazy_t
-val coq_t_plus : EConstr.t lazy_t
-val coq_t_mult : EConstr.t lazy_t
-val coq_t_opp : EConstr.t lazy_t
-val coq_t_minus : EConstr.t lazy_t
-val coq_t_var : EConstr.t lazy_t
-
-val coq_proposition : EConstr.t lazy_t
-val coq_p_eq : EConstr.t lazy_t
-val coq_p_leq : EConstr.t lazy_t
-val coq_p_geq : EConstr.t lazy_t
-val coq_p_lt : EConstr.t lazy_t
-val coq_p_gt : EConstr.t lazy_t
-val coq_p_neq : EConstr.t lazy_t
-val coq_p_true : EConstr.t lazy_t
-val coq_p_false : EConstr.t lazy_t
-val coq_p_not : EConstr.t lazy_t
-val coq_p_or : EConstr.t lazy_t
-val coq_p_and : EConstr.t lazy_t
-val coq_p_imp : EConstr.t lazy_t
-val coq_p_prop : EConstr.t lazy_t
-
-val coq_s_bad_constant : EConstr.t lazy_t
-val coq_s_divide : EConstr.t lazy_t
-val coq_s_not_exact_divide : EConstr.t lazy_t
-val coq_s_sum : EConstr.t lazy_t
-val coq_s_merge_eq : EConstr.t lazy_t
-val coq_s_split_ineq : EConstr.t lazy_t
-
-val coq_direction : EConstr.t lazy_t
-val coq_d_left : EConstr.t lazy_t
-val coq_d_right : EConstr.t lazy_t
-
-val coq_e_split : EConstr.t lazy_t
-val coq_e_extract : EConstr.t lazy_t
-val coq_e_solve : EConstr.t lazy_t
-
-val coq_interp_sequent : EConstr.t lazy_t
-val coq_do_omega : EConstr.t lazy_t
-
-val mk_nat : int -> EConstr.t
-val mk_N : int -> EConstr.t
-
-(** Precondition: the type of the list is in Set *)
-val mk_list : EConstr.t -> EConstr.t list -> EConstr.t
-val mk_plist : EConstr.types list -> EConstr.types
-
-(** Analyzing a coq term *)
-
-(* The generic result shape of the analysis of a term.
- One-level depth, except when a number is found *)
-type parse_term =
- Tplus of EConstr.t * EConstr.t
- | Tmult of EConstr.t * EConstr.t
- | Tminus of EConstr.t * EConstr.t
- | Topp of EConstr.t
- | Tsucc of EConstr.t
- | Tnum of Bigint.bigint
- | Tother
-
-(* The generic result shape of the analysis of a relation.
- One-level depth. *)
-type parse_rel =
- Req of EConstr.t * EConstr.t
- | Rne of EConstr.t * EConstr.t
- | Rlt of EConstr.t * EConstr.t
- | Rle of EConstr.t * EConstr.t
- | Rgt of EConstr.t * EConstr.t
- | Rge of EConstr.t * EConstr.t
- | Rtrue
- | Rfalse
- | Rnot of EConstr.t
- | Ror of EConstr.t * EConstr.t
- | Rand of EConstr.t * EConstr.t
- | Rimp of EConstr.t * EConstr.t
- | Riff of EConstr.t * EConstr.t
- | Rother
-
-(* A module factorizing what we should now about the number representation *)
-module type Int =
- sig
- (* the coq type of the numbers *)
- val typ : EConstr.t Lazy.t
- (* Is a constr expands to the type of these numbers *)
- val is_int_typ : Proofview.Goal.t -> EConstr.t -> bool
- (* the operations on the numbers *)
- val plus : EConstr.t Lazy.t
- val mult : EConstr.t Lazy.t
- val opp : EConstr.t Lazy.t
- val minus : EConstr.t Lazy.t
- (* building a coq number *)
- val mk : Bigint.bigint -> EConstr.t
- (* parsing a term (one level, except if a number is found) *)
- val parse_term : Evd.evar_map -> EConstr.t -> parse_term
- (* parsing a relation expression, including = < <= >= > *)
- val parse_rel : Proofview.Goal.t -> EConstr.t -> parse_rel
- (* Is a particular term only made of numbers and + * - ? *)
- val get_scalar : Evd.evar_map -> EConstr.t -> Bigint.bigint option
- end
-
-(* Currently, we only use Z numbers *)
-module Z : Int
diff --git a/plugins/romega/g_romega.mlg b/plugins/romega/g_romega.mlg
deleted file mode 100644
index ac4f30b1db..0000000000
--- a/plugins/romega/g_romega.mlg
+++ /dev/null
@@ -1,63 +0,0 @@
-(*************************************************************************
-
- PROJET RNRT Calife - 2001
- Author: Pierre Crégut - France Télécom R&D
- Licence : LGPL version 2.1
-
- *************************************************************************)
-
-
-DECLARE PLUGIN "romega_plugin"
-
-{
-
-open Ltac_plugin
-open Names
-open Refl_omega
-open Stdarg
-
-let eval_tactic name =
- let dp = DirPath.make (List.map Id.of_string ["PreOmega"; "omega"; "Coq"]) in
- let kn = KerName.make2 (ModPath.MPfile dp) (Label.make name) in
- let tac = Tacenv.interp_ltac kn in
- Tacinterp.eval_tactic tac
-
-let romega_tactic unsafe l =
- let tacs = List.map
- (function
- | "nat" -> eval_tactic "zify_nat"
- | "positive" -> eval_tactic "zify_positive"
- | "N" -> eval_tactic "zify_N"
- | "Z" -> eval_tactic "zify_op"
- | s -> CErrors.user_err Pp.(str ("No ROmega knowledge base for type "^s)))
- (Util.List.sort_uniquize String.compare l)
- in
- Tacticals.New.tclTHEN
- (Tacticals.New.tclREPEAT (Proofview.tclPROGRESS (Tacticals.New.tclTHENLIST tacs)))
- (Tacticals.New.tclTHEN
- (* because of the contradiction process in (r)omega,
- we'd better leave as little as possible in the conclusion,
- for an easier decidability argument. *)
- (Tactics.intros)
- (total_reflexive_omega_tactic unsafe))
-
-let romega_depr =
- Vernacinterp.mk_deprecation
- ~since:(Some "8.9")
- ~note:(Some "Use lia instead.")
- ()
-
-}
-
-TACTIC EXTEND romega
-DEPRECATED { romega_depr }
-| [ "romega" ] -> { romega_tactic false [] }
-| [ "unsafe_romega" ] -> { romega_tactic true [] }
-END
-
-TACTIC EXTEND romega'
-DEPRECATED { romega_depr }
-| [ "romega" "with" ne_ident_list(l) ] ->
- { romega_tactic false (List.map Names.Id.to_string l) }
-| [ "romega" "with" "*" ] -> { romega_tactic false ["nat";"positive";"N";"Z"] }
-END
diff --git a/plugins/romega/plugin_base.dune b/plugins/romega/plugin_base.dune
deleted file mode 100644
index 49b0e10edf..0000000000
--- a/plugins/romega/plugin_base.dune
+++ /dev/null
@@ -1,5 +0,0 @@
-(library
- (name romega_plugin)
- (public_name coq.plugins.romega)
- (synopsis "Coq's romega plugin")
- (libraries coq.plugins.omega))
diff --git a/plugins/romega/refl_omega.ml b/plugins/romega/refl_omega.ml
deleted file mode 100644
index 930048400a..0000000000
--- a/plugins/romega/refl_omega.ml
+++ /dev/null
@@ -1,1071 +0,0 @@
-(*************************************************************************
-
- PROJET RNRT Calife - 2001
- Author: Pierre Crégut - France Télécom R&D
- Licence : LGPL version 2.1
-
- *************************************************************************)
-
-open Pp
-open Util
-open Constr
-open Const_omega
-module OmegaSolver = Omega_plugin.Omega.MakeOmegaSolver (Bigint)
-open OmegaSolver
-
-module Id = Names.Id
-module IntSet = Int.Set
-module IntHtbl = Hashtbl.Make(Int)
-
-(* \section{Useful functions and flags} *)
-(* Especially useful debugging functions *)
-let debug = ref false
-
-let show_goal = Tacticals.New.tclIDTAC
-
-let pp i = print_int i; print_newline (); flush stdout
-
-(* More readable than the prefix notation *)
-let (>>) = Tacticals.New.tclTHEN
-
-(* \section{Types}
- \subsection{How to walk in a term}
- To represent how to get to a proposition. Only choice points are
- kept (branch to choose in a disjunction and identifier of the disjunctive
- connector) *)
-type direction = Left of int | Right of int
-
-(* Step to find a proposition (operators are at most binary). A list is
- a path *)
-type occ_step = O_left | O_right | O_mono
-type occ_path = occ_step list
-
-(* chemin identifiant une proposition sous forme du nom de l'hypothèse et
- d'une liste de pas à partir de la racine de l'hypothèse *)
-type occurrence = {o_hyp : Id.t; o_path : occ_path}
-
-type atom_index = int
-
-(* \subsection{reifiable formulas} *)
-type oformula =
- (* integer *)
- | Oint of Bigint.bigint
- (* recognized binary and unary operations *)
- | Oplus of oformula * oformula
- | Omult of oformula * oformula (* Invariant : one side is [Oint] *)
- | Ominus of oformula * oformula
- | Oopp of oformula
- (* an atom in the environment *)
- | Oatom of atom_index
-
-(* Operators for comparison recognized by Omega *)
-type comparaison = Eq | Leq | Geq | Gt | Lt | Neq
-
-(* Representation of reified predicats (fragment of propositional calculus,
- no quantifier here). *)
-(* Note : in [Pprop p], the non-reified constr [p] should be closed
- (it could contains some [Term.Var] but no [Term.Rel]). So no need to
- lift when breaking or creating arrows. *)
-type oproposition =
- Pequa of EConstr.t * oequation (* constr = copy of the Coq formula *)
- | Ptrue
- | Pfalse
- | Pnot of oproposition
- | Por of int * oproposition * oproposition
- | Pand of int * oproposition * oproposition
- | Pimp of int * oproposition * oproposition
- | Pprop of EConstr.t
-
-(* The equations *)
-and oequation = {
- e_comp: comparaison; (* comparaison *)
- e_left: oformula; (* formule brute gauche *)
- e_right: oformula; (* formule brute droite *)
- e_origin: occurrence; (* l'hypothèse dont vient le terme *)
- e_negated: bool; (* vrai si apparait en position nié
- après normalisation *)
- e_depends: direction list; (* liste des points de disjonction dont
- dépend l'accès à l'équation avec la
- direction (branche) pour y accéder *)
- e_omega: OmegaSolver.afine (* normalized formula *)
- }
-
-(* \subsection{Proof context}
- This environment codes
- \begin{itemize}
- \item the terms and propositions that are given as
- parameters of the reified proof (and are represented as variables in the
- reified goals)
- \item translation functions linking the decision procedure and the Coq proof
- \end{itemize} *)
-
-type environment = {
- (* La liste des termes non reifies constituant l'environnement global *)
- mutable terms : EConstr.t list;
- (* La meme chose pour les propositions *)
- mutable props : EConstr.t list;
- (* Traduction des indices utilisés ici en les indices finaux utilisés par
- * la tactique Omega après dénombrement des variables utiles *)
- real_indices : int IntHtbl.t;
- mutable cnt_connectors : int;
- equations : oequation IntHtbl.t;
- constructors : occurrence IntHtbl.t
-}
-
-(* \subsection{Solution tree}
- Définition d'une solution trouvée par Omega sous la forme d'un identifiant,
- d'un ensemble d'équation dont dépend la solution et d'une trace *)
-
-type solution = {
- s_index : int;
- s_equa_deps : IntSet.t;
- s_trace : OmegaSolver.action list }
-
-(* Arbre de solution résolvant complètement un ensemble de systèmes *)
-type solution_tree =
- Leaf of solution
- (* un noeud interne représente un point de branchement correspondant à
- l'élimination d'un connecteur générant plusieurs buts
- (typ. disjonction). Le premier argument
- est l'identifiant du connecteur *)
- | Tree of int * solution_tree * solution_tree
-
-(* Représentation de l'environnement extrait du but initial sous forme de
- chemins pour extraire des equations ou d'hypothèses *)
-
-type context_content =
- CCHyp of occurrence
- | CCEqua of int
-
-(** Some dedicated equality tests *)
-
-let occ_step_eq s1 s2 = match s1, s2 with
-| O_left, O_left | O_right, O_right | O_mono, O_mono -> true
-| _ -> false
-
-let rec oform_eq f f' = match f,f' with
- | Oint i, Oint i' -> Bigint.equal i i'
- | Oplus (f1,f2), Oplus (f1',f2')
- | Omult (f1,f2), Omult (f1',f2')
- | Ominus (f1,f2), Ominus (f1',f2') -> oform_eq f1 f1' && oform_eq f2 f2'
- | Oopp f, Oopp f' -> oform_eq f f'
- | Oatom a, Oatom a' -> Int.equal a a'
- | _ -> false
-
-let dir_eq d d' = match d, d' with
- | Left i, Left i' | Right i, Right i' -> Int.equal i i'
- | _ -> false
-
-(* \section{Specific utility functions to handle base types} *)
-(* Nom arbitraire de l'hypothèse codant la négation du but final *)
-let id_concl = Id.of_string "__goal__"
-
-(* Initialisation de l'environnement de réification de la tactique *)
-let new_environment () = {
- terms = []; props = []; cnt_connectors = 0;
- real_indices = IntHtbl.create 7;
- equations = IntHtbl.create 7;
- constructors = IntHtbl.create 7;
-}
-
-(* Génération d'un nom d'équation *)
-let new_connector_id env =
- env.cnt_connectors <- succ env.cnt_connectors; env.cnt_connectors
-
-(* Calcul de la branche complémentaire *)
-let barre = function Left x -> Right x | Right x -> Left x
-
-(* Identifiant associé à une branche *)
-let indice = function Left x | Right x -> x
-
-(* Affichage de l'environnement de réification (termes et propositions) *)
-let print_env_reification env =
- let rec loop c i = function
- [] -> str " ===============================\n\n"
- | t :: l ->
- let sigma, env = Pfedit.get_current_context () in
- let s = Printf.sprintf "(%c%02d)" c i in
- spc () ++ str s ++ str " := " ++ Printer.pr_econstr_env env sigma t ++ fnl () ++
- loop c (succ i) l
- in
- let prop_info = str "ENVIRONMENT OF PROPOSITIONS :" ++ fnl () ++ loop 'P' 0 env.props in
- let term_info = str "ENVIRONMENT OF TERMS :" ++ fnl () ++ loop 'V' 0 env.terms in
- Feedback.msg_debug (prop_info ++ fnl () ++ term_info)
-
-(* \subsection{Gestion des environnements de variable pour Omega} *)
-(* generation d'identifiant d'equation pour Omega *)
-
-let new_omega_eq, rst_omega_eq =
- let cpt = ref (-1) in
- (function () -> incr cpt; !cpt),
- (function () -> cpt:=(-1))
-
-(* generation d'identifiant de variable pour Omega *)
-
-let new_omega_var, rst_omega_var, set_omega_maxvar =
- let cpt = ref (-1) in
- (function () -> incr cpt; !cpt),
- (function () -> cpt:=(-1)),
- (function n -> cpt:=n)
-
-(* Affichage des variables d'un système *)
-
-let display_omega_var i = Printf.sprintf "OV%d" i
-
-(* \subsection{Gestion des environnements de variable pour la réflexion}
- Gestion des environnements de traduction entre termes des constructions
- non réifiés et variables des termes reifies. Attention il s'agit de
- l'environnement initial contenant tout. Il faudra le réduire après
- calcul des variables utiles. *)
-
-let add_reified_atom sigma t env =
- try List.index0 (EConstr.eq_constr sigma) t env.terms
- with Not_found ->
- let i = List.length env.terms in
- env.terms <- env.terms @ [t]; i
-
-let get_reified_atom env =
- try List.nth env.terms with Invalid_argument _ -> failwith "get_reified_atom"
-
-(** When the omega resolution has created a variable [v], we re-sync
- the environment with this new variable. To be done in the right order. *)
-
-let set_reified_atom v t env =
- assert (Int.equal v (List.length env.terms));
- env.terms <- env.terms @ [t]
-
-(* \subsection{Gestion de l'environnement de proposition pour Omega} *)
-(* ajout d'une proposition *)
-let add_prop sigma env t =
- try List.index0 (EConstr.eq_constr sigma) t env.props
- with Not_found ->
- let i = List.length env.props in env.props <- env.props @ [t]; i
-
-(* accès a une proposition *)
-let get_prop v env =
- try List.nth v env with Invalid_argument _ -> failwith "get_prop"
-
-(* \subsection{Gestion du nommage des équations} *)
-(* Ajout d'une equation dans l'environnement de reification *)
-let add_equation env e =
- let id = e.e_omega.id in
- if IntHtbl.mem env.equations id then () else IntHtbl.add env.equations id e
-
-(* accès a une equation *)
-let get_equation env id =
- try IntHtbl.find env.equations id
- with Not_found as e ->
- Printf.printf "Omega Equation %d non trouvée\n" id; raise e
-
-(* Affichage des termes réifiés *)
-let rec oprint ch = function
- | Oint n -> Printf.fprintf ch "%s" (Bigint.to_string n)
- | Oplus (t1,t2) -> Printf.fprintf ch "(%a + %a)" oprint t1 oprint t2
- | Omult (t1,t2) -> Printf.fprintf ch "(%a * %a)" oprint t1 oprint t2
- | Ominus(t1,t2) -> Printf.fprintf ch "(%a - %a)" oprint t1 oprint t2
- | Oopp t1 ->Printf.fprintf ch "~ %a" oprint t1
- | Oatom n -> Printf.fprintf ch "V%02d" n
-
-let print_comp = function
- | Eq -> "=" | Leq -> "<=" | Geq -> ">="
- | Gt -> ">" | Lt -> "<" | Neq -> "!="
-
-let rec pprint ch = function
- Pequa (_,{ e_comp=comp; e_left=t1; e_right=t2 }) ->
- Printf.fprintf ch "%a %s %a" oprint t1 (print_comp comp) oprint t2
- | Ptrue -> Printf.fprintf ch "TT"
- | Pfalse -> Printf.fprintf ch "FF"
- | Pnot t -> Printf.fprintf ch "not(%a)" pprint t
- | Por (_,t1,t2) -> Printf.fprintf ch "(%a or %a)" pprint t1 pprint t2
- | Pand(_,t1,t2) -> Printf.fprintf ch "(%a and %a)" pprint t1 pprint t2
- | Pimp(_,t1,t2) -> Printf.fprintf ch "(%a => %a)" pprint t1 pprint t2
- | Pprop c -> Printf.fprintf ch "Prop"
-
-(* \subsection{Omega vers Oformula} *)
-
-let oformula_of_omega af =
- let rec loop = function
- | ({v=v; c=n}::r) -> Oplus(Omult(Oatom v,Oint n),loop r)
- | [] -> Oint af.constant
- in
- loop af.body
-
-let app f v = EConstr.mkApp(Lazy.force f,v)
-
-(* \subsection{Oformula vers COQ reel} *)
-
-let coq_of_formula env t =
- let rec loop = function
- | Oplus (t1,t2) -> app Z.plus [| loop t1; loop t2 |]
- | Oopp t -> app Z.opp [| loop t |]
- | Omult(t1,t2) -> app Z.mult [| loop t1; loop t2 |]
- | Oint v -> Z.mk v
- | Oatom var ->
- (* attention ne traite pas les nouvelles variables si on ne les
- * met pas dans env.term *)
- get_reified_atom env var
- | Ominus(t1,t2) -> app Z.minus [| loop t1; loop t2 |] in
- loop t
-
-(* \subsection{Oformula vers COQ reifié} *)
-
-let reified_of_atom env i =
- try IntHtbl.find env.real_indices i
- with Not_found ->
- Printf.printf "Atome %d non trouvé\n" i;
- IntHtbl.iter (fun k v -> Printf.printf "%d -> %d\n" k v) env.real_indices;
- raise Not_found
-
-let reified_binop = function
- | Oplus _ -> app coq_t_plus
- | Ominus _ -> app coq_t_minus
- | Omult _ -> app coq_t_mult
- | _ -> assert false
-
-let rec reified_of_formula env t = match t with
- | Oplus (t1,t2) | Omult (t1,t2) | Ominus (t1,t2) ->
- reified_binop t [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Oopp t -> app coq_t_opp [| reified_of_formula env t |]
- | Oint v -> app coq_t_int [| Z.mk v |]
- | Oatom i -> app coq_t_var [| mk_N (reified_of_atom env i) |]
-
-let reified_of_formula env f =
- try reified_of_formula env f
- with reraise -> oprint stderr f; raise reraise
-
-let reified_cmp = function
- | Eq -> app coq_p_eq
- | Leq -> app coq_p_leq
- | Geq -> app coq_p_geq
- | Gt -> app coq_p_gt
- | Lt -> app coq_p_lt
- | Neq -> app coq_p_neq
-
-let reified_conn = function
- | Por _ -> app coq_p_or
- | Pand _ -> app coq_p_and
- | Pimp _ -> app coq_p_imp
- | _ -> assert false
-
-let rec reified_of_oprop sigma env t = match t with
- | Pequa (_,{ e_comp=cmp; e_left=t1; e_right=t2 }) ->
- reified_cmp cmp [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Ptrue -> Lazy.force coq_p_true
- | Pfalse -> Lazy.force coq_p_false
- | Pnot t -> app coq_p_not [| reified_of_oprop sigma env t |]
- | Por (_,t1,t2) | Pand (_,t1,t2) | Pimp (_,t1,t2) ->
- reified_conn t
- [| reified_of_oprop sigma env t1; reified_of_oprop sigma env t2 |]
- | Pprop t -> app coq_p_prop [| mk_nat (add_prop sigma env t) |]
-
-let reified_of_proposition sigma env f =
- try reified_of_oprop sigma env f
- with reraise -> pprint stderr f; raise reraise
-
-let reified_of_eq env (l,r) =
- app coq_p_eq [| reified_of_formula env l; reified_of_formula env r |]
-
-(* \section{Opérations sur les équations}
-Ces fonctions préparent les traces utilisées par la tactique réfléchie
-pour faire des opérations de normalisation sur les équations. *)
-
-(* \subsection{Extractions des variables d'une équation} *)
-(* Extraction des variables d'une équation. *)
-(* Chaque fonction retourne une liste triée sans redondance *)
-
-let (@@) = IntSet.union
-
-let rec vars_of_formula = function
- | Oint _ -> IntSet.empty
- | Oplus (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
- | Omult (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
- | Ominus (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
- | Oopp e -> vars_of_formula e
- | Oatom i -> IntSet.singleton i
-
-let rec vars_of_equations = function
- | [] -> IntSet.empty
- | e::l ->
- (vars_of_formula e.e_left) @@
- (vars_of_formula e.e_right) @@
- (vars_of_equations l)
-
-let rec vars_of_prop = function
- | Pequa(_,e) -> vars_of_equations [e]
- | Pnot p -> vars_of_prop p
- | Por(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
- | Pand(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
- | Pimp(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
- | Pprop _ | Ptrue | Pfalse -> IntSet.empty
-
-(* Normalized formulas :
-
- - sorted list of monomials, largest index first,
- with non-null coefficients
- - a constant coefficient
-
- /!\ Keep in sync with the corresponding functions in ReflOmegaCore !
-*)
-
-type nformula =
- { coefs : (atom_index * Bigint.bigint) list;
- cst : Bigint.bigint }
-
-let scale n { coefs; cst } =
- { coefs = List.map (fun (v,k) -> (v,k*n)) coefs;
- cst = cst*n }
-
-let shuffle nf1 nf2 =
- let rec merge l1 l2 = match l1,l2 with
- | [],_ -> l2
- | _,[] -> l1
- | (v1,k1)::r1,(v2,k2)::r2 ->
- if Int.equal v1 v2 then
- let k = k1+k2 in
- if Bigint.equal k Bigint.zero then merge r1 r2
- else (v1,k) :: merge r1 r2
- else if v1 > v2 then (v1,k1) :: merge r1 l2
- else (v2,k2) :: merge l1 r2
- in
- { coefs = merge nf1.coefs nf2.coefs;
- cst = nf1.cst + nf2.cst }
-
-let rec normalize = function
- | Oplus(t1,t2) -> shuffle (normalize t1) (normalize t2)
- | Ominus(t1,t2) -> normalize (Oplus (t1, Oopp(t2)))
- | Oopp(t) -> scale negone (normalize t)
- | Omult(t,Oint n) | Omult (Oint n, t) ->
- if Bigint.equal n Bigint.zero then { coefs = []; cst = zero }
- else scale n (normalize t)
- | Omult _ -> assert false (* invariant on Omult *)
- | Oint n -> { coefs = []; cst = n }
- | Oatom v -> { coefs = [v,Bigint.one]; cst=Bigint.zero}
-
-(* From normalized formulas to omega representations *)
-
-let omega_of_nformula env kind nf =
- { id = new_omega_eq ();
- kind;
- constant=nf.cst;
- body = List.map (fun (v,c) -> { v; c }) nf.coefs }
-
-
-let negate_oper = function
- Eq -> Neq | Neq -> Eq | Leq -> Gt | Geq -> Lt | Lt -> Geq | Gt -> Leq
-
-let normalize_equation env (negated,depends,origin,path) oper t1 t2 =
- let mk_step t kind =
- let equa = omega_of_nformula env kind (normalize t) in
- { e_comp = oper; e_left = t1; e_right = t2;
- e_negated = negated; e_depends = depends;
- e_origin = { o_hyp = origin; o_path = List.rev path };
- e_omega = equa }
- in
- try match (if negated then (negate_oper oper) else oper) with
- | Eq -> mk_step (Oplus (t1,Oopp t2)) EQUA
- | Neq -> mk_step (Oplus (t1,Oopp t2)) DISE
- | Leq -> mk_step (Oplus (t2,Oopp t1)) INEQ
- | Geq -> mk_step (Oplus (t1,Oopp t2)) INEQ
- | Lt -> mk_step (Oplus (Oplus(t2,Oint negone),Oopp t1)) INEQ
- | Gt -> mk_step (Oplus (Oplus(t1,Oint negone),Oopp t2)) INEQ
- with e when Logic.catchable_exception e -> raise e
-
-(* \section{Compilation des hypothèses} *)
-
-let mkPor i x y = Por (i,x,y)
-let mkPand i x y = Pand (i,x,y)
-let mkPimp i x y = Pimp (i,x,y)
-
-let rec oformula_of_constr sigma env t =
- match Z.parse_term sigma t with
- | Tplus (t1,t2) -> binop sigma env (fun x y -> Oplus(x,y)) t1 t2
- | Tminus (t1,t2) -> binop sigma env (fun x y -> Ominus(x,y)) t1 t2
- | Tmult (t1,t2) ->
- (match Z.get_scalar sigma t1 with
- | Some n -> Omult (Oint n,oformula_of_constr sigma env t2)
- | None ->
- match Z.get_scalar sigma t2 with
- | Some n -> Omult (oformula_of_constr sigma env t1, Oint n)
- | None -> Oatom (add_reified_atom sigma t env))
- | Topp t -> Oopp(oformula_of_constr sigma env t)
- | Tsucc t -> Oplus(oformula_of_constr sigma env t, Oint one)
- | Tnum n -> Oint n
- | Tother -> Oatom (add_reified_atom sigma t env)
-
-and binop sigma env c t1 t2 =
- let t1' = oformula_of_constr sigma env t1 in
- let t2' = oformula_of_constr sigma env t2 in
- c t1' t2'
-
-and binprop sigma env (neg2,depends,origin,path)
- add_to_depends neg1 gl c t1 t2 =
- let i = new_connector_id env in
- let depends1 = if add_to_depends then Left i::depends else depends in
- let depends2 = if add_to_depends then Right i::depends else depends in
- if add_to_depends then
- IntHtbl.add env.constructors i {o_hyp = origin; o_path = List.rev path};
- let t1' =
- oproposition_of_constr sigma env (neg1,depends1,origin,O_left::path) gl t1 in
- let t2' =
- oproposition_of_constr sigma env (neg2,depends2,origin,O_right::path) gl t2 in
- (* On numérote le connecteur dans l'environnement. *)
- c i t1' t2'
-
-and mk_equation sigma env ctxt c connector t1 t2 =
- let t1' = oformula_of_constr sigma env t1 in
- let t2' = oformula_of_constr sigma env t2 in
- (* On ajoute l'equation dans l'environnement. *)
- let omega = normalize_equation env ctxt connector t1' t2' in
- add_equation env omega;
- Pequa (c,omega)
-
-and oproposition_of_constr sigma env ((negated,depends,origin,path) as ctxt) gl c =
- match Z.parse_rel gl c with
- | Req (t1,t2) -> mk_equation sigma env ctxt c Eq t1 t2
- | Rne (t1,t2) -> mk_equation sigma env ctxt c Neq t1 t2
- | Rle (t1,t2) -> mk_equation sigma env ctxt c Leq t1 t2
- | Rlt (t1,t2) -> mk_equation sigma env ctxt c Lt t1 t2
- | Rge (t1,t2) -> mk_equation sigma env ctxt c Geq t1 t2
- | Rgt (t1,t2) -> mk_equation sigma env ctxt c Gt t1 t2
- | Rtrue -> Ptrue
- | Rfalse -> Pfalse
- | Rnot t ->
- let ctxt' = (not negated, depends, origin,(O_mono::path)) in
- Pnot (oproposition_of_constr sigma env ctxt' gl t)
- | Ror (t1,t2) -> binprop sigma env ctxt (not negated) negated gl mkPor t1 t2
- | Rand (t1,t2) -> binprop sigma env ctxt negated negated gl mkPand t1 t2
- | Rimp (t1,t2) ->
- binprop sigma env ctxt (not negated) (not negated) gl mkPimp t1 t2
- | Riff (t1,t2) ->
- (* No lifting here, since Omega only works on closed propositions. *)
- binprop sigma env ctxt negated negated gl mkPand
- (EConstr.mkArrow t1 t2) (EConstr.mkArrow t2 t1)
- | _ -> Pprop c
-
-(* Destructuration des hypothèses et de la conclusion *)
-
-let display_gl env t_concl t_lhyps =
- Printf.printf "REIFED PROBLEM\n\n";
- Printf.printf " CONCL: %a\n" pprint t_concl;
- List.iter
- (fun (i,_,t) -> Printf.printf " %s: %a\n" (Id.to_string i) pprint t)
- t_lhyps;
- print_env_reification env
-
-type defined = Defined | Assumed
-
-let reify_hyp sigma env gl i =
- let open Context.Named.Declaration in
- let ctxt = (false,[],i,[]) in
- match Tacmach.New.pf_get_hyp i gl with
- | LocalDef (_,d,t) when Z.is_int_typ gl t ->
- let dummy = Lazy.force coq_True in
- let p = mk_equation sigma env ctxt dummy Eq (EConstr.mkVar i) d in
- i,Defined,p
- | LocalDef (_,_,t) | LocalAssum (_,t) ->
- let p = oproposition_of_constr sigma env ctxt gl t in
- i,Assumed,p
-
-let reify_gl env gl =
- let sigma = Proofview.Goal.sigma gl in
- let concl = Tacmach.New.pf_concl gl in
- let hyps = Tacmach.New.pf_ids_of_hyps gl in
- let ctxt_concl = (true,[],id_concl,[O_mono]) in
- let t_concl = oproposition_of_constr sigma env ctxt_concl gl concl in
- let t_lhyps = List.map (reify_hyp sigma env gl) hyps in
- let () = if !debug then display_gl env t_concl t_lhyps in
- t_concl, t_lhyps
-
-let rec destruct_pos_hyp eqns = function
- | Pequa (_,e) -> [e :: eqns]
- | Ptrue | Pfalse | Pprop _ -> [eqns]
- | Pnot t -> destruct_neg_hyp eqns t
- | Por (_,t1,t2) ->
- let s1 = destruct_pos_hyp eqns t1 in
- let s2 = destruct_pos_hyp eqns t2 in
- s1 @ s2
- | Pand(_,t1,t2) ->
- List.map_append
- (fun le1 -> destruct_pos_hyp le1 t2)
- (destruct_pos_hyp eqns t1)
- | Pimp(_,t1,t2) ->
- let s1 = destruct_neg_hyp eqns t1 in
- let s2 = destruct_pos_hyp eqns t2 in
- s1 @ s2
-
-and destruct_neg_hyp eqns = function
- | Pequa (_,e) -> [e :: eqns]
- | Ptrue | Pfalse | Pprop _ -> [eqns]
- | Pnot t -> destruct_pos_hyp eqns t
- | Pand (_,t1,t2) ->
- let s1 = destruct_neg_hyp eqns t1 in
- let s2 = destruct_neg_hyp eqns t2 in
- s1 @ s2
- | Por(_,t1,t2) ->
- List.map_append
- (fun le1 -> destruct_neg_hyp le1 t2)
- (destruct_neg_hyp eqns t1)
- | Pimp(_,t1,t2) ->
- List.map_append
- (fun le1 -> destruct_neg_hyp le1 t2)
- (destruct_pos_hyp eqns t1)
-
-let rec destructurate_hyps = function
- | [] -> [[]]
- | (i,_,t) :: l ->
- let l_syst1 = destruct_pos_hyp [] t in
- let l_syst2 = destructurate_hyps l in
- List.cartesian (@) l_syst1 l_syst2
-
-(* \subsection{Affichage d'un système d'équation} *)
-
-(* Affichage des dépendances de système *)
-let display_depend = function
- Left i -> Printf.printf " L%d" i
- | Right i -> Printf.printf " R%d" i
-
-let display_systems syst_list =
- let display_omega om_e =
- Printf.printf " E%d : %a %s 0\n"
- om_e.id
- (fun _ -> display_eq display_omega_var)
- (om_e.body, om_e.constant)
- (operator_of_eq om_e.kind) in
-
- let display_equation oformula_eq =
- pprint stdout (Pequa (Lazy.force coq_I,oformula_eq)); print_newline ();
- display_omega oformula_eq.e_omega;
- Printf.printf " Depends on:";
- List.iter display_depend oformula_eq.e_depends;
- Printf.printf "\n Path: %s"
- (String.concat ""
- (List.map (function O_left -> "L" | O_right -> "R" | O_mono -> "M")
- oformula_eq.e_origin.o_path));
- Printf.printf "\n Origin: %s (negated : %s)\n\n"
- (Id.to_string oformula_eq.e_origin.o_hyp)
- (if oformula_eq.e_negated then "yes" else "no") in
-
- let display_system syst =
- Printf.printf "=SYSTEM===================================\n";
- List.iter display_equation syst in
- List.iter display_system syst_list
-
-(* Extraction des prédicats utilisées dans une trace. Permet ensuite le
- calcul des hypothèses *)
-
-let rec hyps_used_in_trace = function
- | [] -> IntSet.empty
- | act :: l ->
- match act with
- | HYP e -> IntSet.add e.id (hyps_used_in_trace l)
- | SPLIT_INEQ (_,(_,act1),(_,act2)) ->
- hyps_used_in_trace act1 @@ hyps_used_in_trace act2
- | _ -> hyps_used_in_trace l
-
-(** Retreive variables declared as extra equations during resolution
- and declare them into the environment.
- We should consider these variables in their introduction order,
- otherwise really bad things will happen. *)
-
-let state_cmp x y = Int.compare x.st_var y.st_var
-
-module StateSet =
- Set.Make (struct type t = state_action let compare = state_cmp end)
-
-let rec stated_in_trace = function
- | [] -> StateSet.empty
- | [SPLIT_INEQ (_,(_,t1),(_,t2))] ->
- StateSet.union (stated_in_trace t1) (stated_in_trace t2)
- | STATE action :: l -> StateSet.add action (stated_in_trace l)
- | _ :: l -> stated_in_trace l
-
-let rec stated_in_tree = function
- | Tree(_,t1,t2) -> StateSet.union (stated_in_tree t1) (stated_in_tree t2)
- | Leaf s -> stated_in_trace s.s_trace
-
-let mk_refl t = app coq_refl_equal [|Lazy.force Z.typ; t|]
-
-let digest_stated_equations env tree =
- let do_equation st (vars,gens,eqns,ids) =
- (** We turn the definition of [v]
- - into a reified formula : *)
- let v_def = oformula_of_omega st.st_def in
- (** - into a concrete Coq formula
- (this uses only older vars already in env) : *)
- let coq_v = coq_of_formula env v_def in
- (** We then update the environment *)
- set_reified_atom st.st_var coq_v env;
- (** The term we'll introduce *)
- let term_to_generalize = mk_refl coq_v in
- (** Its representation as equation (but not reified yet,
- we lack the proper env to do that). *)
- let term_to_reify = (v_def,Oatom st.st_var) in
- (st.st_var::vars,
- term_to_generalize::gens,
- term_to_reify::eqns,
- CCEqua st.st_def.id :: ids)
- in
- let (vars,gens,eqns,ids) =
- StateSet.fold do_equation (stated_in_tree tree) ([],[],[],[])
- in
- (List.rev vars, List.rev gens, List.rev eqns, List.rev ids)
-
-(* Calcule la liste des éclatements à réaliser sur les hypothèses
- nécessaires pour extraire une liste d'équations donnée *)
-
-(* PL: experimentally, the result order of the following function seems
- _very_ crucial for efficiency. No idea why. Do not remove the List.rev
- or modify the current semantics of Util.List.union (some elements of first
- arg, then second arg), unless you know what you're doing. *)
-
-let rec get_eclatement env = function
- | [] -> []
- | i :: r ->
- let l = try (get_equation env i).e_depends with Not_found -> [] in
- List.union dir_eq (List.rev l) (get_eclatement env r)
-
-let select_smaller l =
- let comp (_,x) (_,y) = Int.compare (List.length x) (List.length y) in
- try List.hd (List.sort comp l) with Failure _ -> failwith "select_smaller"
-
-let filter_compatible_systems required systems =
- let rec select = function
- | [] -> []
- | (x::l) ->
- if List.mem_f dir_eq x required then select l
- else if List.mem_f dir_eq (barre x) required then raise Exit
- else x :: select l
- in
- List.map_filter
- (function (sol, splits) ->
- try Some (sol, select splits) with Exit -> None)
- systems
-
-let rec equas_of_solution_tree = function
- | Tree(_,t1,t2) ->
- (equas_of_solution_tree t1)@@(equas_of_solution_tree t2)
- | Leaf s -> s.s_equa_deps
-
-(** [maximize_prop] pushes useless props in a new Pprop atom.
- The reified formulas get shorter, but be careful with decidabilities.
- For instance, anything that contains a Pprop is considered to be
- undecidable in [ReflOmegaCore], whereas a Pfalse for instance at
- the same spot will lead to a decidable formula.
- In particular, do not use this function on the conclusion.
- Even in hypotheses, we could probably build pathological examples
- that romega won't handle correctly, but they should be pretty rare.
-*)
-
-let maximize_prop equas c =
- let rec loop c = match c with
- | Pequa(t,e) -> if IntSet.mem e.e_omega.id equas then c else Pprop t
- | Pnot t ->
- (match loop t with
- | Pprop p -> Pprop (app coq_not [|p|])
- | t' -> Pnot t')
- | Por(i,t1,t2) ->
- (match loop t1, loop t2 with
- | Pprop p1, Pprop p2 -> Pprop (app coq_or [|p1;p2|])
- | t1', t2' -> Por(i,t1',t2'))
- | Pand(i,t1,t2) ->
- (match loop t1, loop t2 with
- | Pprop p1, Pprop p2 -> Pprop (app coq_and [|p1;p2|])
- | t1', t2' -> Pand(i,t1',t2'))
- | Pimp(i,t1,t2) ->
- (match loop t1, loop t2 with
- | Pprop p1, Pprop p2 -> Pprop (EConstr.mkArrow p1 p2) (* no lift (closed) *)
- | t1', t2' -> Pimp(i,t1',t2'))
- | Ptrue -> Pprop (app coq_True [||])
- | Pfalse -> Pprop (app coq_False [||])
- | Pprop _ -> c
- in loop c
-
-let rec display_solution_tree ch = function
- Leaf t ->
- output_string ch
- (Printf.sprintf "%d[%s]"
- t.s_index
- (String.concat " " (List.map string_of_int
- (IntSet.elements t.s_equa_deps))))
- | Tree(i,t1,t2) ->
- Printf.fprintf ch "S%d(%a,%a)" i
- display_solution_tree t1 display_solution_tree t2
-
-let rec solve_with_constraints all_solutions path =
- let rec build_tree sol buf = function
- [] -> Leaf sol
- | (Left i :: remainder) ->
- Tree(i,
- build_tree sol (Left i :: buf) remainder,
- solve_with_constraints all_solutions (List.rev(Right i :: buf)))
- | (Right i :: remainder) ->
- Tree(i,
- solve_with_constraints all_solutions (List.rev (Left i :: buf)),
- build_tree sol (Right i :: buf) remainder) in
- let weighted = filter_compatible_systems path all_solutions in
- let (winner_sol,winner_deps) =
- try select_smaller weighted
- with reraise ->
- Printf.printf "%d - %d\n"
- (List.length weighted) (List.length all_solutions);
- List.iter display_depend path; raise reraise
- in
- build_tree winner_sol (List.rev path) winner_deps
-
-let find_path {o_hyp=id;o_path=p} env =
- let rec loop_path = function
- ([],l) -> Some l
- | (x1::l1,x2::l2) when occ_step_eq x1 x2 -> loop_path (l1,l2)
- | _ -> None in
- let rec loop_id i = function
- CCHyp{o_hyp=id';o_path=p'} :: l when Id.equal id id' ->
- begin match loop_path (p',p) with
- Some r -> i,r
- | None -> loop_id (succ i) l
- end
- | _ :: l -> loop_id (succ i) l
- | [] -> failwith "find_path" in
- loop_id 0 env
-
-let mk_direction_list l =
- let trans = function
- | O_left -> Some (Lazy.force coq_d_left)
- | O_right -> Some (Lazy.force coq_d_right)
- | O_mono -> None (* No more [D_mono] constructor now *)
- in
- mk_list (Lazy.force coq_direction) (List.map_filter trans l)
-
-
-(* \section{Rejouer l'historique} *)
-
-let hyp_idx env_hyp i =
- let rec loop count = function
- | [] -> failwith (Printf.sprintf "get_hyp %d" i)
- | CCEqua i' :: _ when Int.equal i i' -> mk_nat count
- | _ :: l -> loop (succ count) l
- in loop 0 env_hyp
-
-
-(* We now expand NEGATE_CONTRADICT and CONTRADICTION into
- a O_SUM followed by a O_BAD_CONSTANT *)
-
-let sum_bad inv i1 i2 =
- let open EConstr in
- mkApp (Lazy.force coq_s_sum,
- [| Z.mk Bigint.one; i1;
- Z.mk (if inv then negone else Bigint.one); i2;
- mkApp (Lazy.force coq_s_bad_constant, [| mk_nat 0 |])|])
-
-let rec reify_trace env env_hyp =
- let open EConstr in
- function
- | CONSTANT_NOT_NUL(e,_) :: []
- | CONSTANT_NEG(e,_) :: []
- | CONSTANT_NUL e :: [] ->
- mkApp (Lazy.force coq_s_bad_constant,[| hyp_idx env_hyp e |])
- | NEGATE_CONTRADICT(e1,e2,direct) :: [] ->
- sum_bad direct (hyp_idx env_hyp e1.id) (hyp_idx env_hyp e2.id)
- | CONTRADICTION (e1,e2) :: [] ->
- sum_bad false (hyp_idx env_hyp e1.id) (hyp_idx env_hyp e2.id)
- | NOT_EXACT_DIVIDE (e1,k) :: [] ->
- mkApp (Lazy.force coq_s_not_exact_divide,
- [| hyp_idx env_hyp e1.id; Z.mk k |])
- | DIVIDE_AND_APPROX (e1,_,k,_) :: l
- | EXACT_DIVIDE (e1,k) :: l ->
- mkApp (Lazy.force coq_s_divide,
- [| hyp_idx env_hyp e1.id; Z.mk k;
- reify_trace env env_hyp l |])
- | MERGE_EQ(e3,e1,e2) :: l ->
- mkApp (Lazy.force coq_s_merge_eq,
- [| hyp_idx env_hyp e1.id; hyp_idx env_hyp e2;
- reify_trace env (CCEqua e3:: env_hyp) l |])
- | SUM(e3,(k1,e1),(k2,e2)) :: l ->
- mkApp (Lazy.force coq_s_sum,
- [| Z.mk k1; hyp_idx env_hyp e1.id;
- Z.mk k2; hyp_idx env_hyp e2.id;
- reify_trace env (CCEqua e3 :: env_hyp) l |])
- | STATE {st_new_eq; st_def; st_orig; st_coef } :: l ->
- (* we now produce a [O_SUM] here *)
- mkApp (Lazy.force coq_s_sum,
- [| Z.mk Bigint.one; hyp_idx env_hyp st_orig.id;
- Z.mk st_coef; hyp_idx env_hyp st_def.id;
- reify_trace env (CCEqua st_new_eq.id :: env_hyp) l |])
- | HYP _ :: l -> reify_trace env env_hyp l
- | SPLIT_INEQ(e,(e1,l1),(e2,l2)) :: _ ->
- let r1 = reify_trace env (CCEqua e1 :: env_hyp) l1 in
- let r2 = reify_trace env (CCEqua e2 :: env_hyp) l2 in
- mkApp (Lazy.force coq_s_split_ineq,
- [| hyp_idx env_hyp e.id; r1 ; r2 |])
- | (FORGET_C _ | FORGET _ | FORGET_I _) :: l -> reify_trace env env_hyp l
- | WEAKEN _ :: l -> failwith "not_treated"
- | _ -> failwith "bad history"
-
-let rec decompose_tree env ctxt = function
- Tree(i,left,right) ->
- let org =
- try IntHtbl.find env.constructors i
- with Not_found ->
- failwith (Printf.sprintf "Cannot find constructor %d" i) in
- let (index,path) = find_path org ctxt in
- let left_hyp = CCHyp{o_hyp=org.o_hyp;o_path=org.o_path @ [O_left]} in
- let right_hyp = CCHyp{o_hyp=org.o_hyp;o_path=org.o_path @ [O_right]} in
- app coq_e_split
- [| mk_nat index;
- mk_direction_list path;
- decompose_tree env (left_hyp::ctxt) left;
- decompose_tree env (right_hyp::ctxt) right |]
- | Leaf s ->
- decompose_tree_hyps s.s_trace env ctxt (IntSet.elements s.s_equa_deps)
-and decompose_tree_hyps trace env ctxt = function
- [] -> app coq_e_solve [| reify_trace env ctxt trace |]
- | (i::l) ->
- let equation =
- try IntHtbl.find env.equations i
- with Not_found ->
- failwith (Printf.sprintf "Cannot find equation %d" i) in
- let (index,path) = find_path equation.e_origin ctxt in
- let cont =
- decompose_tree_hyps trace env
- (CCEqua equation.e_omega.id :: ctxt) l in
- app coq_e_extract [|mk_nat index; mk_direction_list path; cont |]
-
-let solve_system env index list_eq =
- let system = List.map (fun eq -> eq.e_omega) list_eq in
- let trace =
- OmegaSolver.simplify_strong
- (new_omega_eq,new_omega_var,display_omega_var)
- system
- in
- (* Hypotheses used for this solution *)
- let vars = hyps_used_in_trace trace in
- let splits = get_eclatement env (IntSet.elements vars) in
- if !debug then
- begin
- Printf.printf "SYSTEME %d\n" index;
- display_action display_omega_var trace;
- print_string "\n Depend :";
- IntSet.iter (fun i -> Printf.printf " %d" i) vars;
- print_string "\n Split points :";
- List.iter display_depend splits;
- Printf.printf "\n------------------------------------\n"
- end;
- {s_index = index; s_trace = trace; s_equa_deps = vars}, splits
-
-(* \section{La fonction principale} *)
- (* Cette fonction construit la
-trace pour la procédure de décision réflexive. A partir des résultats
-de l'extraction des systèmes, elle lance la résolution par Omega, puis
-l'extraction d'un ensemble minimal de solutions permettant la
-résolution globale du système et enfin construit la trace qui permet
-de faire rejouer cette solution par la tactique réflexive. *)
-
-let resolution unsafe sigma env (reified_concl,reified_hyps) systems_list =
- if !debug then Printf.printf "\n====================================\n";
- let all_solutions = List.mapi (solve_system env) systems_list in
- let solution_tree = solve_with_constraints all_solutions [] in
- if !debug then begin
- display_solution_tree stdout solution_tree;
- print_newline()
- end;
- (** Collect all hypotheses and variables used in the solution tree *)
- let useful_equa_ids = equas_of_solution_tree solution_tree in
- let useful_hypnames, useful_vars =
- IntSet.fold
- (fun i (hyps,vars) ->
- let e = get_equation env i in
- Id.Set.add e.e_origin.o_hyp hyps,
- vars_of_equations [e] @@ vars)
- useful_equa_ids
- (Id.Set.empty, vars_of_prop reified_concl)
- in
- let useful_hypnames =
- Id.Set.elements (Id.Set.remove id_concl useful_hypnames)
- in
-
- (** Parts coming from equations introduced by omega: *)
- let stated_vars, l_generalize_arg, to_reify_stated, hyp_stated_vars =
- digest_stated_equations env solution_tree
- in
- (** The final variables are either coming from:
- - useful hypotheses (and conclusion)
- - equations introduced during resolution *)
- let all_vars_env = (IntSet.elements useful_vars) @ stated_vars
- in
- (** We prepare the renumbering from all variables to useful ones.
- Since [all_var_env] is sorted, this renumbering will preserve
- order: this way, the equations in ReflOmegaCore will have
- the same normal forms as here. *)
- let reduced_term_env =
- let rec loop i = function
- | [] -> []
- | var :: l ->
- let t = get_reified_atom env var in
- IntHtbl.add env.real_indices var i; t :: loop (succ i) l
- in
- mk_list (Lazy.force Z.typ) (loop 0 all_vars_env)
- in
- (** The environment [env] (and especially [env.real_indices]) is now
- ready for the coming reifications: *)
- let l_reified_stated = List.map (reified_of_eq env) to_reify_stated in
- let reified_concl = reified_of_proposition sigma env reified_concl in
- let l_reified_terms =
- List.map
- (fun id ->
- match Id.Map.find id reified_hyps with
- | Defined,p ->
- reified_of_proposition sigma env p, mk_refl (EConstr.mkVar id)
- | Assumed,p ->
- reified_of_proposition sigma env (maximize_prop useful_equa_ids p),
- EConstr.mkVar id
- | exception Not_found -> assert false)
- useful_hypnames
- in
- let l_reified_terms, l_reified_hypnames = List.split l_reified_terms in
- let env_props_reified = mk_plist env.props in
- let reified_goal =
- mk_list (Lazy.force coq_proposition)
- (l_reified_stated @ l_reified_terms) in
- let reified =
- app coq_interp_sequent
- [| reified_concl;env_props_reified;reduced_term_env;reified_goal|]
- in
- let mk_occ id = {o_hyp=id;o_path=[]} in
- let initial_context =
- List.map (fun id -> CCHyp (mk_occ id)) useful_hypnames in
- let context =
- CCHyp (mk_occ id_concl) :: hyp_stated_vars @ initial_context in
- let decompose_tactic = decompose_tree env context solution_tree in
-
- Tactics.generalize (l_generalize_arg @ l_reified_hypnames) >>
- Tactics.convert_concl_no_check reified DEFAULTcast >>
- Tactics.apply (app coq_do_omega [|decompose_tactic|]) >>
- show_goal >>
- (if unsafe then
- (* Trust the produced term. Faster, but might fail later at Qed.
- Also handy when debugging, e.g. via a Show Proof after romega. *)
- Tactics.convert_concl_no_check (Lazy.force coq_True) VMcast
- else
- Tactics.normalise_vm_in_concl) >>
- Tactics.apply (Lazy.force coq_I)
-
-let total_reflexive_omega_tactic unsafe =
- Proofview.Goal.enter begin fun gl ->
- Coqlib.check_required_library ["Coq";"romega";"ROmega"];
- rst_omega_eq ();
- rst_omega_var ();
- try
- let env = new_environment () in
- let (concl,hyps) = reify_gl env gl in
- (* Register all atom indexes created during reification as omega vars *)
- set_omega_maxvar (pred (List.length env.terms));
- let full_reified_goal = (id_concl,Assumed,Pnot concl) :: hyps in
- let systems_list = destructurate_hyps full_reified_goal in
- let hyps =
- List.fold_left (fun s (id,d,p) -> Id.Map.add id (d,p) s) Id.Map.empty hyps
- in
- if !debug then display_systems systems_list;
- let sigma = Proofview.Goal.sigma gl in
- resolution unsafe sigma env (concl,hyps) systems_list
- with NO_CONTRADICTION -> CErrors.user_err Pp.(str "ROmega can't solve this system")
- end
-
diff --git a/plugins/romega/romega_plugin.mlpack b/plugins/romega/romega_plugin.mlpack
deleted file mode 100644
index 38d0e94111..0000000000
--- a/plugins/romega/romega_plugin.mlpack
+++ /dev/null
@@ -1,3 +0,0 @@
-Const_omega
-Refl_omega
-G_romega
diff --git a/test-suite/bugs/closed/4717.v b/test-suite/bugs/closed/4717.v
index 1507fa4bf0..bd9bac37ef 100644
--- a/test-suite/bugs/closed/4717.v
+++ b/test-suite/bugs/closed/4717.v
@@ -19,8 +19,6 @@ Proof.
omega.
Qed.
-Require Import ZArith ROmega.
-
Open Scope Z_scope.
Definition Z' := Z.
@@ -32,6 +30,4 @@ Theorem Zle_not_eq_lt : forall n m,
Proof.
intros.
omega.
- Undo.
- romega.
Qed.
diff --git a/test-suite/success/ROmega.v b/test-suite/success/ROmega.v
index 0df3d5685d..a97afa7ff0 100644
--- a/test-suite/success/ROmega.v
+++ b/test-suite/success/ROmega.v
@@ -1,5 +1,7 @@
-
-Require Import ZArith ROmega.
+(* This file used to test the `romega` tactics.
+ In Coq 8.9 (end of 2018), these tactics are deprecated.
+ The tests in this file remain but now call the `lia` tactic. *)
+Require Import ZArith Lia.
(* Submitted by Xavier Urbain 18 Jan 2002 *)
@@ -7,14 +9,14 @@ Lemma lem1 :
forall x y : Z, (-5 < x < 5)%Z -> (-5 < y)%Z -> (-5 < x + y + 5)%Z.
Proof.
intros x y.
-romega.
+lia.
Qed.
(* Proposed by Pierre Crégut *)
Lemma lem2 : forall x : Z, (x < 4)%Z -> (x > 2)%Z -> x = 3%Z.
intro.
- romega.
+ lia.
Qed.
(* Proposed by Jean-Christophe Filliâtre *)
@@ -22,7 +24,7 @@ Qed.
Lemma lem3 : forall x y : Z, x = y -> (x + x)%Z = (y + y)%Z.
Proof.
intros.
-romega.
+lia.
Qed.
(* Proposed by Jean-Christophe Filliâtre: confusion between an Omega *)
@@ -32,7 +34,7 @@ Section A.
Variable x y : Z.
Hypothesis H : (x > y)%Z.
Lemma lem4 : (x > y)%Z.
- romega.
+ lia.
Qed.
End A.
@@ -48,7 +50,7 @@ Hypothesis L : (R1 >= 0)%Z -> S2 = S1.
Hypothesis M : (H <= 2 * S)%Z.
Hypothesis N : (S < H)%Z.
Lemma lem5 : (H > 0)%Z.
- romega.
+ lia.
Qed.
End B.
@@ -56,11 +58,10 @@ End B.
Lemma lem6 :
forall (A : Set) (i : Z), (i <= 0)%Z -> ((i <= 0)%Z -> A) -> (i <= 0)%Z.
intros.
- romega.
+ lia.
Qed.
(* Adapted from an example in Nijmegen/FTA/ftc/RefSeparating (Oct 2002) *)
-Require Import Omega.
Section C.
Parameter g : forall m : nat, m <> 0 -> Prop.
Parameter f : forall (m : nat) (H : m <> 0), g m H.
@@ -68,23 +69,21 @@ Variable n : nat.
Variable ap_n : n <> 0.
Let delta := f n ap_n.
Lemma lem7 : n = n.
- romega with nat.
+ lia.
Qed.
End C.
(* Problem of dependencies *)
-Require Import Omega.
Lemma lem8 : forall H : 0 = 0 -> 0 = 0, H = H -> 0 = 0.
intros.
-romega with nat.
+lia.
Qed.
(* Bug that what caused by the use of intro_using in Omega *)
-Require Import Omega.
Lemma lem9 :
forall p q : nat, ~ (p <= q /\ p < q \/ q <= p /\ p < q) -> p < p \/ p <= p.
intros.
-romega with nat.
+lia.
Qed.
(* Check that the interpretation of mult on nat enforces its positivity *)
@@ -92,5 +91,5 @@ Qed.
(* Postponed... problem with goals of the form "(n*m=0)%nat -> (n*m=0)%Z" *)
Lemma lem10 : forall n m : nat, le n (plus n (mult n m)).
Proof.
-intros; romega with nat.
+intros; lia.
Qed.
diff --git a/test-suite/success/ROmega0.v b/test-suite/success/ROmega0.v
index 3ddf6a40fb..7f69422ab3 100644
--- a/test-suite/success/ROmega0.v
+++ b/test-suite/success/ROmega0.v
@@ -1,25 +1,27 @@
-Require Import ZArith ROmega.
+Require Import ZArith Lia.
Open Scope Z_scope.
(* Pierre L: examples gathered while debugging romega. *)
+(* Starting from Coq 8.9 (late 2018), `romega` tactics are deprecated.
+ The tests in this file remain but now call the `lia` tactic. *)
-Lemma test_romega_0 :
+Lemma test_lia_0 :
forall m m',
0<= m <= 1 -> 0<= m' <= 1 -> (0 < m <-> 0 < m') -> m = m'.
Proof.
intros.
-romega.
+lia.
Qed.
-Lemma test_romega_0b :
+Lemma test_lia_0b :
forall m m',
0<= m <= 1 -> 0<= m' <= 1 -> (0 < m <-> 0 < m') -> m = m'.
Proof.
intros m m'.
-romega.
+lia.
Qed.
-Lemma test_romega_1 :
+Lemma test_lia_1 :
forall (z z1 z2 : Z),
z2 <= z1 ->
z1 <= z2 ->
@@ -29,10 +31,10 @@ Lemma test_romega_1 :
z >= 0.
Proof.
intros.
-romega.
+lia.
Qed.
-Lemma test_romega_1b :
+Lemma test_lia_1b :
forall (z z1 z2 : Z),
z2 <= z1 ->
z1 <= z2 ->
@@ -42,24 +44,24 @@ Lemma test_romega_1b :
z >= 0.
Proof.
intros z z1 z2.
-romega.
+lia.
Qed.
-Lemma test_romega_2 : forall a b c:Z,
+Lemma test_lia_2 : forall a b c:Z,
0<=a-b<=1 -> b-c<=2 -> a-c<=3.
Proof.
intros.
-romega.
+lia.
Qed.
-Lemma test_romega_2b : forall a b c:Z,
+Lemma test_lia_2b : forall a b c:Z,
0<=a-b<=1 -> b-c<=2 -> a-c<=3.
Proof.
intros a b c.
-romega.
+lia.
Qed.
-Lemma test_romega_3 : forall a b h hl hr ha hb,
+Lemma test_lia_3 : forall a b h hl hr ha hb,
0 <= ha - hl <= 1 ->
-2 <= hl - hr <= 2 ->
h =b+1 ->
@@ -70,10 +72,10 @@ Lemma test_romega_3 : forall a b h hl hr ha hb,
0 <= hb - h <= 1.
Proof.
intros.
-romega.
+lia.
Qed.
-Lemma test_romega_3b : forall a b h hl hr ha hb,
+Lemma test_lia_3b : forall a b h hl hr ha hb,
0 <= ha - hl <= 1 ->
-2 <= hl - hr <= 2 ->
h =b+1 ->
@@ -84,79 +86,79 @@ Lemma test_romega_3b : forall a b h hl hr ha hb,
0 <= hb - h <= 1.
Proof.
intros a b h hl hr ha hb.
-romega.
+lia.
Qed.
-Lemma test_romega_4 : forall hr ha,
+Lemma test_lia_4 : forall hr ha,
ha = 0 ->
(ha = 0 -> hr =0) ->
hr = 0.
Proof.
intros hr ha.
-romega.
+lia.
Qed.
-Lemma test_romega_5 : forall hr ha,
+Lemma test_lia_5 : forall hr ha,
ha = 0 ->
(~ha = 0 \/ hr =0) ->
hr = 0.
Proof.
intros hr ha.
-romega.
+lia.
Qed.
-Lemma test_romega_6 : forall z, z>=0 -> 0>z+2 -> False.
+Lemma test_lia_6 : forall z, z>=0 -> 0>z+2 -> False.
Proof.
intros.
-romega.
+lia.
Qed.
-Lemma test_romega_6b : forall z, z>=0 -> 0>z+2 -> False.
+Lemma test_lia_6b : forall z, z>=0 -> 0>z+2 -> False.
Proof.
intros z.
-romega.
+lia.
Qed.
-Lemma test_romega_7 : forall z,
+Lemma test_lia_7 : forall z,
0>=0 /\ z=0 \/ 0<=0 /\ z =0 -> 1 = z+1.
Proof.
intros.
-romega.
+lia.
Qed.
-Lemma test_romega_7b : forall z,
+Lemma test_lia_7b : forall z,
0>=0 /\ z=0 \/ 0<=0 /\ z =0 -> 1 = z+1.
Proof.
intros.
-romega.
+lia.
Qed.
(* Magaud BZ#240 *)
-Lemma test_romega_8 : forall x y:Z, x*x<y*y-> ~ y*y <= x*x.
+Lemma test_lia_8 : forall x y:Z, x*x<y*y-> ~ y*y <= x*x.
Proof.
intros.
-romega.
+lia.
Qed.
-Lemma test_romega_8b : forall x y:Z, x*x<y*y-> ~ y*y <= x*x.
+Lemma test_lia_8b : forall x y:Z, x*x<y*y-> ~ y*y <= x*x.
Proof.
intros x y.
-romega.
+lia.
Qed.
(* Besson BZ#1298 *)
-Lemma test_romega9 : forall z z':Z, z<>z' -> z'=z -> False.
+Lemma test_lia9 : forall z z':Z, z<>z' -> z'=z -> False.
Proof.
intros.
-romega.
+lia.
Qed.
(* Letouzey, May 2017 *)
-Lemma test_romega10 : forall x a a' b b',
+Lemma test_lia10 : forall x a a' b b',
a' <= b ->
a <= b' ->
b < b' ->
@@ -164,5 +166,5 @@ Lemma test_romega10 : forall x a a' b b',
a <= x < b' <-> a <= x < b \/ a' <= x < b'.
Proof.
intros.
- romega.
+ lia.
Qed.
diff --git a/test-suite/success/ROmega2.v b/test-suite/success/ROmega2.v
index 43eda67ea3..e3b090699d 100644
--- a/test-suite/success/ROmega2.v
+++ b/test-suite/success/ROmega2.v
@@ -1,4 +1,6 @@
-Require Import ZArith ROmega.
+(* Starting from Coq 8.9 (late 2018), `romega` tactics are deprecated.
+ The tests in this file remain but now call the `lia` tactic. *)
+Require Import ZArith Lia.
(* Submitted by Yegor Bryukhov (BZ#922) *)
@@ -13,7 +15,7 @@ forall v1 v2 v5 : Z,
0 < v2 ->
4*v2 <> 5*v1.
intros.
-romega.
+lia.
Qed.
@@ -37,5 +39,5 @@ forall v1 v2 v3 v4 v5 : Z,
((7 * v1) + (1 * v3)) + ((2 * v3) + (1 * v3)) >= ((6 * v5) + (4)) + ((1) + (9))
-> False.
intros.
-romega.
+lia.
Qed.
diff --git a/test-suite/success/ROmega3.v b/test-suite/success/ROmega3.v
index fd4ff260b5..ef9cb17b4b 100644
--- a/test-suite/success/ROmega3.v
+++ b/test-suite/success/ROmega3.v
@@ -1,10 +1,14 @@
-Require Import ZArith ROmega.
+Require Import ZArith Lia.
Local Open Scope Z_scope.
(** Benchmark provided by Chantal Keller, that romega used to
solve far too slowly (compared to omega or lia). *)
+(* In Coq 8.9 (end of 2018), the `romega` tactics are deprecated.
+ The tests in this file remain but now call the `lia` tactic. *)
+
+
Parameter v4 : Z.
Parameter v3 : Z.
Parameter o4 : Z.
@@ -27,5 +31,5 @@ Lemma lemma_5833 :
(-4096 * o5 + (-2048 * s6 + (2 * v1 + (-2048 * o6 +
(-1024 * s7 + (v0 + -1024 * o7)))))))))) >= 1024.
Proof.
-Timeout 1 romega. (* should take a few milliseconds, not seconds *)
+Timeout 1 lia. (* should take a few milliseconds, not seconds *)
Timeout 1 Qed. (* ditto *)
diff --git a/test-suite/success/ROmegaPre.v b/test-suite/success/ROmegaPre.v
index fa659273e1..6ca32f450f 100644
--- a/test-suite/success/ROmegaPre.v
+++ b/test-suite/success/ROmegaPre.v
@@ -1,127 +1,123 @@
-Require Import ZArith Nnat ROmega.
+Require Import ZArith Nnat Lia.
Open Scope Z_scope.
(** Test of the zify preprocessor for (R)Omega *)
+(* Starting from Coq 8.9 (late 2018), `romega` tactics are deprecated.
+ The tests in this file remain but now call the `lia` tactic. *)
(* More details in file PreOmega.v
-
- (r)omega with Z : starts with zify_op
- (r)omega with nat : starts with zify_nat
- (r)omega with positive : starts with zify_positive
- (r)omega with N : starts with uses zify_N
- (r)omega with * : starts zify (a saturation of the others)
*)
(* zify_op *)
Goal forall a:Z, Z.max a a = a.
intros.
-romega with *.
+lia.
Qed.
Goal forall a b:Z, Z.max a b = Z.max b a.
intros.
-romega with *.
+lia.
Qed.
Goal forall a b c:Z, Z.max a (Z.max b c) = Z.max (Z.max a b) c.
intros.
-romega with *.
+lia.
Qed.
Goal forall a b:Z, Z.max a b + Z.min a b = a + b.
intros.
-romega with *.
+lia.
Qed.
Goal forall a:Z, (Z.abs a)*(Z.sgn a) = a.
intros.
zify.
-intuition; subst; romega. (* pure multiplication: omega alone can't do it *)
+intuition; subst; lia. (* pure multiplication: omega alone can't do it *)
Qed.
Goal forall a:Z, Z.abs a = a -> a >= 0.
intros.
-romega with *.
+lia.
Qed.
Goal forall a:Z, Z.sgn a = a -> a = 1 \/ a = 0 \/ a = -1.
intros.
-romega with *.
+lia.
Qed.
(* zify_nat *)
Goal forall m: nat, (m<2)%nat -> (0<= m+m <=2)%nat.
intros.
-romega with *.
+lia.
Qed.
Goal forall m:nat, (m<1)%nat -> (m=0)%nat.
intros.
-romega with *.
+lia.
Qed.
Goal forall m: nat, (m<=100)%nat -> (0<= m+m <=200)%nat.
intros.
-romega with *.
+lia.
Qed.
(* 2000 instead of 200: works, but quite slow *)
Goal forall m: nat, (m*m>=0)%nat.
intros.
-romega with *.
+lia.
Qed.
(* zify_positive *)
Goal forall m: positive, (m<2)%positive -> (2 <= m+m /\ m+m <= 2)%positive.
intros.
-romega with *.
+lia.
Qed.
Goal forall m:positive, (m<2)%positive -> (m=1)%positive.
intros.
-romega with *.
+lia.
Qed.
Goal forall m: positive, (m<=1000)%positive -> (2<=m+m/\m+m <=2000)%positive.
intros.
-romega with *.
+lia.
Qed.
Goal forall m: positive, (m*m>=1)%positive.
intros.
-romega with *.
+lia.
Qed.
(* zify_N *)
Goal forall m:N, (m<2)%N -> (0 <= m+m /\ m+m <= 2)%N.
intros.
-romega with *.
+lia.
Qed.
Goal forall m:N, (m<1)%N -> (m=0)%N.
intros.
-romega with *.
+lia.
Qed.
Goal forall m:N, (m<=1000)%N -> (0<=m+m/\m+m <=2000)%N.
intros.
-romega with *.
+lia.
Qed.
Goal forall m:N, (m*m>=0)%N.
intros.
-romega with *.
+lia.
Qed.
(* mix of datatypes *)
Goal forall p, Z.of_N (N.of_nat (N.to_nat (Npos p))) = Zpos p.
intros.
-romega with *.
+lia.
Qed.