aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorletouzey2010-02-08 18:17:54 +0000
committerletouzey2010-02-08 18:17:54 +0000
commit911c50439abdedd0f75856d43ff12e9615ec9980 (patch)
tree6dbe4453fab01358f42f99bc7cc831d0dc189f4b
parentc71e226db9a2cab3e73064d24e2020a0a11e2651 (diff)
DoubleCyclic + NMake : typeclasses, more genericity, less ML macro-generation
- Records of operations and specs in CyclicAxioms are now type classes (under a module ZnZ for qualification). We benefit from inference and from generic names: (ZnZ.mul x y) instead of (znz_mul (some_ops...) x y). - Beware of typeclasses unfolds: the line about Typeclasses Opaque w1 w2 ... is critical for decent compilation time (x2.5 without it). - Functions defined via same_level are now obtained from a generic version by (Eval ... in ...) during definition. The code obtained this way should be just as before, apart from some (minor?) details. Proofs for these functions are _way_ simplier and lighter. - The macro-generated NMake_gen.v contains only generic iterators and compare, mul, div_gt, mod_gt. I hope to be able to adapt these functions as well soon. - Spec of comparison is now fully done with respect to Zcompare - A log2 function has been added. - No more unsafe_shiftr, we detect the underflow directly with sub_c git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12713 85f007b7-540e-0410-9357-904b9bb8a0f7
-rw-r--r--theories/Numbers/Cyclic/Abstract/CyclicAxioms.v464
-rw-r--r--theories/Numbers/Cyclic/Abstract/NZCyclic.v110
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v55
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v421
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v117
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v11
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v34
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v19
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v23
-rw-r--r--theories/Numbers/Cyclic/Int31/Cyclic31.v287
-rw-r--r--theories/Numbers/Cyclic/Int31/Ring31.v7
-rw-r--r--theories/Numbers/Cyclic/ZModulo/ZModulo.v448
-rw-r--r--theories/Numbers/Natural/BigN/NMake.v869
-rw-r--r--theories/Numbers/Natural/BigN/NMake_gen.ml1910
-rw-r--r--theories/Numbers/Natural/BigN/Nbasic.v122
-rw-r--r--theories/Numbers/Natural/SpecViaZ/NSig.v3
16 files changed, 2144 insertions, 2756 deletions
diff --git a/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v b/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v
index 51df2fa380..af30b0175b 100644
--- a/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v
+++ b/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v
@@ -26,352 +26,284 @@ Local Open Scope Z_scope.
(** First, a description via an operator record and a spec record. *)
-Section Z_nZ_Op.
+Module ZnZ.
- Variable znz : Type.
-
- Record znz_op := mk_znz_op {
+ Class Ops (t:Type) := MkOps {
(* Conversion functions with Z *)
- znz_digits : positive;
- znz_zdigits: znz;
- znz_to_Z : znz -> Z;
- znz_of_pos : positive -> N * znz; (* Euclidean division by [2^digits] *)
- znz_head0 : znz -> znz; (* number of digits 0 in front of the number *)
- znz_tail0 : znz -> znz; (* number of digits 0 at the bottom of the number *)
+ digits : positive;
+ zdigits: t;
+ to_Z : t -> Z;
+ of_pos : positive -> N * t; (* Euclidean division by [2^digits] *)
+ head0 : t -> t; (* number of digits 0 in front of the number *)
+ tail0 : t -> t; (* number of digits 0 at the bottom of the number *)
(* Basic numbers *)
- znz_0 : znz;
- znz_1 : znz;
- znz_Bm1 : znz; (* [2^digits-1], which is equivalent to [-1] *)
+ zero : t;
+ one : t;
+ minus_one : t; (* [2^digits-1], which is equivalent to [-1] *)
(* Comparison *)
- znz_compare : znz -> znz -> comparison;
- znz_eq0 : znz -> bool;
+ compare : t -> t -> comparison;
+ eq0 : t -> bool;
(* Basic arithmetic operations *)
- znz_opp_c : znz -> carry znz;
- znz_opp : znz -> znz;
- znz_opp_carry : znz -> znz; (* the carry is known to be -1 *)
-
- znz_succ_c : znz -> carry znz;
- znz_add_c : znz -> znz -> carry znz;
- znz_add_carry_c : znz -> znz -> carry znz;
- znz_succ : znz -> znz;
- znz_add : znz -> znz -> znz;
- znz_add_carry : znz -> znz -> znz;
-
- znz_pred_c : znz -> carry znz;
- znz_sub_c : znz -> znz -> carry znz;
- znz_sub_carry_c : znz -> znz -> carry znz;
- znz_pred : znz -> znz;
- znz_sub : znz -> znz -> znz;
- znz_sub_carry : znz -> znz -> znz;
-
- znz_mul_c : znz -> znz -> zn2z znz;
- znz_mul : znz -> znz -> znz;
- znz_square_c : znz -> zn2z znz;
+ opp_c : t -> carry t;
+ opp : t -> t;
+ opp_carry : t -> t; (* the carry is known to be -1 *)
+
+ succ_c : t -> carry t;
+ add_c : t -> t -> carry t;
+ add_carry_c : t -> t -> carry t;
+ succ : t -> t;
+ add : t -> t -> t;
+ add_carry : t -> t -> t;
+
+ pred_c : t -> carry t;
+ sub_c : t -> t -> carry t;
+ sub_carry_c : t -> t -> carry t;
+ pred : t -> t;
+ sub : t -> t -> t;
+ sub_carry : t -> t -> t;
+
+ mul_c : t -> t -> zn2z t;
+ mul : t -> t -> t;
+ square_c : t -> zn2z t;
(* Special divisions operations *)
- znz_div21 : znz -> znz -> znz -> znz*znz;
- znz_div_gt : znz -> znz -> znz * znz; (* specialized version of [znz_div] *)
- znz_div : znz -> znz -> znz * znz;
+ div21 : t -> t -> t -> t*t;
+ div_gt : t -> t -> t * t; (* specialized version of [div] *)
+ div : t -> t -> t * t;
- znz_mod_gt : znz -> znz -> znz; (* specialized version of [znz_mod] *)
- znz_mod : znz -> znz -> znz;
+ modulo_gt : t -> t -> t; (* specialized version of [mod] *)
+ modulo : t -> t -> t;
- znz_gcd_gt : znz -> znz -> znz; (* specialized version of [znz_gcd] *)
- znz_gcd : znz -> znz -> znz;
- (* [znz_add_mul_div p i j] is a combination of the [(digits-p)]
+ gcd_gt : t -> t -> t; (* specialized version of [gcd] *)
+ gcd : t -> t -> t;
+ (* [add_mul_div p i j] is a combination of the [(digits-p)]
low bits of [i] above the [p] high bits of [j]:
- [znz_add_mul_div p i j = i*2^p+j/2^(digits-p)] *)
- znz_add_mul_div : znz -> znz -> znz -> znz;
- (* [znz_pos_mod p i] is [i mod 2^p] *)
- znz_pos_mod : znz -> znz -> znz;
+ [add_mul_div p i j = i*2^p+j/2^(digits-p)] *)
+ add_mul_div : t -> t -> t -> t;
+ (* [pos_mod p i] is [i mod 2^p] *)
+ pos_mod : t -> t -> t;
- znz_is_even : znz -> bool;
+ is_even : t -> bool;
(* square root *)
- znz_sqrt2 : znz -> znz -> znz * carry znz;
- znz_sqrt : znz -> znz }.
-
-End Z_nZ_Op.
-
-Section Z_nZ_Spec.
- Variable w : Type.
- Variable w_op : znz_op w.
-
- Let w_digits := w_op.(znz_digits).
- Let w_zdigits := w_op.(znz_zdigits).
- Let w_to_Z := w_op.(znz_to_Z).
- Let w_of_pos := w_op.(znz_of_pos).
- Let w_head0 := w_op.(znz_head0).
- Let w_tail0 := w_op.(znz_tail0).
-
- Let w0 := w_op.(znz_0).
- Let w1 := w_op.(znz_1).
- Let wBm1 := w_op.(znz_Bm1).
-
- Let w_compare := w_op.(znz_compare).
- Let w_eq0 := w_op.(znz_eq0).
-
- Let w_opp_c := w_op.(znz_opp_c).
- Let w_opp := w_op.(znz_opp).
- Let w_opp_carry := w_op.(znz_opp_carry).
-
- Let w_succ_c := w_op.(znz_succ_c).
- Let w_add_c := w_op.(znz_add_c).
- Let w_add_carry_c := w_op.(znz_add_carry_c).
- Let w_succ := w_op.(znz_succ).
- Let w_add := w_op.(znz_add).
- Let w_add_carry := w_op.(znz_add_carry).
+ sqrt2 : t -> t -> t * carry t;
+ sqrt : t -> t }.
- Let w_pred_c := w_op.(znz_pred_c).
- Let w_sub_c := w_op.(znz_sub_c).
- Let w_sub_carry_c := w_op.(znz_sub_carry_c).
- Let w_pred := w_op.(znz_pred).
- Let w_sub := w_op.(znz_sub).
- Let w_sub_carry := w_op.(znz_sub_carry).
+ Section Specs.
+ Context {t : Type}{ops : Ops t}.
- Let w_mul_c := w_op.(znz_mul_c).
- Let w_mul := w_op.(znz_mul).
- Let w_square_c := w_op.(znz_square_c).
+ Notation "[| x |]" := (to_Z x) (at level 0, x at level 99).
- Let w_div21 := w_op.(znz_div21).
- Let w_div_gt := w_op.(znz_div_gt).
- Let w_div := w_op.(znz_div).
-
- Let w_mod_gt := w_op.(znz_mod_gt).
- Let w_mod := w_op.(znz_mod).
-
- Let w_gcd_gt := w_op.(znz_gcd_gt).
- Let w_gcd := w_op.(znz_gcd).
-
- Let w_add_mul_div := w_op.(znz_add_mul_div).
-
- Let w_pos_mod := w_op.(znz_pos_mod).
-
- Let w_is_even := w_op.(znz_is_even).
- Let w_sqrt2 := w_op.(znz_sqrt2).
- Let w_sqrt := w_op.(znz_sqrt).
-
- Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
-
- Let wB := base w_digits.
+ Let wB := base digits.
Notation "[+| c |]" :=
- (interp_carry 1 wB w_to_Z c) (at level 0, x at level 99).
+ (interp_carry 1 wB to_Z c) (at level 0, x at level 99).
Notation "[-| c |]" :=
- (interp_carry (-1) wB w_to_Z c) (at level 0, x at level 99).
+ (interp_carry (-1) wB to_Z c) (at level 0, x at level 99).
Notation "[|| x ||]" :=
- (zn2z_to_Z wB w_to_Z x) (at level 0, x at level 99).
+ (zn2z_to_Z wB to_Z x) (at level 0, x at level 99).
- Record znz_spec := mk_znz_spec {
+ Class Specs := MkSpecs {
(* Conversion functions with Z *)
spec_to_Z : forall x, 0 <= [| x |] < wB;
spec_of_pos : forall p,
- Zpos p = (Z_of_N (fst (w_of_pos p)))*wB + [|(snd (w_of_pos p))|];
- spec_zdigits : [| w_zdigits |] = Zpos w_digits;
- spec_more_than_1_digit: 1 < Zpos w_digits;
+ Zpos p = (Z_of_N (fst (of_pos p)))*wB + [|(snd (of_pos p))|];
+ spec_zdigits : [| zdigits |] = Zpos digits;
+ spec_more_than_1_digit: 1 < Zpos digits;
(* Basic numbers *)
- spec_0 : [|w0|] = 0;
- spec_1 : [|w1|] = 1;
- spec_Bm1 : [|wBm1|] = wB - 1;
+ spec_0 : [|zero|] = 0;
+ spec_1 : [|one|] = 1;
+ spec_m1 : [|minus_one|] = wB - 1;
(* Comparison *)
- spec_compare :
- forall x y,
- match w_compare x y with
- | Eq => [|x|] = [|y|]
- | Lt => [|x|] < [|y|]
- | Gt => [|x|] > [|y|]
- end;
- spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0;
+ spec_compare : forall x y, compare x y = ([|x|] ?= [|y|]);
+ (* NB: the spec of [eq0] is deliberately partial,
+ see DoubleCyclic where [eq0 x = true <-> x = W0] *)
+ spec_eq0 : forall x, eq0 x = true -> [|x|] = 0;
(* Basic arithmetic operations *)
- spec_opp_c : forall x, [-|w_opp_c x|] = -[|x|];
- spec_opp : forall x, [|w_opp x|] = (-[|x|]) mod wB;
- spec_opp_carry : forall x, [|w_opp_carry x|] = wB - [|x|] - 1;
-
- spec_succ_c : forall x, [+|w_succ_c x|] = [|x|] + 1;
- spec_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|];
- spec_add_carry_c : forall x y, [+|w_add_carry_c x y|] = [|x|] + [|y|] + 1;
- spec_succ : forall x, [|w_succ x|] = ([|x|] + 1) mod wB;
- spec_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB;
+ spec_opp_c : forall x, [-|opp_c x|] = -[|x|];
+ spec_opp : forall x, [|opp x|] = (-[|x|]) mod wB;
+ spec_opp_carry : forall x, [|opp_carry x|] = wB - [|x|] - 1;
+
+ spec_succ_c : forall x, [+|succ_c x|] = [|x|] + 1;
+ spec_add_c : forall x y, [+|add_c x y|] = [|x|] + [|y|];
+ spec_add_carry_c : forall x y, [+|add_carry_c x y|] = [|x|] + [|y|] + 1;
+ spec_succ : forall x, [|succ x|] = ([|x|] + 1) mod wB;
+ spec_add : forall x y, [|add x y|] = ([|x|] + [|y|]) mod wB;
spec_add_carry :
- forall x y, [|w_add_carry x y|] = ([|x|] + [|y|] + 1) mod wB;
+ forall x y, [|add_carry x y|] = ([|x|] + [|y|] + 1) mod wB;
- spec_pred_c : forall x, [-|w_pred_c x|] = [|x|] - 1;
- spec_sub_c : forall x y, [-|w_sub_c x y|] = [|x|] - [|y|];
- spec_sub_carry_c : forall x y, [-|w_sub_carry_c x y|] = [|x|] - [|y|] - 1;
- spec_pred : forall x, [|w_pred x|] = ([|x|] - 1) mod wB;
- spec_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB;
+ spec_pred_c : forall x, [-|pred_c x|] = [|x|] - 1;
+ spec_sub_c : forall x y, [-|sub_c x y|] = [|x|] - [|y|];
+ spec_sub_carry_c : forall x y, [-|sub_carry_c x y|] = [|x|] - [|y|] - 1;
+ spec_pred : forall x, [|pred x|] = ([|x|] - 1) mod wB;
+ spec_sub : forall x y, [|sub x y|] = ([|x|] - [|y|]) mod wB;
spec_sub_carry :
- forall x y, [|w_sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB;
+ forall x y, [|sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB;
- spec_mul_c : forall x y, [|| w_mul_c x y ||] = [|x|] * [|y|];
- spec_mul : forall x y, [|w_mul x y|] = ([|x|] * [|y|]) mod wB;
- spec_square_c : forall x, [|| w_square_c x||] = [|x|] * [|x|];
+ spec_mul_c : forall x y, [|| mul_c x y ||] = [|x|] * [|y|];
+ spec_mul : forall x y, [|mul x y|] = ([|x|] * [|y|]) mod wB;
+ spec_square_c : forall x, [|| square_c x||] = [|x|] * [|x|];
(* Special divisions operations *)
spec_div21 : forall a1 a2 b,
wB/2 <= [|b|] ->
[|a1|] < [|b|] ->
- let (q,r) := w_div21 a1 a2 b in
+ let (q,r) := div21 a1 a2 b in
[|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|];
spec_div_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
- let (q,r) := w_div_gt a b in
+ let (q,r) := div_gt a b in
[|a|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|];
spec_div : forall a b, 0 < [|b|] ->
- let (q,r) := w_div a b in
+ let (q,r) := div a b in
[|a|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|];
- spec_mod_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
- [|w_mod_gt a b|] = [|a|] mod [|b|];
- spec_mod : forall a b, 0 < [|b|] ->
- [|w_mod a b|] = [|a|] mod [|b|];
+ spec_modulo_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
+ [|modulo_gt a b|] = [|a|] mod [|b|];
+ spec_modulo : forall a b, 0 < [|b|] ->
+ [|modulo a b|] = [|a|] mod [|b|];
spec_gcd_gt : forall a b, [|a|] > [|b|] ->
- Zis_gcd [|a|] [|b|] [|w_gcd_gt a b|];
- spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|w_gcd a b|];
+ Zis_gcd [|a|] [|b|] [|gcd_gt a b|];
+ spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|gcd a b|];
(* shift operations *)
- spec_head00: forall x, [|x|] = 0 -> [|w_head0 x|] = Zpos w_digits;
+ spec_head00: forall x, [|x|] = 0 -> [|head0 x|] = Zpos digits;
spec_head0 : forall x, 0 < [|x|] ->
- wB/ 2 <= 2 ^ ([|w_head0 x|]) * [|x|] < wB;
- spec_tail00: forall x, [|x|] = 0 -> [|w_tail0 x|] = Zpos w_digits;
+ wB/ 2 <= 2 ^ ([|head0 x|]) * [|x|] < wB;
+ spec_tail00: forall x, [|x|] = 0 -> [|tail0 x|] = Zpos digits;
spec_tail0 : forall x, 0 < [|x|] ->
- exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|w_tail0 x|]) ;
+ exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|tail0 x|]) ;
spec_add_mul_div : forall x y p,
- [|p|] <= Zpos w_digits ->
- [| w_add_mul_div p x y |] =
+ [|p|] <= Zpos digits ->
+ [| add_mul_div p x y |] =
([|x|] * (2 ^ [|p|]) +
- [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB;
+ [|y|] / (2 ^ ((Zpos digits) - [|p|]))) mod wB;
spec_pos_mod : forall w p,
- [|w_pos_mod p w|] = [|w|] mod (2 ^ [|p|]);
+ [|pos_mod p w|] = [|w|] mod (2 ^ [|p|]);
(* sqrt *)
spec_is_even : forall x,
- if w_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1;
+ if is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1;
spec_sqrt2 : forall x y,
wB/ 4 <= [|x|] ->
- let (s,r) := w_sqrt2 x y in
+ let (s,r) := sqrt2 x y in
[||WW x y||] = [|s|] ^ 2 + [+|r|] /\
[+|r|] <= 2 * [|s|];
spec_sqrt : forall x,
- [|w_sqrt x|] ^ 2 <= [|x|] < ([|w_sqrt x|] + 1) ^ 2
+ [|sqrt x|] ^ 2 <= [|x|] < ([|sqrt x|] + 1) ^ 2
}.
-End Z_nZ_Spec.
+ End Specs.
+
+ Implicit Arguments Specs [[t]].
-(** Generic construction of double words *)
+ (** Generic construction of double words *)
-Section WW.
+ Section WW.
- Variable w : Type.
- Variable w_op : znz_op w.
- Variable op_spec : znz_spec w_op.
+ Context {t : Type}{ops : Ops t}{specs : Specs ops}.
- Let wB := base w_op.(znz_digits).
- Let w_to_Z := w_op.(znz_to_Z).
- Let w_eq0 := w_op.(znz_eq0).
- Let w_0 := w_op.(znz_0).
+ Let wB := base digits.
- Definition znz_W0 h :=
- if w_eq0 h then W0 else WW h w_0.
+ Definition WO h :=
+ if eq0 h then W0 else WW h zero.
- Definition znz_0W l :=
- if w_eq0 l then W0 else WW w_0 l.
+ Definition OW l :=
+ if eq0 l then W0 else WW zero l.
- Definition znz_WW h l :=
- if w_eq0 h then znz_0W l else WW h l.
+ Definition WW h l :=
+ if eq0 h then OW l else WW h l.
- Lemma spec_W0 : forall h,
- zn2z_to_Z wB w_to_Z (znz_W0 h) = (w_to_Z h)*wB.
+ Lemma spec_WO : forall h,
+ zn2z_to_Z wB to_Z (WO h) = (to_Z h)*wB.
Proof.
- unfold zn2z_to_Z, znz_W0, w_to_Z; simpl; intros.
- case_eq (w_eq0 h); intros.
- rewrite (op_spec.(spec_eq0) _ H); auto.
- unfold w_0; rewrite op_spec.(spec_0); auto with zarith.
+ unfold zn2z_to_Z, WO; simpl; intros.
+ case_eq (eq0 h); intros.
+ rewrite (spec_eq0 _ H); auto.
+ rewrite spec_0; auto with zarith.
Qed.
- Lemma spec_0W : forall l,
- zn2z_to_Z wB w_to_Z (znz_0W l) = w_to_Z l.
+ Lemma spec_OW : forall l,
+ zn2z_to_Z wB to_Z (OW l) = to_Z l.
Proof.
- unfold zn2z_to_Z, znz_0W, w_to_Z; simpl; intros.
- case_eq (w_eq0 l); intros.
- rewrite (op_spec.(spec_eq0) _ H); auto.
- unfold w_0; rewrite op_spec.(spec_0); auto with zarith.
+ unfold zn2z_to_Z, OW; simpl; intros.
+ case_eq (eq0 l); intros.
+ rewrite (spec_eq0 _ H); auto.
+ rewrite spec_0; auto with zarith.
Qed.
Lemma spec_WW : forall h l,
- zn2z_to_Z wB w_to_Z (znz_WW h l) = (w_to_Z h)*wB + w_to_Z l.
+ zn2z_to_Z wB to_Z (WW h l) = (to_Z h)*wB + to_Z l.
Proof.
- unfold znz_WW, w_to_Z; simpl; intros.
- case_eq (w_eq0 h); intros.
- rewrite (op_spec.(spec_eq0) _ H); auto.
- rewrite spec_0W; auto.
+ unfold WW; simpl; intros.
+ case_eq (eq0 h); intros.
+ rewrite (spec_eq0 _ H); auto.
+ rewrite spec_OW; auto.
simpl; auto.
Qed.
-End WW.
+ End WW.
-(** Injecting [Z] numbers into a cyclic structure *)
+ (** Injecting [Z] numbers into a cyclic structure *)
-Section znz_of_pos.
+ Section Of_Z.
- Variable w : Type.
- Variable w_op : znz_op w.
- Variable op_spec : znz_spec w_op.
+ Context {t : Type}{ops : Ops t}{specs : Specs ops}.
- Notation "[| x |]" := (znz_to_Z w_op x) (at level 0, x at level 99).
+ Notation "[| x |]" := (to_Z x) (at level 0, x at level 99).
- Definition znz_of_Z (w:Type) (op:znz_op w) z :=
- match z with
- | Zpos p => snd (op.(znz_of_pos) p)
- | _ => op.(znz_0)
- end.
-
- Theorem znz_of_pos_correct:
- forall p, Zpos p < base (znz_digits w_op) -> [|(snd (znz_of_pos w_op p))|] = Zpos p.
+ Theorem of_pos_correct:
+ forall p, Zpos p < base digits -> [|(snd (of_pos p))|] = Zpos p.
+ Proof.
intros p Hp.
- generalize (spec_of_pos op_spec p).
- case (znz_of_pos w_op p); intros n w1; simpl.
+ generalize (spec_of_pos p).
+ case (of_pos p); intros n w1; simpl.
case n; simpl Npos; auto with zarith.
intros p1 Hp1; contradict Hp; apply Zle_not_lt.
- rewrite Hp1; auto with zarith.
- match goal with |- _ <= ?X + ?Y =>
- apply Zle_trans with X; auto with zarith
- end.
- match goal with |- ?X <= _ =>
- pattern X at 1; rewrite <- (Zmult_1_l);
- apply Zmult_le_compat_r; auto with zarith
- end.
+ replace (base digits) with (1 * base digits + 0) by auto with zarith.
+ rewrite Hp1.
+ apply Zplus_le_compat.
+ apply Zmult_le_compat; auto with zarith.
case p1; simpl; intros; red; simpl; intros; discriminate.
unfold base; auto with zarith.
- case (spec_to_Z op_spec w1); auto with zarith.
+ case (spec_to_Z w1); auto with zarith.
Qed.
- Theorem znz_of_Z_correct:
- forall p, 0 <= p < base (znz_digits w_op) -> [|znz_of_Z w_op p|] = p.
+ Definition of_Z z :=
+ match z with
+ | Zpos p => snd (of_pos p)
+ | _ => zero
+ end.
+
+ Theorem of_Z_correct:
+ forall p, 0 <= p < base digits -> [|of_Z p|] = p.
+ Proof.
intros p; case p; simpl; try rewrite spec_0; auto.
- intros; rewrite znz_of_pos_correct; auto with zarith.
+ intros; rewrite of_pos_correct; auto with zarith.
intros p1 (H1, _); contradict H1; apply Zlt_not_le; red; simpl; auto.
Qed.
-End znz_of_pos.
+ End Of_Z.
+
+End ZnZ.
(** A modular specification grouping the earlier records. *)
Module Type CyclicType.
- Parameter w : Type.
- Parameter w_op : znz_op w.
- Parameter w_spec : znz_spec w_op.
+ Parameter t : Type.
+ Declare Instance ops : ZnZ.Ops t.
+ Declare Instance specs : ZnZ.Specs ops.
End CyclicType.
@@ -379,38 +311,29 @@ End CyclicType.
Module CyclicRing (Import Cyclic : CyclicType).
-Definition t := w.
-
-Local Notation "[| x |]" := (w_op.(znz_to_Z) x) (at level 0, x at level 99).
+Local Notation "[| x |]" := (ZnZ.to_Z x) (at level 0, x at level 99).
Definition eq (n m : t) := [| n |] = [| m |].
-Definition zero : t := w_op.(znz_0).
-Definition one := w_op.(znz_1).
-Definition add := w_op.(znz_add).
-Definition sub := w_op.(znz_sub).
-Definition mul := w_op.(znz_mul).
-Definition opp := w_op.(znz_opp).
Local Infix "==" := eq (at level 70).
-Local Notation "0" := zero.
-Local Notation "1" := one.
-Local Infix "+" := add.
-Local Infix "-" := sub.
-Local Infix "*" := mul.
-Local Notation "!!" := (base (znz_digits w_op)).
-
-Hint Rewrite
- w_spec.(spec_0) w_spec.(spec_1)
- w_spec.(spec_add) w_spec.(spec_mul) w_spec.(spec_opp) w_spec.(spec_sub)
+Local Notation "0" := ZnZ.zero.
+Local Notation "1" := ZnZ.one.
+Local Infix "+" := ZnZ.add.
+Local Infix "-" := ZnZ.sub.
+Local Notation "- x" := (ZnZ.opp x).
+Local Infix "*" := ZnZ.mul.
+Local Notation wB := (base ZnZ.digits).
+
+Hint Rewrite ZnZ.spec_0 ZnZ.spec_1 ZnZ.spec_add ZnZ.spec_mul
+ ZnZ.spec_opp ZnZ.spec_sub
: cyclic.
-Ltac zify :=
- unfold eq, zero, one, add, sub, mul, opp in *; autorewrite with cyclic.
+Ltac zify := unfold eq in *; autorewrite with cyclic.
Lemma add_0_l : forall x, 0 + x == x.
Proof.
intros. zify. rewrite Zplus_0_l.
-apply Zmod_small. apply w_spec.(spec_to_Z).
+apply Zmod_small. apply ZnZ.spec_to_Z.
Qed.
Lemma add_comm : forall x y, x + y == y + x.
@@ -426,7 +349,7 @@ Qed.
Lemma mul_1_l : forall x, 1 * x == x.
Proof.
intros. zify. rewrite Zmult_1_l.
-apply Zmod_small. apply w_spec.(spec_to_Z).
+apply Zmod_small. apply ZnZ.spec_to_Z.
Qed.
Lemma mul_comm : forall x y, x * y == y * x.
@@ -444,22 +367,22 @@ Proof.
intros. zify. now rewrite <- Zplus_mod, Zmult_mod_idemp_l, Zmult_plus_distr_l.
Qed.
-Lemma add_opp_r : forall x y, x + opp y == x-y.
+Lemma add_opp_r : forall x y, x + - y == x-y.
Proof.
intros. zify. rewrite <- Zminus_mod_idemp_r. unfold Zminus.
-destruct (Z_eq_dec ([|y|] mod !!) 0) as [EQ|NEQ].
+destruct (Z_eq_dec ([|y|] mod wB) 0) as [EQ|NEQ].
rewrite Z_mod_zero_opp_full, EQ, 2 Zplus_0_r; auto.
rewrite Z_mod_nz_opp_full by auto.
rewrite <- Zplus_mod_idemp_r, <- Zminus_mod_idemp_l.
rewrite Z_mod_same_full. simpl. now rewrite Zplus_mod_idemp_r.
Qed.
-Lemma add_opp_diag_r : forall x, x + opp x == 0.
+Lemma add_opp_diag_r : forall x, x + - x == 0.
Proof.
intros. red. rewrite add_opp_r. zify. now rewrite Zminus_diag, Zmod_0_l.
Qed.
-Lemma CyclicRing : ring_theory 0 1 add mul sub opp eq.
+Lemma CyclicRing : ring_theory 0 1 ZnZ.add ZnZ.mul ZnZ.sub ZnZ.opp eq.
Proof.
constructor.
exact add_0_l. exact add_comm. exact add_assoc.
@@ -470,13 +393,24 @@ exact add_opp_diag_r.
Qed.
Definition eqb x y :=
- match w_op.(znz_compare) x y with Eq => true | _ => false end.
+ match ZnZ.compare x y with Eq => true | _ => false end.
+
+Lemma eqb_eq : forall x y, eqb x y = true <-> x == y.
+Proof.
+ intros. unfold eqb, eq.
+ rewrite ZnZ.spec_compare.
+ case Zcompare_spec; intuition; try discriminate.
+Qed.
+(* POUR HUGO:
Lemma eqb_eq : forall x y, eqb x y = true <-> x == y.
Proof.
- intros. unfold eqb, eq. generalize (w_spec.(spec_compare) x y).
- destruct (w_op.(znz_compare) x y); intuition; try discriminate.
+ intros. unfold eqb, eq. generalize (ZnZ.spec_compare x y).
+ case (ZnZ.compare x y); intuition; try discriminate.
+ (* BUG ?! using destruct instead of case won't work:
+ it gives 3 subcases, but ZnZ.compare x y is still there in them! *)
Qed.
+*)
Lemma eqb_correct : forall x y, eqb x y = true -> x==y.
Proof. now apply eqb_eq. Qed.
diff --git a/theories/Numbers/Cyclic/Abstract/NZCyclic.v b/theories/Numbers/Cyclic/Abstract/NZCyclic.v
index 517e48ad9c..b68e89560e 100644
--- a/theories/Numbers/Cyclic/Abstract/NZCyclic.v
+++ b/theories/Numbers/Cyclic/Abstract/NZCyclic.v
@@ -27,21 +27,17 @@ Module NZCyclicAxiomsMod (Import Cyclic : CyclicType) <: NZAxiomsSig.
Local Open Scope Z_scope.
-Definition t := w.
+Local Notation wB := (base ZnZ.digits).
-Definition NZ_to_Z : t -> Z := znz_to_Z w_op.
-Definition Z_to_NZ : Z -> t := znz_of_Z w_op.
-Local Notation wB := (base w_op.(znz_digits)).
-
-Local Notation "[| x |]" := (w_op.(znz_to_Z) x) (at level 0, x at level 99).
+Local Notation "[| x |]" := (ZnZ.to_Z x) (at level 0, x at level 99).
Definition eq (n m : t) := [| n |] = [| m |].
-Definition zero := w_op.(znz_0).
-Definition succ := w_op.(znz_succ).
-Definition pred := w_op.(znz_pred).
-Definition add := w_op.(znz_add).
-Definition sub := w_op.(znz_sub).
-Definition mul := w_op.(znz_mul).
+Definition zero := ZnZ.zero.
+Definition succ := ZnZ.succ.
+Definition pred := ZnZ.pred.
+Definition add := ZnZ.add.
+Definition sub := ZnZ.sub.
+Definition mul := ZnZ.mul.
Local Infix "==" := eq (at level 70).
Local Notation "0" := zero.
@@ -51,41 +47,25 @@ Local Infix "+" := add.
Local Infix "-" := sub.
Local Infix "*" := mul.
-Hint Rewrite w_spec.(spec_0) w_spec.(spec_succ) w_spec.(spec_pred)
- w_spec.(spec_add) w_spec.(spec_mul) w_spec.(spec_sub) : w.
-Ltac wsimpl :=
- unfold eq, zero, succ, pred, add, sub, mul; autorewrite with w.
-Ltac wcongruence := repeat red; intros; wsimpl; congruence.
+Hint Rewrite ZnZ.spec_0 ZnZ.spec_succ ZnZ.spec_pred
+ ZnZ.spec_add ZnZ.spec_mul ZnZ.spec_sub : cyclic.
+Ltac zify :=
+ unfold eq, zero, succ, pred, add, sub, mul in *;
+ autorewrite with cyclic.
+Ltac zcongruence := repeat red; intros; zify; congruence.
Instance eq_equiv : Equivalence eq.
Proof.
unfold eq. firstorder.
Qed.
-Instance succ_wd : Proper (eq ==> eq) succ.
-Proof.
-wcongruence.
-Qed.
-
-Instance pred_wd : Proper (eq ==> eq) pred.
-Proof.
-wcongruence.
-Qed.
+Local Obligation Tactic := zcongruence.
-Instance add_wd : Proper (eq ==> eq ==> eq) add.
-Proof.
-wcongruence.
-Qed.
-
-Instance sub_wd : Proper (eq ==> eq ==> eq) sub.
-Proof.
-wcongruence.
-Qed.
-
-Instance mul_wd : Proper (eq ==> eq ==> eq) mul.
-Proof.
-wcongruence.
-Qed.
+Program Instance succ_wd : Proper (eq ==> eq) succ.
+Program Instance pred_wd : Proper (eq ==> eq) pred.
+Program Instance add_wd : Proper (eq ==> eq ==> eq) add.
+Program Instance sub_wd : Proper (eq ==> eq ==> eq) sub.
+Program Instance mul_wd : Proper (eq ==> eq ==> eq) mul.
Theorem gt_wB_1 : 1 < wB.
Proof.
@@ -115,23 +95,16 @@ Qed.
Lemma NZ_to_Z_mod : forall n, [| n |] mod wB = [| n |].
Proof.
-intro n; rewrite Zmod_small. reflexivity. apply w_spec.(spec_to_Z).
+intro n; rewrite Zmod_small. reflexivity. apply ZnZ.spec_to_Z.
Qed.
Theorem pred_succ : forall n, P (S n) == n.
Proof.
-intro n. wsimpl.
+intro n. zify.
rewrite <- pred_mod_wB.
replace ([| n |] + 1 - 1)%Z with [| n |] by auto with zarith. apply NZ_to_Z_mod.
Qed.
-Lemma Z_to_NZ_0 : Z_to_NZ 0%Z == 0.
-Proof.
-unfold NZ_to_Z, Z_to_NZ. wsimpl.
-rewrite znz_of_Z_correct; auto.
-exact w_spec. split; [auto with zarith |apply gt_wB_0].
-Qed.
-
Section Induction.
Variable A : t -> Prop.
@@ -140,21 +113,22 @@ Hypothesis A0 : A 0.
Hypothesis AS : forall n, A n <-> A (S n).
(* Below, we use only -> direction *)
-Let B (n : Z) := A (Z_to_NZ n).
+Let B (n : Z) := A (ZnZ.of_Z n).
Lemma B0 : B 0.
Proof.
-unfold B. now rewrite Z_to_NZ_0.
+unfold B.
+setoid_replace (ZnZ.of_Z 0) with zero. assumption.
+red; zify. apply ZnZ.of_Z_correct. auto using gt_wB_0 with zarith.
Qed.
Lemma BS : forall n : Z, 0 <= n -> n < wB - 1 -> B n -> B (n + 1).
Proof.
intros n H1 H2 H3.
unfold B in *. apply -> AS in H3.
-setoid_replace (Z_to_NZ (n + 1)) with (S (Z_to_NZ n)). assumption.
-wsimpl.
-unfold NZ_to_Z, Z_to_NZ.
-do 2 (rewrite znz_of_Z_correct; [ | exact w_spec | auto with zarith]).
+setoid_replace (ZnZ.of_Z (n + 1)) with (S (ZnZ.of_Z n)). assumption.
+zify.
+rewrite 2 ZnZ.of_Z_correct; auto with zarith.
symmetry; apply Zmod_small; auto with zarith.
Qed.
@@ -167,25 +141,23 @@ Qed.
Theorem bi_induction : forall n, A n.
Proof.
-intro n. setoid_replace n with (Z_to_NZ (NZ_to_Z n)).
-apply B_holds. apply w_spec.(spec_to_Z).
-unfold eq, NZ_to_Z, Z_to_NZ; rewrite znz_of_Z_correct.
-reflexivity.
-exact w_spec.
-apply w_spec.(spec_to_Z).
+intro n. setoid_replace n with (ZnZ.of_Z (ZnZ.to_Z n)).
+apply B_holds. apply ZnZ.spec_to_Z.
+red. symmetry. apply ZnZ.of_Z_correct.
+apply ZnZ.spec_to_Z.
Qed.
End Induction.
Theorem add_0_l : forall n, 0 + n == n.
Proof.
-intro n. wsimpl.
-rewrite Zplus_0_l. rewrite Zmod_small; [reflexivity | apply w_spec.(spec_to_Z)].
+intro n. zify.
+rewrite Zplus_0_l. apply Zmod_small. apply ZnZ.spec_to_Z.
Qed.
Theorem add_succ_l : forall n m, (S n) + m == S (n + m).
Proof.
-intros n m. wsimpl.
+intros n m. zify.
rewrite succ_mod_wB. repeat rewrite Zplus_mod_idemp_l; try apply gt_wB_0.
rewrite <- (Zplus_assoc ([| n |] mod wB) 1 [| m |]). rewrite Zplus_mod_idemp_l.
rewrite (Zplus_comm 1 [| m |]); now rewrite Zplus_assoc.
@@ -193,25 +165,27 @@ Qed.
Theorem sub_0_r : forall n, n - 0 == n.
Proof.
-intro n. wsimpl. rewrite Zminus_0_r. apply NZ_to_Z_mod.
+intro n. zify. rewrite Zminus_0_r. apply NZ_to_Z_mod.
Qed.
Theorem sub_succ_r : forall n m, n - (S m) == P (n - m).
Proof.
-intros n m. wsimpl. rewrite Zminus_mod_idemp_r, Zminus_mod_idemp_l.
+intros n m. zify. rewrite Zminus_mod_idemp_r, Zminus_mod_idemp_l.
now replace ([|n|] - ([|m|] + 1))%Z with ([|n|] - [|m|] - 1)%Z
by auto with zarith.
Qed.
Theorem mul_0_l : forall n, 0 * n == 0.
Proof.
-intro n. wsimpl. now rewrite Zmult_0_l.
+intro n. now zify.
Qed.
Theorem mul_succ_l : forall n m, (S n) * m == n * m + m.
Proof.
-intros n m. wsimpl. rewrite Zplus_mod_idemp_l, Zmult_mod_idemp_l.
+intros n m. zify. rewrite Zplus_mod_idemp_l, Zmult_mod_idemp_l.
now rewrite Zmult_plus_distr_l, Zmult_1_l.
Qed.
+Definition t := t.
+
End NZCyclicAxiomsMod.
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v
index 88c34915d3..23c62740c8 100644
--- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v
@@ -167,11 +167,7 @@ Section DoubleBase.
Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
Variable spec_w_compare : forall x y,
- match w_compare x y with
- | Eq => [|x|] = [|y|]
- | Lt => [|x|] < [|y|]
- | Gt => [|x|] > [|y|]
- end.
+ w_compare x y = Zcompare [|x|] [|y|].
Lemma wwB_wBwB : wwB = wB^2.
Proof.
@@ -408,35 +404,40 @@ Section DoubleBase.
intros a b c d H1; apply beta_lex_inv with (1 := H1); auto.
Qed.
+ Ltac comp2ord := match goal with
+ | |- Lt = (?x ?= ?y) => symmetry; change (x < y)
+ | |- Gt = (?x ?= ?y) => symmetry; change (x > y); apply Zlt_gt
+ end.
+
Lemma spec_ww_compare : forall x y,
- match ww_compare x y with
- | Eq => [[x]] = [[y]]
- | Lt => [[x]] < [[y]]
- | Gt => [[x]] > [[y]]
- end.
+ ww_compare x y = Zcompare [[x]] [[y]].
Proof.
destruct x as [ |xh xl];destruct y as [ |yh yl];simpl;trivial.
- generalize (spec_w_compare w_0 yh);destruct (w_compare w_0 yh);
- intros H;rewrite spec_w_0 in H.
- rewrite <- H;simpl;rewrite <- spec_w_0;apply spec_w_compare.
- change 0 with (0*wB+0);pattern 0 at 2;rewrite <- spec_w_0.
+ (* 1st case *)
+ rewrite 2 spec_w_compare, spec_w_0.
+ destruct (Zcompare_spec 0 [|yh|]) as [H|H|H].
+ rewrite <- H;simpl. reflexivity.
+ symmetry. change (0 < [|yh|]*wB+[|yl|]).
+ change 0 with (0*wB+0). rewrite <- spec_w_0 at 2.
apply wB_lex_inv;trivial.
- absurd (0 <= [|yh|]). apply Zgt_not_le;trivial.
+ absurd (0 <= [|yh|]). apply Zlt_not_le; trivial.
destruct (spec_to_Z yh);trivial.
- generalize (spec_w_compare xh w_0);destruct (w_compare xh w_0);
- intros H;rewrite spec_w_0 in H.
- rewrite H;simpl;rewrite <- spec_w_0;apply spec_w_compare.
- absurd (0 <= [|xh|]). apply Zgt_not_le;apply Zlt_gt;trivial.
+ (* 2nd case *)
+ rewrite 2 spec_w_compare, spec_w_0.
+ destruct (Zcompare_spec [|xh|] 0) as [H|H|H].
+ rewrite H;simpl;reflexivity.
+ absurd (0 <= [|xh|]). apply Zlt_not_le; trivial.
destruct (spec_to_Z xh);trivial.
- apply Zlt_gt;change 0 with (0*wB+0);pattern 0 at 2;rewrite <- spec_w_0.
- apply wB_lex_inv;apply Zgt_lt;trivial.
-
- generalize (spec_w_compare xh yh);destruct (w_compare xh yh);intros H.
- rewrite H;generalize (spec_w_compare xl yl);destruct (w_compare xl yl);
- intros H1;[rewrite H1|apply Zplus_lt_compat_l|apply Zplus_gt_compat_l];
- trivial.
+ comp2ord.
+ change 0 with (0*wB+0). rewrite <- spec_w_0 at 2.
apply wB_lex_inv;trivial.
- apply Zlt_gt;apply wB_lex_inv;apply Zgt_lt;trivial.
+ (* 3rd case *)
+ rewrite 2 spec_w_compare.
+ destruct (Zcompare_spec [|xh|] [|yh|]) as [H|H|H].
+ rewrite H.
+ symmetry. apply Zcompare_plus_compat.
+ comp2ord. apply wB_lex_inv;trivial.
+ comp2ord. apply wB_lex_inv;trivial.
Qed.
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v
index eea29e7ca2..49a4f950a8 100644
--- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v
@@ -30,65 +30,65 @@ Local Open Scope Z_scope.
Section Z_2nZ.
- Variable w : Type.
- Variable w_op : znz_op w.
- Let w_digits := w_op.(znz_digits).
- Let w_zdigits := w_op.(znz_zdigits).
+ Context {t : Type}{ops : ZnZ.Ops t}.
- Let w_to_Z := w_op.(znz_to_Z).
- Let w_of_pos := w_op.(znz_of_pos).
- Let w_head0 := w_op.(znz_head0).
- Let w_tail0 := w_op.(znz_tail0).
+ Let w_digits := ZnZ.digits.
+ Let w_zdigits := ZnZ.zdigits.
- Let w_0 := w_op.(znz_0).
- Let w_1 := w_op.(znz_1).
- Let w_Bm1 := w_op.(znz_Bm1).
+ Let w_to_Z := ZnZ.to_Z.
+ Let w_of_pos := ZnZ.of_pos.
+ Let w_head0 := ZnZ.head0.
+ Let w_tail0 := ZnZ.tail0.
- Let w_compare := w_op.(znz_compare).
- Let w_eq0 := w_op.(znz_eq0).
+ Let w_0 := ZnZ.zero.
+ Let w_1 := ZnZ.one.
+ Let w_Bm1 := ZnZ.minus_one.
- Let w_opp_c := w_op.(znz_opp_c).
- Let w_opp := w_op.(znz_opp).
- Let w_opp_carry := w_op.(znz_opp_carry).
+ Let w_compare := ZnZ.compare.
+ Let w_eq0 := ZnZ.eq0.
- Let w_succ_c := w_op.(znz_succ_c).
- Let w_add_c := w_op.(znz_add_c).
- Let w_add_carry_c := w_op.(znz_add_carry_c).
- Let w_succ := w_op.(znz_succ).
- Let w_add := w_op.(znz_add).
- Let w_add_carry := w_op.(znz_add_carry).
+ Let w_opp_c := ZnZ.opp_c.
+ Let w_opp := ZnZ.opp.
+ Let w_opp_carry := ZnZ.opp_carry.
- Let w_pred_c := w_op.(znz_pred_c).
- Let w_sub_c := w_op.(znz_sub_c).
- Let w_sub_carry_c := w_op.(znz_sub_carry_c).
- Let w_pred := w_op.(znz_pred).
- Let w_sub := w_op.(znz_sub).
- Let w_sub_carry := w_op.(znz_sub_carry).
+ Let w_succ_c := ZnZ.succ_c.
+ Let w_add_c := ZnZ.add_c.
+ Let w_add_carry_c := ZnZ.add_carry_c.
+ Let w_succ := ZnZ.succ.
+ Let w_add := ZnZ.add.
+ Let w_add_carry := ZnZ.add_carry.
+ Let w_pred_c := ZnZ.pred_c.
+ Let w_sub_c := ZnZ.sub_c.
+ Let w_sub_carry_c := ZnZ.sub_carry_c.
+ Let w_pred := ZnZ.pred.
+ Let w_sub := ZnZ.sub.
+ Let w_sub_carry := ZnZ.sub_carry.
- Let w_mul_c := w_op.(znz_mul_c).
- Let w_mul := w_op.(znz_mul).
- Let w_square_c := w_op.(znz_square_c).
- Let w_div21 := w_op.(znz_div21).
- Let w_div_gt := w_op.(znz_div_gt).
- Let w_div := w_op.(znz_div).
+ Let w_mul_c := ZnZ.mul_c.
+ Let w_mul := ZnZ.mul.
+ Let w_square_c := ZnZ.square_c.
- Let w_mod_gt := w_op.(znz_mod_gt).
- Let w_mod := w_op.(znz_mod).
+ Let w_div21 := ZnZ.div21.
+ Let w_div_gt := ZnZ.div_gt.
+ Let w_div := ZnZ.div.
- Let w_gcd_gt := w_op.(znz_gcd_gt).
- Let w_gcd := w_op.(znz_gcd).
+ Let w_mod_gt := ZnZ.modulo_gt.
+ Let w_mod := ZnZ.modulo.
- Let w_add_mul_div := w_op.(znz_add_mul_div).
+ Let w_gcd_gt := ZnZ.gcd_gt.
+ Let w_gcd := ZnZ.gcd.
- Let w_pos_mod := w_op.(znz_pos_mod).
+ Let w_add_mul_div := ZnZ.add_mul_div.
- Let w_is_even := w_op.(znz_is_even).
- Let w_sqrt2 := w_op.(znz_sqrt2).
- Let w_sqrt := w_op.(znz_sqrt).
+ Let w_pos_mod := ZnZ.pos_mod.
- Let _zn2z := zn2z w.
+ Let w_is_even := ZnZ.is_even.
+ Let w_sqrt2 := ZnZ.sqrt2.
+ Let w_sqrt := ZnZ.sqrt.
+
+ Let _zn2z := zn2z t.
Let wB := base w_digits.
@@ -105,9 +105,9 @@ Section Z_2nZ.
Let to_Z := zn2z_to_Z wB w_to_Z.
- Let w_W0 := znz_W0 w_op.
- Let w_0W := znz_0W w_op.
- Let w_WW := znz_WW w_op.
+ Let w_W0 (x:t) := ZnZ.WO x.
+ Let w_0W (x:t) := ZnZ.OW x.
+ Let w_WW (x y:t) := ZnZ.WW x y.
Let ww_of_pos p :=
match w_of_pos p with
@@ -124,15 +124,15 @@ Section Z_2nZ.
Eval lazy beta delta [ww_tail0] in
ww_tail0 w_0 w_0W w_compare w_tail0 w_add2 w_zdigits _ww_zdigits.
- Let ww_WW := Eval lazy beta delta [ww_WW] in (@ww_WW w).
- Let ww_0W := Eval lazy beta delta [ww_0W] in (@ww_0W w).
- Let ww_W0 := Eval lazy beta delta [ww_W0] in (@ww_W0 w).
+ Let ww_WW := Eval lazy beta delta [ww_WW] in (@ww_WW t).
+ Let ww_0W := Eval lazy beta delta [ww_0W] in (@ww_0W t).
+ Let ww_W0 := Eval lazy beta delta [ww_W0] in (@ww_W0 t).
(* ** Comparison ** *)
Let compare :=
Eval lazy beta delta[ww_compare] in ww_compare w_0 w_compare.
- Let eq0 (x:zn2z w) :=
+ Let eq0 (x:zn2z t) :=
match x with
| W0 => true
| _ => false
@@ -226,7 +226,7 @@ Section Z_2nZ.
Eval lazy beta iota delta [ww_div21] in
ww_div21 w_0 w_0W div32 ww_1 compare sub.
- Let low (p: zn2z w) := match p with WW _ p1 => p1 | _ => w_0 end.
+ Let low (p: zn2z t) := match p with WW _ p1 => p1 | _ => w_0 end.
Let add_mul_div :=
Eval lazy beta delta [ww_add_mul_div] in
@@ -287,8 +287,8 @@ Section Z_2nZ.
(* ** Record of operators on 2 words *)
- Definition mk_zn2z_op :=
- mk_znz_op _ww_digits _ww_zdigits
+ Global Instance mk_zn2z_ops : ZnZ.Ops (zn2z t) :=
+ ZnZ.MkOps _ww_digits _ww_zdigits
to_Z ww_of_pos head0 tail0
W0 ww_1 ww_Bm1
compare eq0
@@ -307,8 +307,8 @@ Section Z_2nZ.
sqrt2
sqrt.
- Definition mk_zn2z_op_karatsuba :=
- mk_znz_op _ww_digits _ww_zdigits
+ Global Instance mk_zn2z_ops_karatsuba : ZnZ.Ops (zn2z t) :=
+ ZnZ.MkOps _ww_digits _ww_zdigits
to_Z ww_of_pos head0 tail0
W0 ww_1 ww_Bm1
compare eq0
@@ -328,51 +328,51 @@ Section Z_2nZ.
sqrt.
(* Proof *)
- Variable op_spec : znz_spec w_op.
+ Context {specs : ZnZ.Specs ops}.
Hint Resolve
- (spec_to_Z op_spec)
- (spec_of_pos op_spec)
- (spec_0 op_spec)
- (spec_1 op_spec)
- (spec_Bm1 op_spec)
- (spec_compare op_spec)
- (spec_eq0 op_spec)
- (spec_opp_c op_spec)
- (spec_opp op_spec)
- (spec_opp_carry op_spec)
- (spec_succ_c op_spec)
- (spec_add_c op_spec)
- (spec_add_carry_c op_spec)
- (spec_succ op_spec)
- (spec_add op_spec)
- (spec_add_carry op_spec)
- (spec_pred_c op_spec)
- (spec_sub_c op_spec)
- (spec_sub_carry_c op_spec)
- (spec_pred op_spec)
- (spec_sub op_spec)
- (spec_sub_carry op_spec)
- (spec_mul_c op_spec)
- (spec_mul op_spec)
- (spec_square_c op_spec)
- (spec_div21 op_spec)
- (spec_div_gt op_spec)
- (spec_div op_spec)
- (spec_mod_gt op_spec)
- (spec_mod op_spec)
- (spec_gcd_gt op_spec)
- (spec_gcd op_spec)
- (spec_head0 op_spec)
- (spec_tail0 op_spec)
- (spec_add_mul_div op_spec)
- (spec_pos_mod)
- (spec_is_even)
- (spec_sqrt2)
- (spec_sqrt)
- (spec_W0 op_spec)
- (spec_0W op_spec)
- (spec_WW op_spec).
+ ZnZ.spec_to_Z
+ ZnZ.spec_of_pos
+ ZnZ.spec_0
+ ZnZ.spec_1
+ ZnZ.spec_m1
+ ZnZ.spec_compare
+ ZnZ.spec_eq0
+ ZnZ.spec_opp_c
+ ZnZ.spec_opp
+ ZnZ.spec_opp_carry
+ ZnZ.spec_succ_c
+ ZnZ.spec_add_c
+ ZnZ.spec_add_carry_c
+ ZnZ.spec_succ
+ ZnZ.spec_add
+ ZnZ.spec_add_carry
+ ZnZ.spec_pred_c
+ ZnZ.spec_sub_c
+ ZnZ.spec_sub_carry_c
+ ZnZ.spec_pred
+ ZnZ.spec_sub
+ ZnZ.spec_sub_carry
+ ZnZ.spec_mul_c
+ ZnZ.spec_mul
+ ZnZ.spec_square_c
+ ZnZ.spec_div21
+ ZnZ.spec_div_gt
+ ZnZ.spec_div
+ ZnZ.spec_modulo_gt
+ ZnZ.spec_modulo
+ ZnZ.spec_gcd_gt
+ ZnZ.spec_gcd
+ ZnZ.spec_head0
+ ZnZ.spec_tail0
+ ZnZ.spec_add_mul_div
+ ZnZ.spec_pos_mod
+ ZnZ.spec_is_even
+ ZnZ.spec_sqrt2
+ ZnZ.spec_sqrt
+ ZnZ.spec_WO
+ ZnZ.spec_OW
+ ZnZ.spec_WW.
Ltac wwauto := unfold ww_to_Z; auto.
@@ -395,16 +395,17 @@ Section Z_2nZ.
Zpos p = (Z_of_N (fst (ww_of_pos p)))*wwB + [|(snd (ww_of_pos p))|].
Proof.
unfold ww_of_pos;intros.
- assert (H:= spec_of_pos op_spec p);unfold w_of_pos;
- destruct (znz_of_pos w_op p). simpl in H.
- rewrite H;clear H;destruct n;simpl to_Z.
- simpl;unfold w_to_Z,w_0;rewrite (spec_0 op_spec);trivial.
- unfold Z_of_N; assert (H:= spec_of_pos op_spec p0);
- destruct (znz_of_pos w_op p0). simpl in H.
- rewrite H;unfold fst, snd,Z_of_N, to_Z.
- rewrite (spec_WW op_spec).
+ rewrite (ZnZ.spec_of_pos p). unfold w_of_pos.
+ case (ZnZ.of_pos p); intros. simpl.
+ destruct n; simpl ZnZ.to_Z.
+ simpl;unfold w_to_Z,w_0; rewrite ZnZ.spec_0;trivial.
+ unfold Z_of_N.
+ rewrite (ZnZ.spec_of_pos p0).
+ case (ZnZ.of_pos p0); intros. simpl.
+ unfold fst, snd,Z_of_N, to_Z, wB, w_digits, w_to_Z, w_WW.
+ rewrite ZnZ.spec_WW.
replace wwB with (wB*wB).
- unfold wB,w_to_Z,w_digits;clear H;destruct n;ring.
+ unfold wB,w_to_Z,w_digits;destruct n;ring.
symmetry. rewrite <- Zpower_2; exact (wwB_wBwB w_digits).
Qed.
@@ -418,15 +419,9 @@ Section Z_2nZ.
Proof. refine (spec_ww_Bm1 w_Bm1 w_digits w_to_Z _);auto. Qed.
Let spec_ww_compare :
- forall x y,
- match compare x y with
- | Eq => [|x|] = [|y|]
- | Lt => [|x|] < [|y|]
- | Gt => [|x|] > [|y|]
- end.
+ forall x y, compare x y = Zcompare [|x|] [|y|].
Proof.
refine (spec_ww_compare w_0 w_digits w_to_Z w_compare _ _ _);auto.
- exact (spec_compare op_spec).
Qed.
Let spec_ww_eq0 : forall x, eq0 x = true -> [|x|] = 0.
@@ -531,8 +526,7 @@ Section Z_2nZ.
Proof.
refine (spec_ww_karatsuba_c _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _); wwauto.
- unfold w_digits; apply spec_more_than_1_digit; auto.
- exact (spec_compare op_spec).
+ unfold w_digits; apply ZnZ.spec_more_than_1_digit; auto.
Qed.
Let spec_ww_mul : forall x y, [|mul x y|] = ([|x|] * [|y|]) mod wwB.
@@ -559,11 +553,10 @@ Section Z_2nZ.
w_add w_add_carry w_pred w_sub w_mul_c w_div21 sub_c w_digits w_to_Z
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
unfold w_Bm2, w_to_Z, w_pred, w_Bm1.
- rewrite (spec_pred op_spec);rewrite (spec_Bm1 op_spec).
+ rewrite ZnZ.spec_pred, ZnZ.spec_m1.
unfold w_digits;rewrite Zmod_small. ring.
- assert (H:= wB_pos(znz_digits w_op)). omega.
- exact (spec_compare op_spec).
- exact (spec_div21 op_spec).
+ assert (H:= wB_pos(ZnZ.digits)). omega.
+ exact ZnZ.spec_div21.
Qed.
Let spec_ww_div21 : forall a1 a2 b,
@@ -580,22 +573,19 @@ Section Z_2nZ.
Let spec_add2: forall x y,
[|w_add2 x y|] = w_to_Z x + w_to_Z y.
unfold w_add2.
- intros xh xl; generalize (spec_add_c op_spec xh xl).
- unfold w_add_c; case znz_add_c; unfold interp_carry; simpl ww_to_Z.
+ intros xh xl; generalize (ZnZ.spec_add_c xh xl).
+ unfold w_add_c; case ZnZ.add_c; unfold interp_carry; simpl ww_to_Z.
intros w0 Hw0; simpl; unfold w_to_Z; rewrite Hw0.
- unfold w_0; rewrite spec_0; simpl; auto with zarith.
+ unfold w_0; rewrite ZnZ.spec_0; simpl; auto with zarith.
intros w0; rewrite Zmult_1_l; simpl.
- unfold w_to_Z, w_1; rewrite spec_1; auto with zarith.
+ unfold w_to_Z, w_1; rewrite ZnZ.spec_1; auto with zarith.
rewrite Zmult_1_l; auto.
Qed.
Let spec_low: forall x,
w_to_Z (low x) = [|x|] mod wB.
intros x; case x; simpl low.
- unfold ww_to_Z, w_to_Z, w_0; rewrite (spec_0 op_spec); simpl.
- rewrite Zmod_small; auto with zarith.
- split; auto with zarith.
- unfold wB, base; auto with zarith.
+ unfold ww_to_Z, w_to_Z, w_0; rewrite ZnZ.spec_0; simpl; auto.
intros xh xl; simpl.
rewrite Zplus_comm; rewrite Z_mod_plus; auto with zarith.
rewrite Zmod_small; auto with zarith.
@@ -608,7 +598,7 @@ Section Z_2nZ.
unfold w_to_Z, _ww_zdigits.
rewrite spec_add2.
unfold w_to_Z, w_zdigits, w_digits.
- rewrite spec_zdigits; auto.
+ rewrite ZnZ.spec_zdigits; auto.
rewrite Zpos_xO; auto with zarith.
Qed.
@@ -618,9 +608,8 @@ Section Z_2nZ.
refine (spec_ww_head00 w_0 w_0W
w_compare w_head0 w_add2 w_zdigits _ww_zdigits
w_to_Z _ _ _ (refl_equal _ww_digits) _ _ _ _); auto.
- exact (spec_compare op_spec).
- exact (spec_head00 op_spec).
- exact (spec_zdigits op_spec).
+ exact ZnZ.spec_head00.
+ exact ZnZ.spec_zdigits.
Qed.
Let spec_ww_head0 : forall x, 0 < [|x|] ->
@@ -629,8 +618,7 @@ Section Z_2nZ.
refine (spec_ww_head0 w_0 w_0W w_compare w_head0
w_add2 w_zdigits _ww_zdigits
w_to_Z _ _ _ _ _ _ _);wwauto.
- exact (spec_compare op_spec).
- exact (spec_zdigits op_spec).
+ exact ZnZ.spec_zdigits.
Qed.
Let spec_ww_tail00 : forall x, [|x|] = 0 -> [|tail0 x|] = Zpos _ww_digits.
@@ -638,9 +626,8 @@ Section Z_2nZ.
refine (spec_ww_tail00 w_0 w_0W
w_compare w_tail0 w_add2 w_zdigits _ww_zdigits
w_to_Z _ _ _ (refl_equal _ww_digits) _ _ _ _); wwauto.
- exact (spec_compare op_spec).
- exact (spec_tail00 op_spec).
- exact (spec_zdigits op_spec).
+ exact ZnZ.spec_tail00.
+ exact ZnZ.spec_zdigits.
Qed.
@@ -649,8 +636,7 @@ Section Z_2nZ.
Proof.
refine (spec_ww_tail0 (w_digits := w_digits) w_0 w_0W w_compare w_tail0
w_add2 w_zdigits _ww_zdigits w_to_Z _ _ _ _ _ _ _);wwauto.
- exact (spec_compare op_spec).
- exact (spec_zdigits op_spec).
+ exact ZnZ.spec_zdigits.
Qed.
Lemma spec_ww_add_mul_div : forall x y p,
@@ -659,10 +645,10 @@ Section Z_2nZ.
([|x|] * (2 ^ [|p|]) +
[|y|] / (2 ^ ((Zpos _ww_digits) - [|p|]))) mod wwB.
Proof.
- refine (@spec_ww_add_mul_div w w_0 w_WW w_W0 w_0W compare w_add_mul_div
+ refine (@spec_ww_add_mul_div t w_0 w_WW w_W0 w_0W compare w_add_mul_div
sub w_digits w_zdigits low w_to_Z
_ _ _ _ _ _ _ _ _ _ _);wwauto.
- exact (spec_zdigits op_spec).
+ exact ZnZ.spec_zdigits.
Qed.
Let spec_ww_div_gt : forall a b,
@@ -671,29 +657,29 @@ Section Z_2nZ.
[|a|] = [|q|] * [|b|] + [|r|] /\ 0 <= [|r|] < [|b|].
Proof.
refine
-(@spec_ww_div_gt w w_digits w_0 w_WW w_0W w_compare w_eq0
+(@spec_ww_div_gt t w_digits w_0 w_WW w_0W w_compare w_eq0
w_opp_c w_opp w_opp_carry w_sub_c w_sub w_sub_carry w_div_gt
w_add_mul_div w_head0 w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
).
- exact (spec_0 op_spec).
- exact (spec_to_Z op_spec).
+ exact ZnZ.spec_0.
+ exact ZnZ.spec_to_Z.
wwauto.
wwauto.
- exact (spec_compare op_spec).
- exact (spec_eq0 op_spec).
- exact (spec_opp_c op_spec).
- exact (spec_opp op_spec).
- exact (spec_opp_carry op_spec).
- exact (spec_sub_c op_spec).
- exact (spec_sub op_spec).
- exact (spec_sub_carry op_spec).
- exact (spec_div_gt op_spec).
- exact (spec_add_mul_div op_spec).
- exact (spec_head0 op_spec).
- exact (spec_div21 op_spec).
+ exact ZnZ.spec_compare.
+ exact ZnZ.spec_eq0.
+ exact ZnZ.spec_opp_c.
+ exact ZnZ.spec_opp.
+ exact ZnZ.spec_opp_carry.
+ exact ZnZ.spec_sub_c.
+ exact ZnZ.spec_sub.
+ exact ZnZ.spec_sub_carry.
+ exact ZnZ.spec_div_gt.
+ exact ZnZ.spec_add_mul_div.
+ exact ZnZ.spec_head0.
+ exact ZnZ.spec_div21.
exact spec_w_div32.
- exact (spec_zdigits op_spec).
+ exact ZnZ.spec_zdigits.
exact spec_ww_digits.
exact spec_ww_1.
exact spec_ww_add_mul_div.
@@ -711,15 +697,14 @@ refine
[|a|] > [|b|] -> 0 < [|b|] ->
[|mod_gt a b|] = [|a|] mod [|b|].
Proof.
- refine (@spec_ww_mod_gt w w_digits w_0 w_WW w_0W w_compare w_eq0
+ refine (@spec_ww_mod_gt t w_digits w_0 w_WW w_0W w_compare w_eq0
w_opp_c w_opp w_opp_carry w_sub_c w_sub w_sub_carry w_div_gt w_mod_gt
w_add_mul_div w_head0 w_div21 div32 _ww_zdigits ww_1 add_mul_div
w_zdigits w_to_Z
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
- exact (spec_compare op_spec).
- exact (spec_div_gt op_spec).
- exact (spec_div21 op_spec).
- exact (spec_zdigits op_spec).
+ exact ZnZ.spec_div_gt.
+ exact ZnZ.spec_div21.
+ exact ZnZ.spec_zdigits.
exact spec_ww_add_mul_div.
Qed.
@@ -731,37 +716,33 @@ refine
Let spec_ww_gcd_gt : forall a b, [|a|] > [|b|] ->
Zis_gcd [|a|] [|b|] [|gcd_gt a b|].
Proof.
- refine (@spec_ww_gcd_gt w w_digits W0 w_to_Z _
+ refine (@spec_ww_gcd_gt t w_digits W0 w_to_Z _
w_0 w_0 w_eq0 w_gcd_gt _ww_digits
_ gcd_gt_fix _ _ _ _ gcd_cont _);auto.
- refine (@spec_ww_gcd_gt_aux w w_digits w_0 w_WW w_0W w_compare w_opp_c w_opp
+ refine (@spec_ww_gcd_gt_aux t w_digits w_0 w_WW w_0W w_compare w_opp_c w_opp
w_opp_carry w_sub_c w_sub w_sub_carry w_gcd_gt w_add_mul_div w_head0
w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
- exact (spec_compare op_spec).
- exact (spec_div21 op_spec).
- exact (spec_zdigits op_spec).
+ exact ZnZ.spec_div21.
+ exact ZnZ.spec_zdigits.
exact spec_ww_add_mul_div.
- refine (@spec_gcd_cont w w_digits ww_1 w_to_Z _ _ w_0 w_1 w_compare
+ refine (@spec_gcd_cont t w_digits ww_1 w_to_Z _ _ w_0 w_1 w_compare
_ _);auto.
- exact (spec_compare op_spec).
Qed.
Let spec_ww_gcd : forall a b, Zis_gcd [|a|] [|b|] [|gcd a b|].
Proof.
- refine (@spec_ww_gcd w w_digits W0 compare w_to_Z _ _ w_0 w_0 w_eq0 w_gcd_gt
+ refine (@spec_ww_gcd t w_digits W0 compare w_to_Z _ _ w_0 w_0 w_eq0 w_gcd_gt
_ww_digits _ gcd_gt_fix _ _ _ _ gcd_cont _);auto.
- refine (@spec_ww_gcd_gt_aux w w_digits w_0 w_WW w_0W w_compare w_opp_c w_opp
+ refine (@spec_ww_gcd_gt_aux t w_digits w_0 w_WW w_0W w_compare w_opp_c w_opp
w_opp_carry w_sub_c w_sub w_sub_carry w_gcd_gt w_add_mul_div w_head0
w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
- exact (spec_compare op_spec).
- exact (spec_div21 op_spec).
- exact (spec_zdigits op_spec).
+ exact ZnZ.spec_div21.
+ exact ZnZ.spec_zdigits.
exact spec_ww_add_mul_div.
- refine (@spec_gcd_cont w w_digits ww_1 w_to_Z _ _ w_0 w_1 w_compare
+ refine (@spec_gcd_cont t w_digits ww_1 w_to_Z _ _ w_0 w_1 w_compare
_ _);auto.
- exact (spec_compare op_spec).
Qed.
Let spec_ww_is_even : forall x,
@@ -770,8 +751,8 @@ refine
| false => [|x|] mod 2 = 1
end.
Proof.
- refine (@spec_ww_is_even w w_is_even w_0 w_1 w_Bm1 w_digits _ _ _ _ _); auto.
- exact (spec_is_even op_spec).
+ refine (@spec_ww_is_even t w_is_even w_0 w_1 w_Bm1 w_digits _ _ _ _ _); auto.
+ exact ZnZ.spec_is_even.
Qed.
Let spec_ww_sqrt2 : forall x y,
@@ -781,60 +762,57 @@ refine
[+|r|] <= 2 * [|s|].
Proof.
intros x y H.
- refine (@spec_ww_sqrt2 w w_is_even w_compare w_0 w_1 w_Bm1
+ refine (@spec_ww_sqrt2 t w_is_even w_compare w_0 w_1 w_Bm1
w_0W w_sub w_square_c w_div21 w_add_mul_div w_digits w_zdigits
_ww_zdigits
w_add_c w_sqrt2 w_pred pred_c pred add_c add sub_c add_mul_div
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _); wwauto.
- exact (spec_zdigits op_spec).
- exact (spec_more_than_1_digit op_spec).
- exact (spec_is_even op_spec).
- exact (spec_compare op_spec).
- exact (spec_div21 op_spec).
- exact (spec_ww_add_mul_div).
- exact (spec_sqrt2 op_spec).
+ exact ZnZ.spec_zdigits.
+ exact ZnZ.spec_more_than_1_digit.
+ exact ZnZ.spec_is_even.
+ exact ZnZ.spec_div21.
+ exact spec_ww_add_mul_div.
+ exact ZnZ.spec_sqrt2.
Qed.
Let spec_ww_sqrt : forall x,
[|sqrt x|] ^ 2 <= [|x|] < ([|sqrt x|] + 1) ^ 2.
Proof.
- refine (@spec_ww_sqrt w w_is_even w_0 w_1 w_Bm1
+ refine (@spec_ww_sqrt t w_is_even w_0 w_1 w_Bm1
w_sub w_add_mul_div w_digits w_zdigits _ww_zdigits
w_sqrt2 pred add_mul_div head0 compare
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _); wwauto.
- exact (spec_zdigits op_spec).
- exact (spec_more_than_1_digit op_spec).
- exact (spec_is_even op_spec).
- exact (spec_ww_add_mul_div).
- exact (spec_sqrt2 op_spec).
+ exact ZnZ.spec_zdigits.
+ exact ZnZ.spec_more_than_1_digit.
+ exact ZnZ.spec_is_even.
+ exact spec_ww_add_mul_div.
+ exact ZnZ.spec_sqrt2.
Qed.
- Lemma mk_znz2_spec : znz_spec mk_zn2z_op.
+ Global Instance mk_zn2z_specs : ZnZ.Specs mk_zn2z_ops.
Proof.
- apply mk_znz_spec;auto.
+ apply ZnZ.MkSpecs; auto.
exact spec_ww_add_mul_div.
- refine (@spec_ww_pos_mod w w_0 w_digits w_zdigits w_WW
+ refine (@spec_ww_pos_mod t w_0 w_digits w_zdigits w_WW
w_pos_mod compare w_0W low sub _ww_zdigits w_to_Z
_ _ _ _ _ _ _ _ _ _ _ _);wwauto.
- exact (spec_pos_mod op_spec).
- exact (spec_zdigits op_spec).
+ exact ZnZ.spec_zdigits.
unfold w_to_Z, w_zdigits.
- rewrite (spec_zdigits op_spec).
+ rewrite ZnZ.spec_zdigits.
rewrite <- Zpos_xO; exact spec_ww_digits.
Qed.
- Lemma mk_znz2_karatsuba_spec : znz_spec mk_zn2z_op_karatsuba.
+ Global Instance mk_zn2z_specs_karatsuba : ZnZ.Specs mk_zn2z_ops_karatsuba.
Proof.
- apply mk_znz_spec;auto.
+ apply ZnZ.MkSpecs; auto.
exact spec_ww_add_mul_div.
- refine (@spec_ww_pos_mod w w_0 w_digits w_zdigits w_WW
+ refine (@spec_ww_pos_mod t w_0 w_digits w_zdigits w_WW
w_pos_mod compare w_0W low sub _ww_zdigits w_to_Z
_ _ _ _ _ _ _ _ _ _ _ _);wwauto.
- exact (spec_pos_mod op_spec).
- exact (spec_zdigits op_spec).
+ exact ZnZ.spec_zdigits.
unfold w_to_Z, w_zdigits.
- rewrite (spec_zdigits op_spec).
+ rewrite ZnZ.spec_zdigits.
rewrite <- Zpos_xO; exact spec_ww_digits.
Qed.
@@ -842,17 +820,14 @@ End Z_2nZ.
Section MulAdd.
- Variable w: Type.
- Variable op: znz_op w.
- Variable sop: znz_spec op.
+ Context {t : Type}{ops : ZnZ.Ops t}{specs : ZnZ.Specs ops}.
- Definition mul_add:= w_mul_add (znz_0 op) (znz_succ op) (znz_add_c op) (znz_mul_c op).
+ Definition mul_add:= w_mul_add ZnZ.zero ZnZ.succ ZnZ.add_c ZnZ.mul_c.
- Notation "[| x |]" := (znz_to_Z op x) (at level 0, x at level 99).
+ Notation "[| x |]" := (ZnZ.to_Z x) (at level 0, x at level 99).
Notation "[|| x ||]" :=
- (zn2z_to_Z (base (znz_digits op)) (znz_to_Z op) x) (at level 0, x at level 99).
-
+ (zn2z_to_Z (base ZnZ.digits) ZnZ.to_Z x) (at level 0, x at level 99).
Lemma spec_mul_add: forall x y z,
let (zh, zl) := mul_add x y z in
@@ -860,11 +835,11 @@ Section MulAdd.
Proof.
intros x y z.
refine (spec_w_mul_add _ _ _ _ _ _ _ _ _ _ _ _ x y z); auto.
- exact (spec_0 sop).
- exact (spec_to_Z sop).
- exact (spec_succ sop).
- exact (spec_add_c sop).
- exact (spec_mul_c sop).
+ exact ZnZ.spec_0.
+ exact ZnZ.spec_to_Z.
+ exact ZnZ.spec_succ.
+ exact ZnZ.spec_add_c.
+ exact ZnZ.spec_mul_c.
Qed.
End MulAdd.
@@ -873,13 +848,13 @@ End MulAdd.
(** Modular versions of DoubleCyclic *)
Module DoubleCyclic (C:CyclicType) <: CyclicType.
- Definition w := zn2z C.w.
- Definition w_op := mk_zn2z_op C.w_op.
- Definition w_spec := mk_znz2_spec C.w_spec.
+ Definition t := zn2z C.t.
+ Instance ops : ZnZ.Ops t := mk_zn2z_ops.
+ Instance specs : ZnZ.Specs ops := mk_zn2z_specs.
End DoubleCyclic.
Module DoubleCyclicKaratsuba (C:CyclicType) <: CyclicType.
- Definition w := zn2z C.w.
- Definition w_op := mk_zn2z_op_karatsuba C.w_op.
- Definition w_spec := mk_znz2_karatsuba_spec C.w_spec.
+ Definition t := zn2z C.t.
+ Definition ops : ZnZ.Ops t := mk_zn2z_ops_karatsuba.
+ Definition specs : ZnZ.Specs ops := mk_zn2z_specs_karatsuba.
End DoubleCyclicKaratsuba.
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v
index 9204b4e05f..1ce1e81b0c 100644
--- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v
@@ -82,11 +82,7 @@ Section POS_MOD.
Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
Variable spec_ww_compare : forall x y,
- match ww_compare x y with
- | Eq => [[x]] = [[y]]
- | Lt => [[x]] < [[y]]
- | Gt => [[x]] > [[y]]
- end.
+ ww_compare x y = Zcompare [[x]] [[y]].
Variable spec_ww_sub: forall x y,
[[ww_sub x y]] = ([[x]] - [[y]]) mod wwB.
@@ -105,8 +101,8 @@ Section POS_MOD.
intros w1 p; case (spec_to_w_Z p); intros HH1 HH2.
unfold ww_pos_mod; case w1.
simpl; rewrite Zmod_small; split; auto with zarith.
- intros xh xl; generalize (spec_ww_compare p (w_0W w_zdigits));
- case ww_compare;
+ intros xh xl; rewrite spec_ww_compare.
+ case Zcompare_spec;
rewrite spec_w_0W; rewrite spec_zdigits; fold wB;
intros H1.
rewrite H1; simpl ww_to_Z.
@@ -134,8 +130,8 @@ Section POS_MOD.
rewrite Z_mod_mult; auto with zarith.
autorewrite with w_rewrite rm10.
rewrite Zmod_mod; auto with zarith.
-generalize (spec_ww_compare p ww_zdigits);
- case ww_compare; rewrite spec_ww_zdigits;
+ rewrite spec_ww_compare.
+ case Zcompare_spec; rewrite spec_ww_zdigits;
rewrite spec_zdigits; intros H2.
replace (2^[[p]]) with wwB.
rewrite Zmod_small; auto with zarith.
@@ -266,12 +262,7 @@ Section DoubleDiv32.
Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
Variable spec_compare :
- forall x y,
- match w_compare x y with
- | Eq => [|x|] = [|y|]
- | Lt => [|x|] < [|y|]
- | Gt => [|x|] > [|y|]
- end.
+ forall x y, w_compare x y = Zcompare [|x|] [|y|].
Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|].
Variable spec_w_add_carry_c :
forall x y, [+|w_add_carry_c x y|] = [|x|] + [|y|] + 1.
@@ -343,7 +334,7 @@ Section DoubleDiv32.
(WW (w_sub a2 b2) a3) (WW b1 b2)
| Gt => (w_0, W0) (* cas absurde *)
end.
- assert (Hcmp:=spec_compare a1 b1);destruct (w_compare a1 b1).
+ rewrite spec_compare. case Zcompare_spec; intro Hcmp.
simpl in Hlt.
rewrite Hcmp in Hlt;assert ([|a2|] < [|b2|]). omega.
assert ([[WW (w_sub a2 b2) a3]] = ([|a2|]-[|b2|])*wB + [|a3|] + wwB).
@@ -545,11 +536,7 @@ Section DoubleDiv21.
0 <= [[r]] < [|b1|] * wB + [|b2|].
Variable spec_ww_1 : [[ww_1]] = 1.
Variable spec_ww_compare : forall x y,
- match ww_compare x y with
- | Eq => [[x]] = [[y]]
- | Lt => [[x]] < [[y]]
- | Gt => [[x]] > [[y]]
- end.
+ ww_compare x y = Zcompare [[x]] [[y]].
Variable spec_ww_sub : forall x y, [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB.
Theorem wwB_div: wwB = 2 * (wwB / 2).
@@ -576,10 +563,9 @@ Section DoubleDiv21.
intros a1 a2 b H Hlt; unfold ww_div21.
Spec_ww_to_Z b; assert (Eq: 0 < [[b]]). Spec_ww_to_Z a1;omega.
generalize Hlt H ;clear Hlt H;case a1.
- intros H1 H2;simpl in H1;Spec_ww_to_Z a2;
- match goal with |-context [ww_compare ?Y ?Z] =>
- generalize (spec_ww_compare Y Z); case (ww_compare Y Z)
- end; simpl;try rewrite spec_ww_1;autorewrite with rm10; intros;zarith.
+ intros H1 H2;simpl in H1;Spec_ww_to_Z a2.
+ rewrite spec_ww_compare. case Zcompare_spec;
+ simpl;try rewrite spec_ww_1;autorewrite with rm10; intros;zarith.
rewrite spec_ww_sub;simpl. rewrite Zmod_small;zarith.
split. ring.
assert (wwB <= 2*[[b]]);zarith.
@@ -809,12 +795,7 @@ Section DoubleDivGt.
Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
Variable spec_compare :
- forall x y,
- match w_compare x y with
- | Eq => [|x|] = [|y|]
- | Lt => [|x|] < [|y|]
- | Gt => [|x|] > [|y|]
- end.
+ forall x y, w_compare x y = Zcompare [|x|] [|y|].
Variable spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0.
Variable spec_opp_c : forall x, [-|w_opp_c x|] = -[|x|].
@@ -914,7 +895,7 @@ Section DoubleDivGt.
end in [[WW ah al]]=[[q]]*[[WW bh bl]]+[[r]] /\ 0 <=[[r]]< [[WW bh bl]]).
assert (Hh := spec_head0 Hpos).
lazy zeta.
- generalize (spec_compare (w_head0 bh) w_0); case w_compare;
+ rewrite spec_compare; case Zcompare_spec;
rewrite spec_w_0; intros HH.
generalize Hh; rewrite HH; simpl Zpower;
rewrite Zmult_1_l; intros (HH1, HH2); clear HH.
@@ -1058,7 +1039,7 @@ Section DoubleDivGt.
assert (H2:=spec_div_gt Hgt Hpos);destruct (w_div_gt al bl).
repeat rewrite spec_w_0W;simpl;rewrite spec_w_0;simpl;trivial.
clear H.
- assert (Hcmp := spec_compare w_0 bh); destruct (w_compare w_0 bh).
+ rewrite spec_compare; case Zcompare_spec; intros Hcmp.
rewrite spec_w_0 in Hcmp. change [[WW bh bl]] with ([|bh|]*wB+[|bl|]).
rewrite <- Hcmp;rewrite Zmult_0_l;rewrite Zplus_0_l.
simpl in Hpos;rewrite <- Hcmp in Hpos;simpl in Hpos.
@@ -1154,7 +1135,7 @@ Section DoubleDivGt.
rewrite spec_w_0W;rewrite spec_w_mod_gt_eq;trivial.
destruct (w_div_gt al bl);simpl;rewrite spec_w_0W;trivial.
clear H.
- assert (H2 := spec_compare w_0 bh);destruct (w_compare w_0 bh).
+ rewrite spec_compare; case Zcompare_spec; intros H2.
rewrite (@spec_double_modn1_aux w w_zdigits w_0 w_WW w_head0 w_add_mul_div
w_div21 w_compare w_sub w_to_Z spec_w_0 spec_compare 1 (WW ah al) bl).
destruct (double_divn1 w_zdigits w_0 w_WW w_head0 w_add_mul_div w_div21 w_compare w_sub 1
@@ -1227,13 +1208,14 @@ Section DoubleDivGt.
end
| Gt => W0 (* absurde *)
end).
- assert (Hbh := spec_compare w_0 bh);destruct (w_compare w_0 bh).
- simpl ww_to_Z in *. rewrite spec_w_0 in Hbh;rewrite <- Hbh;
+ rewrite spec_compare, spec_w_0.
+ case Zcompare_spec; intros Hbh.
+ simpl ww_to_Z in *. rewrite <- Hbh.
rewrite Zmult_0_l;rewrite Zplus_0_l.
- assert (Hbl := spec_compare w_0 bl); destruct (w_compare w_0 bl).
- rewrite spec_w_0 in Hbl;rewrite <- Hbl;apply Zis_gcd_0.
+ rewrite spec_compare, spec_w_0.
+ case Zcompare_spec; intros Hbl.
+ rewrite <- Hbl;apply Zis_gcd_0.
simpl;rewrite spec_w_0;rewrite Zmult_0_l;rewrite Zplus_0_l.
- rewrite spec_w_0 in Hbl.
apply Zis_gcd_mod;zarith.
change ([|ah|] * wB + [|al|]) with (double_to_Z w_digits w_to_Z 1 (WW ah al)).
rewrite <- (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW w_head0 w_add_mul_div
@@ -1243,20 +1225,20 @@ Section DoubleDivGt.
rewrite (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW); trivial.
apply Zlt_gt;match goal with | |- ?x mod ?y < ?y =>
destruct (Z_mod_lt x y);zarith end.
- rewrite spec_w_0 in Hbl;Spec_w_to_Z bl;exfalso;omega.
- rewrite spec_w_0 in Hbh;assert (H:= spec_ww_mod_gt_aux _ _ _ Hgt Hbh).
+ Spec_w_to_Z bl;exfalso;omega.
+ assert (H:= spec_ww_mod_gt_aux _ _ _ Hgt Hbh).
assert (H2 : 0 < [[WW bh bl]]).
simpl;Spec_w_to_Z bl. apply Zlt_le_trans with ([|bh|]*wB);zarith.
apply Zmult_lt_0_compat;zarith.
apply Zis_gcd_mod;trivial. rewrite <- H.
simpl in *;destruct (ww_mod_gt_aux ah al bh bl) as [ |mh ml].
simpl;apply Zis_gcd_0;zarith.
- assert (Hmh := spec_compare w_0 mh);destruct (w_compare w_0 mh).
- simpl;rewrite spec_w_0 in Hmh; rewrite <- Hmh;simpl.
- assert (Hml := spec_compare w_0 ml);destruct (w_compare w_0 ml).
- rewrite <- Hml;rewrite spec_w_0;simpl;apply Zis_gcd_0.
- simpl;rewrite spec_w_0;simpl.
- rewrite spec_w_0 in Hml. apply Zis_gcd_mod;zarith.
+ rewrite spec_compare, spec_w_0; case Zcompare_spec; intros Hmh.
+ simpl;rewrite <- Hmh;simpl.
+ rewrite spec_compare, spec_w_0; case Zcompare_spec; intros Hml.
+ rewrite <- Hml;simpl;apply Zis_gcd_0.
+ simpl; rewrite spec_w_0; simpl.
+ apply Zis_gcd_mod;zarith.
change ([|bh|] * wB + [|bl|]) with (double_to_Z w_digits w_to_Z 1 (WW bh bl)).
rewrite <- (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW w_head0 w_add_mul_div
w_div21 w_compare w_sub w_to_Z spec_to_Z spec_w_zdigits spec_w_0 spec_w_WW spec_head0 spec_add_mul_div
@@ -1265,8 +1247,8 @@ Section DoubleDivGt.
rewrite (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW); trivial.
apply Zlt_gt;match goal with | |- ?x mod ?y < ?y =>
destruct (Z_mod_lt x y);zarith end.
- rewrite spec_w_0 in Hml;Spec_w_to_Z ml;exfalso;omega.
- rewrite spec_w_0 in Hmh. assert ([[WW bh bl]] > [[WW mh ml]]).
+ Spec_w_to_Z ml;exfalso;omega.
+ assert ([[WW bh bl]] > [[WW mh ml]]).
rewrite H;simpl; apply Zlt_gt;match goal with | |- ?x mod ?y < ?y =>
destruct (Z_mod_lt x y);zarith end.
assert (H1:= spec_ww_mod_gt_aux _ _ _ H0 Hmh).
@@ -1300,8 +1282,8 @@ Section DoubleDivGt.
rewrite Z_div_mult;zarith.
assert (2^1 <= 2^n). change (2^1) with 2;zarith.
assert (H7 := @Zpower_le_monotone_inv 2 1 n);zarith.
- rewrite spec_w_0 in Hmh;Spec_w_to_Z mh;exfalso;zarith.
- rewrite spec_w_0 in Hbh;Spec_w_to_Z bh;exfalso;zarith.
+ Spec_w_to_Z mh;exfalso;zarith.
+ Spec_w_to_Z bh;exfalso;zarith.
Qed.
Lemma spec_ww_gcd_gt_aux :
@@ -1374,11 +1356,7 @@ Section DoubleDiv.
Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
Variable spec_ww_1 : [[ww_1]] = 1.
Variable spec_ww_compare : forall x y,
- match ww_compare x y with
- | Eq => [[x]] = [[y]]
- | Lt => [[x]] < [[y]]
- | Gt => [[x]] > [[y]]
- end.
+ ww_compare x y = Zcompare [[x]] [[y]].
Variable spec_ww_div_gt : forall a b, [[a]] > [[b]] -> 0 < [[b]] ->
let (q,r) := ww_div_gt a b in
[[a]] = [[q]] * [[b]] + [[r]] /\
@@ -1400,20 +1378,20 @@ Section DoubleDiv.
0 <= [[r]] < [[b]].
Proof.
intros a b Hpos;unfold ww_div.
- assert (H:=spec_ww_compare a b);destruct (ww_compare a b).
+ rewrite spec_ww_compare; case Zcompare_spec; intros.
simpl;rewrite spec_ww_1;split;zarith.
simpl;split;[ring|Spec_ww_to_Z a;zarith].
- apply spec_ww_div_gt;trivial.
+ apply spec_ww_div_gt;auto with zarith.
Qed.
Lemma spec_ww_mod : forall a b, 0 < [[b]] ->
[[ww_mod a b]] = [[a]] mod [[b]].
Proof.
intros a b Hpos;unfold ww_mod.
- assert (H := spec_ww_compare a b);destruct (ww_compare a b).
+ rewrite spec_ww_compare; case Zcompare_spec; intros.
simpl;apply Zmod_unique with 1;try rewrite H;zarith.
Spec_ww_to_Z a;symmetry;apply Zmod_small;zarith.
- apply spec_ww_mod_gt;trivial.
+ apply spec_ww_mod_gt;auto with zarith.
Qed.
@@ -1431,12 +1409,7 @@ Section DoubleDiv.
Variable spec_w_0 : [|w_0|] = 0.
Variable spec_w_1 : [|w_1|] = 1.
Variable spec_compare :
- forall x y,
- match w_compare x y with
- | Eq => [|x|] = [|y|]
- | Lt => [|x|] < [|y|]
- | Gt => [|x|] > [|y|]
- end.
+ forall x y, w_compare x y = Zcompare [|x|] [|y|].
Variable spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0.
Variable spec_gcd_gt : forall a b, [|a|] > [|b|] ->
Zis_gcd [|a|] [|b|] [|w_gcd_gt a b|].
@@ -1468,14 +1441,14 @@ Section DoubleDiv.
assert (0 <= 1 < wB). split;zarith. apply wB_pos.
assert (H1:= beta_lex _ _ _ _ _ Hle (spec_to_Z yl) H).
Spec_w_to_Z yh;zarith.
- unfold gcd_cont;assert (Hcmpy:=spec_compare w_1 yl);
- rewrite spec_w_1 in Hcmpy.
- simpl;rewrite H;simpl;destruct (w_compare w_1 yl).
+ unfold gcd_cont; rewrite spec_compare, spec_w_1.
+ case Zcompare_spec; intros Hcmpy.
+ simpl;rewrite H;simpl;
rewrite spec_ww_1;rewrite <- Hcmpy;apply Zis_gcd_mod;zarith.
rewrite <- (Zmod_unique ([|xh|]*wB+[|xl|]) 1 ([|xh|]*wB+[|xl|]) 0);zarith.
rewrite H in Hle; exfalso;zarith.
- assert ([|yl|] = 0). Spec_w_to_Z yl;zarith.
- rewrite H0;simpl;apply Zis_gcd_0;trivial.
+ assert (H0 : [|yl|] = 0) by (Spec_w_to_Z yl;zarith).
+ simpl. rewrite H0, H;simpl;apply Zis_gcd_0;trivial.
Qed.
@@ -1528,7 +1501,7 @@ Section DoubleDiv.
| Eq => a
| Lt => ww_gcd_gt b a
end).
- assert (Hcmp := spec_ww_compare a b);destruct (ww_compare a b).
+ rewrite spec_ww_compare; case Zcompare_spec; intros Hcmp.
Spec_ww_to_Z b;rewrite Hcmp.
apply Zis_gcd_for_euclid with 1;zarith.
ring_simplify ([[b]] - 1 * [[b]]). apply Zis_gcd_0;zarith.
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v
index 386bbb9e59..136f96c043 100644
--- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v
@@ -62,12 +62,7 @@ Section GENDIVN1.
[|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Variable spec_compare :
- forall x y,
- match w_compare x y with
- | Eq => [|x|] = [|y|]
- | Lt => [|x|] < [|y|]
- | Gt => [|x|] > [|y|]
- end.
+ forall x y, w_compare x y = Zcompare [|x|] [|y|].
Variable spec_sub: forall x y,
[|w_sub x y|] = ([|x|] - [|y|]) mod wB.
@@ -373,7 +368,7 @@ Section GENDIVN1.
intros n a b H. unfold double_divn1.
case (spec_head0 H); intros H0 H1.
case (spec_to_Z (w_head0 b)); intros HH1 HH2.
- generalize (spec_compare (w_head0 b) w_0); case w_compare;
+ rewrite spec_compare; case Zcompare_spec;
rewrite spec_0; intros H2; auto with zarith.
assert (Hv1: wB/2 <= [|b|]).
generalize H0; rewrite H2; rewrite Zpower_0_r;
@@ -506,7 +501,7 @@ Section GENDIVN1.
double_modn1 n a b = snd (double_divn1 n a b).
Proof.
intros n a b;unfold double_divn1,double_modn1.
- generalize (spec_compare (w_head0 b) w_0); case w_compare;
+ rewrite spec_compare; case Zcompare_spec;
rewrite spec_0; intros H2; auto with zarith.
apply spec_double_modn1_0.
apply spec_double_modn1_0.
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v
index 21e694e577..3405b6f4d6 100644
--- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v
@@ -106,17 +106,9 @@ Section DoubleLift.
Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB.
Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
Variable spec_compare : forall x y,
- match w_compare x y with
- | Eq => [|x|] = [|y|]
- | Lt => [|x|] < [|y|]
- | Gt => [|x|] > [|y|]
- end.
+ w_compare x y = Zcompare [|x|] [|y|].
Variable spec_ww_compare : forall x y,
- match ww_compare x y with
- | Eq => [[x]] = [[y]]
- | Lt => [[x]] < [[y]]
- | Gt => [[x]] > [[y]]
- end.
+ ww_compare x y = Zcompare [[x]] [[y]].
Variable spec_ww_digits : ww_Digits = xO w_digits.
Variable spec_w_head00 : forall x, [|x|] = 0 -> [|w_head0 x|] = Zpos w_digits.
Variable spec_w_head0 : forall x, 0 < [|x|] ->
@@ -159,7 +151,7 @@ Section DoubleLift.
absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith.
rewrite <- Hy3; rewrite Zplus_0_r; auto with zarith.
apply Zmult_lt_0_compat; auto with zarith.
- generalize (spec_compare w_0 xh); case w_compare.
+ rewrite spec_compare. case Zcompare_spec.
intros H; simpl.
rewrite spec_w_add; rewrite spec_w_head00.
rewrite spec_zdigits; rewrite spec_ww_digits.
@@ -176,9 +168,8 @@ Section DoubleLift.
rewrite wwB_div_2;rewrite Zmult_comm;rewrite wwB_wBwB.
assert (U:= lt_0_wB w_digits); destruct x as [ |xh xl];simpl ww_to_Z;intros H.
unfold Zlt in H;discriminate H.
- assert (H0 := spec_compare w_0 xh);rewrite spec_w_0 in H0.
- destruct (w_compare w_0 xh).
- rewrite <- H0. simpl Zplus. rewrite <- H0 in H;simpl in H.
+ rewrite spec_compare, spec_w_0. case Zcompare_spec; intros H0.
+ rewrite <- H0 in *. simpl Zplus. simpl in H.
case (spec_to_Z w_zdigits);
case (spec_to_Z (w_head0 xl)); intros HH1 HH2 HH3 HH4.
rewrite spec_w_add.
@@ -233,7 +224,7 @@ Section DoubleLift.
apply Zmult_lt_0_compat; auto with zarith.
assert (F2: [|xl|] = 0).
rewrite F1 in Hx; auto with zarith.
- generalize (spec_compare w_0 xl); case w_compare.
+ rewrite spec_compare; case Zcompare_spec.
intros H; simpl.
rewrite spec_w_add; rewrite spec_w_tail00; auto.
rewrite spec_zdigits; rewrite spec_ww_digits.
@@ -248,8 +239,7 @@ Section DoubleLift.
clear spec_ww_zdigits.
destruct x as [ |xh xl];simpl ww_to_Z;intros H.
unfold Zlt in H;discriminate H.
- assert (H0 := spec_compare w_0 xl);rewrite spec_w_0 in H0.
- destruct (w_compare w_0 xl).
+ rewrite spec_compare, spec_w_0. case Zcompare_spec; intros H0.
rewrite <- H0; rewrite Zplus_0_r.
case (spec_to_Z (w_tail0 xh)); intros HH1 HH2.
generalize H; rewrite <- H0; rewrite Zplus_0_r; clear H; intros H.
@@ -323,7 +313,7 @@ Section DoubleLift.
assert (Hx := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xh xl));
simpl in Hx;assert (Hyh := spec_to_Z yh);assert (Hyl:=spec_to_Z yl);
assert (Hy:=spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW yh yl));simpl in Hy.
- generalize (spec_ww_compare p zdigits); case ww_compare; intros H1.
+ rewrite spec_ww_compare; case Zcompare_spec; intros H1.
rewrite H1; unfold zdigits; rewrite spec_w_0W.
rewrite spec_zdigits; rewrite Zminus_diag; rewrite Zplus_0_r.
simpl ww_to_Z; w_rewrite;zarith.
@@ -365,7 +355,7 @@ Section DoubleLift.
ring_simplify ([[p]] + (Zpos w_digits - [[p]]));fold wB;zarith.
assert (Hv: [[p]] > Zpos w_digits).
generalize H1; clear H1.
- unfold zdigits; rewrite spec_w_0W; rewrite spec_zdigits; auto.
+ unfold zdigits; rewrite spec_w_0W; rewrite spec_zdigits; auto with zarith.
clear H1.
assert (HH0: [|low (ww_sub p zdigits)|] = [[p]] - Zpos w_digits).
rewrite spec_low.
@@ -446,8 +436,7 @@ Section DoubleLift.
clear H1;w_rewrite);simpl ww_add_mul_div.
replace [[WW w_0 w_0]] with 0;[w_rewrite|simpl;w_rewrite;trivial].
intros Heq;rewrite <- Heq;clear Heq; auto.
- generalize (spec_ww_compare p (w_0W w_zdigits));
- case ww_compare; intros H1; w_rewrite.
+ rewrite spec_ww_compare. case Zcompare_spec; intros H1; w_rewrite.
rewrite (spec_w_add_mul_div w_0 w_0);w_rewrite;zarith.
generalize H1; w_rewrite; rewrite spec_zdigits; clear H1; intros H1.
assert (HH0: [|low p|] = [[p]]).
@@ -464,7 +453,8 @@ Section DoubleLift.
rewrite (spec_w_add_mul_div w_0 w_0);w_rewrite;zarith.
rewrite Zpos_xO in H;zarith.
assert (HH: [|low (ww_sub p (w_0W w_zdigits)) |] = [[p]] - Zpos w_digits).
- generalize H1; clear H1.
+ symmetry in H1; change ([[p]] > [[w_0W w_zdigits]]) in H1.
+ revert H1.
rewrite spec_low.
rewrite spec_ww_sub; w_rewrite; intros H1.
rewrite <- Zmod_div_mod; auto with zarith.
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v
index 7090c76a87..6a2a344490 100644
--- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v
@@ -248,12 +248,7 @@ Section DoubleMul.
Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB.
Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
Variable spec_w_compare :
- forall x y,
- match w_compare x y with
- | Eq => [|x|] = [|y|]
- | Lt => [|x|] < [|y|]
- | Gt => [|x|] > [|y|]
- end.
+ forall x y, w_compare x y = Zcompare [|x|] [|y|].
Variable spec_w_succ : forall x, [|w_succ x|] = ([|x|] + 1) mod wB.
Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|].
Variable spec_w_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB.
@@ -408,9 +403,9 @@ Section DoubleMul.
assert (Hyh := (spec_to_Z yh)); assert (Hyl := (spec_to_Z yl)).
generalize (spec_ww_add_c hh ll); case (ww_add_c hh ll);
intros z Hz; rewrite <- Hz; unfold interp_carry; assert (Hz1 := (spec_ww_to_Z z)).
- generalize (spec_w_compare xl xh); case (w_compare xl xh); intros Hxlh;
+ rewrite spec_w_compare; case Zcompare_spec; intros Hxlh;
try rewrite Hxlh; try rewrite spec_w_0; try (ring; fail).
- generalize (spec_w_compare yl yh); case (w_compare yl yh); intros Hylh.
+ rewrite spec_w_compare; case Zcompare_spec; intros Hylh.
rewrite Hylh; rewrite spec_w_0; try (ring; fail).
rewrite spec_w_0; try (ring; fail).
repeat (rewrite spec_ww_sub || rewrite spec_w_sub || rewrite spec_w_mul_c).
@@ -430,7 +425,7 @@ Section DoubleMul.
rewrite spec_w_1; unfold interp_carry in Hz2; rewrite Hz2;
repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
- generalize (spec_w_compare yl yh); case (w_compare yl yh); intros Hylh.
+ rewrite spec_w_compare; case Zcompare_spec; intros Hylh.
rewrite Hylh; rewrite spec_w_0; try (ring; fail).
match goal with |- context[ww_add_c ?x ?y] =>
generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_0;
@@ -455,9 +450,9 @@ Section DoubleMul.
apply Zmult_le_0_compat; auto with zarith.
(** there is a carry in hh + ll **)
rewrite Zmult_1_l.
- generalize (spec_w_compare xl xh); case (w_compare xl xh); intros Hxlh;
+ rewrite spec_w_compare; case Zcompare_spec; intros Hxlh;
try rewrite Hxlh; try rewrite spec_w_1; try (ring; fail).
- generalize (spec_w_compare yl yh); case (w_compare yl yh); intros Hylh;
+ rewrite spec_w_compare; case Zcompare_spec; intros Hylh;
try rewrite Hylh; try rewrite spec_w_1; try (ring; fail).
match goal with |- context[ww_sub_c ?x ?y] =>
generalize (spec_ww_sub_c x y); case (ww_sub_c x y); try rewrite spec_w_1;
@@ -480,7 +475,7 @@ Section DoubleMul.
ring.
rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
- generalize (spec_w_compare yl yh); case (w_compare yl yh); intros Hylh;
+ rewrite spec_w_compare; case Zcompare_spec; intros Hylh;
try rewrite Hylh; try rewrite spec_w_1; try (ring; fail).
match goal with |- context[ww_add_c ?x ?y] =>
generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_1;
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v
index 83a2e7177d..ee12c6a8db 100644
--- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v
@@ -220,12 +220,8 @@ Section DoubleSqrt.
Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
Variable spec_w_is_even : forall x,
if w_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1.
- Variable spec_w_compare : forall x y,
- match w_compare x y with
- | Eq => [|x|] = [|y|]
- | Lt => [|x|] < [|y|]
- | Gt => [|x|] > [|y|]
- end.
+ Variable spec_w_compare : forall x y,
+ w_compare x y = Zcompare [|x|] [|y|].
Variable spec_w_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB.
Variable spec_w_square_c : forall x, [[ w_square_c x]] = [|x|] * [|x|].
Variable spec_w_div21 : forall a1 a2 b,
@@ -257,11 +253,7 @@ Section DoubleSqrt.
Variable spec_ww_pred : forall x, [[ww_pred x]] = ([[x]] - 1) mod wwB.
Variable spec_ww_add_c : forall x y, [+[ww_add_c x y]] = [[x]] + [[y]].
Variable spec_ww_compare : forall x y,
- match ww_compare x y with
- | Eq => [[x]] = [[y]]
- | Lt => [[x]] < [[y]]
- | Gt => [[x]] > [[y]]
- end.
+ ww_compare x y = Zcompare [[x]] [[y]].
Variable spec_ww_head0 : forall x, 0 < [[x]] ->
wwB/ 2 <= 2 ^ [[ww_head0 x]] * [[x]] < wwB.
Variable spec_low: forall x, [|low x|] = [[x]] mod wB.
@@ -299,10 +291,7 @@ intros x; case x; simpl ww_is_even.
apply Zlt_le_trans with (2 := Hb); auto with zarith.
apply Zlt_le_trans with 1; auto with zarith.
apply Zdiv_le_lower_bound; auto with zarith.
- repeat match goal with |- context[w_compare ?y ?z] =>
- generalize (spec_w_compare y z);
- case (w_compare y z)
- end.
+ rewrite !spec_w_compare. repeat case Zcompare_spec.
intros H1 H2; split.
unfold interp_carry; autorewrite with w_rewrite rm10; auto with zarith.
rewrite H1; rewrite H2; ring.
@@ -1113,7 +1102,7 @@ intros x; case x; simpl ww_is_even.
Lemma spec_ww_is_zero: forall x,
if ww_is_zero x then [[x]] = 0 else 0 < [[x]].
intro x; unfold ww_is_zero.
- generalize (spec_ww_compare W0 x); case (ww_compare W0 x);
+ rewrite spec_ww_compare. case Zcompare_spec;
auto with zarith.
simpl ww_to_Z.
assert (V4 := spec_ww_to_Z w_digits w_to_Z spec_to_Z x);auto with zarith.
@@ -1198,7 +1187,7 @@ intros x; case x; simpl ww_is_even.
simpl ww_to_Z; simpl Zpower; unfold Zpower_pos; simpl;
auto with zarith.
intros H1.
- generalize (spec_ww_compare (ww_head1 x) W0); case ww_compare;
+ rewrite spec_ww_compare. case Zcompare_spec;
simpl ww_to_Z; autorewrite with rm10.
generalize H1; case x.
intros HH; contradict HH; simpl ww_to_Z; auto with zarith.
diff --git a/theories/Numbers/Cyclic/Int31/Cyclic31.v b/theories/Numbers/Cyclic/Int31/Cyclic31.v
index 744f2f47cc..99bac5d7e8 100644
--- a/theories/Numbers/Cyclic/Int31/Cyclic31.v
+++ b/theories/Numbers/Cyclic/Int31/Cyclic31.v
@@ -1106,81 +1106,61 @@ Section Basics.
End Basics.
-
-Section Int31_Op.
-
-(** Nullity test *)
-Let w_iszero i := match i ?= 0 with Eq => true | _ => false end.
-
-(** Modulo [2^p] *)
-Let w_pos_mod p i :=
- match compare31 p 31 with
+Instance int31_ops : ZnZ.Ops int31 :=
+{
+ digits := 31%positive; (* number of digits *)
+ zdigits := 31; (* number of digits *)
+ to_Z := phi; (* conversion to Z *)
+ of_pos := positive_to_int31; (* positive -> N*int31 : p => N,i
+ where p = N*2^31+phi i *)
+ head0 := head031; (* number of head 0 *)
+ tail0 := tail031; (* number of tail 0 *)
+ zero := 0;
+ one := 1;
+ minus_one := Tn; (* 2^31 - 1 *)
+ compare := compare31;
+ eq0 := fun i => match i ?= 0 with Eq => true | _ => false end;
+ opp_c := fun i => 0 -c i;
+ opp := opp31;
+ opp_carry := fun i => 0-i-1;
+ succ_c := fun i => i +c 1;
+ add_c := add31c;
+ add_carry_c := add31carryc;
+ succ := fun i => i + 1;
+ add := add31;
+ add_carry := fun i j => i + j + 1;
+ pred_c := fun i => i -c 1;
+ sub_c := sub31c;
+ sub_carry_c := sub31carryc;
+ pred := fun i => i - 1;
+ sub := sub31;
+ sub_carry := fun i j => i - j - 1;
+ mul_c := mul31c;
+ mul := mul31;
+ square_c := fun x => x *c x;
+ div21 := div3121;
+ div_gt := div31; (* this is supposed to be the special case of
+ division a/b where a > b *)
+ div := div31;
+ modulo_gt := fun i j => let (_,r) := i/j in r;
+ modulo := fun i j => let (_,r) := i/j in r;
+ gcd_gt := gcd31;
+ gcd := gcd31;
+ add_mul_div := addmuldiv31;
+ pos_mod := (* modulo 2^p *)
+ fun p i =>
+ match p ?= 31 with
| Lt => addmuldiv31 p 0 (addmuldiv31 (31-p) i 0)
| _ => i
- end.
+ end;
+ is_even :=
+ fun i => let (_,r) := i/2 in
+ match r ?= 0 with Eq => true | _ => false end;
+ sqrt2 := sqrt312;
+ sqrt := sqrt31
+}.
-(** Parity test *)
-Let w_iseven i :=
- let (_,r) := i/2 in
- match r ?= 0 with Eq => true | _ => false end.
-
-Definition int31_op := (mk_znz_op
- 31%positive (* number of digits *)
- 31 (* number of digits *)
- phi (* conversion to Z *)
- positive_to_int31 (* positive -> N*int31 : p => N,i where p = N*2^31+phi i *)
- head031 (* number of head 0 *)
- tail031 (* number of tail 0 *)
- (* Basic constructors *)
- 0
- 1
- Tn (* 2^31 - 1 *)
- (* Comparison *)
- compare31
- w_iszero
- (* Basic arithmetic operations *)
- (fun i => 0 -c i)
- opp31
- (fun i => 0-i-1)
- (fun i => i +c 1)
- add31c
- add31carryc
- (fun i => i + 1)
- add31
- (fun i j => i + j + 1)
- (fun i => i -c 1)
- sub31c
- sub31carryc
- (fun i => i - 1)
- sub31
- (fun i j => i - j - 1)
- mul31c
- mul31
- (fun x => x *c x)
- (* special (euclidian) division operations *)
- div3121
- div31 (* this is supposed to be the special case of division a/b where a > b *)
- div31
- (* euclidian division remainder *)
- (* again special case for a > b *)
- (fun i j => let (_,r) := i/j in r)
- (fun i j => let (_,r) := i/j in r)
- gcd31 (*gcd_gt*)
- gcd31 (*gcd*)
- (* shift operations *)
- addmuldiv31 (*add_mul_div *)
- (* modulo 2^p *)
- w_pos_mod
- (* is i even ? *)
- w_iseven
- (* square root operations *)
- sqrt312 (* sqrt2 *)
- sqrt31 (* sqrt *)
-).
-
-End Int31_Op.
-
-Section Int31_Spec.
+Section Int31_Specs.
Local Open Scope Z_scope.
@@ -1222,22 +1202,14 @@ Section Int31_Spec.
reflexivity.
Qed.
- Lemma spec_Bm1 : [| Tn |] = wB - 1.
+ Lemma spec_m1 : [| Tn |] = wB - 1.
Proof.
reflexivity.
Qed.
Lemma spec_compare : forall x y,
- match (x ?= y)%int31 with
- | Eq => [|x|] = [|y|]
- | Lt => [|x|] < [|y|]
- | Gt => [|x|] > [|y|]
- end.
- Proof.
- clear; unfold compare31; simpl; intros.
- case_eq ([|x|] ?= [|y|]); auto.
- intros; apply Zcompare_Eq_eq; auto.
- Qed.
+ (x ?= y)%int31 = ([|x|] ?= [|y|]).
+ Proof. reflexivity. Qed.
(** Addition *)
@@ -1654,12 +1626,10 @@ Section Int31_Spec.
rewrite Zmult_comm, Z_div_mult; auto with zarith.
Qed.
- Let w_pos_mod := int31_op.(znz_pos_mod).
-
Lemma spec_pos_mod : forall w p,
- [|w_pos_mod p w|] = [|w|] mod (2 ^ [|p|]).
+ [|ZnZ.pos_mod p w|] = [|w|] mod (2 ^ [|p|]).
Proof.
- unfold w_pos_mod, znz_pos_mod, int31_op, compare31.
+ unfold ZnZ.pos_mod, int31_ops, compare31.
change [|31|] with 31%Z.
assert (forall w p, 31<=p -> [|w|] = [|w|] mod 2^p).
intros.
@@ -2018,8 +1988,8 @@ Section Int31_Spec.
Proof.
assert (Hp2: 0 < [|2|]) by exact (refl_equal Lt).
intros rec i j Hi Hj Hij H31 Hrec; rewrite sqrt31_step_def.
- generalize (spec_compare (fst (i/j)%int31) j); case compare31;
- rewrite div31_phi; auto; intros Hc;
+ rewrite spec_compare, div31_phi; auto.
+ case Zcompare_spec; auto; intros Hc;
try (split; auto; apply sqrt_test_true; auto with zarith; fail).
apply Hrec; repeat rewrite div31_phi; auto with zarith.
replace [|(j + fst (i / j)%int31)|] with ([|j|] + [|i|] / [|j|]).
@@ -2072,7 +2042,7 @@ Section Int31_Spec.
[|sqrt31 x|] ^ 2 <= [|x|] < ([|sqrt31 x|] + 1) ^ 2.
Proof.
intros i; unfold sqrt31.
- generalize (spec_compare 1 i); case compare31; change [|1|] with 1;
+ rewrite spec_compare. case Zcompare_spec; change [|1|] with 1;
intros Hi; auto with zarith.
repeat rewrite Zpower_2; auto with zarith.
apply iter31_sqrt_correct; auto with zarith.
@@ -2157,7 +2127,7 @@ Section Int31_Spec.
unfold phi2; apply Zlt_le_trans with ([|ih|] * base)%Z; auto with zarith.
apply Zmult_lt_0_compat; auto with zarith.
apply Zlt_le_trans with (2:= Hih); auto with zarith.
- generalize (spec_compare ih j); case compare31; intros Hc1.
+ rewrite spec_compare. case Zcompare_spec; intros Hc1.
split; auto.
apply sqrt_test_true; auto.
unfold phi2, base; auto with zarith.
@@ -2166,7 +2136,7 @@ Section Int31_Spec.
rewrite Zmult_comm, Z_div_plus_full_l; unfold base; auto with zarith.
unfold Zpower, Zpower_pos in Hj1; simpl in Hj1; auto with zarith.
case (Zle_or_lt (2 ^ 30) [|j|]); intros Hjj.
- generalize (spec_compare (fst (div3121 ih il j)) j); case compare31;
+ rewrite spec_compare; case Zcompare_spec;
rewrite div312_phi; auto; intros Hc;
try (split; auto; apply sqrt_test_true; auto with zarith; fail).
apply Hrec.
@@ -2300,7 +2270,7 @@ Section Int31_Spec.
generalize (spec_sub_c il il1).
case sub31c; intros il2 Hil2.
simpl interp_carry in Hil2.
- generalize (spec_compare ih ih1); case compare31.
+ rewrite spec_compare; case Zcompare_spec.
unfold interp_carry.
intros H1; split.
rewrite Zpower_2, <- Hihl1.
@@ -2347,7 +2317,7 @@ Section Int31_Spec.
case (phi_bounded ih); intros H1 H2.
generalize Hih; change (2 ^ Z_of_nat size / 4) with 536870912.
split; auto with zarith.
- generalize (spec_compare (ih - 1) ih1); case compare31.
+ rewrite spec_compare; case Zcompare_spec.
rewrite Hsih.
intros H1; split.
rewrite Zpower_2, <- Hihl1.
@@ -2418,11 +2388,9 @@ Section Int31_Spec.
(** [iszero] *)
- Let w_eq0 := int31_op.(znz_eq0).
-
- Lemma spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0.
+ Lemma spec_eq0 : forall x, ZnZ.eq0 x = true -> [|x|] = 0.
Proof.
- clear; unfold w_eq0, znz_eq0; simpl.
+ clear; unfold ZnZ.eq0; simpl.
unfold compare31; simpl; intros.
change [|0|] with 0 in H.
apply Zcompare_Eq_eq.
@@ -2431,12 +2399,10 @@ Section Int31_Spec.
(* Even *)
- Let w_is_even := int31_op.(znz_is_even).
-
Lemma spec_is_even : forall x,
- if w_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1.
+ if ZnZ.is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1.
Proof.
- unfold w_is_even; simpl; intros.
+ unfold ZnZ.is_even; simpl; intros.
generalize (spec_div x 2).
destruct (x/2)%int31 as (q,r); intros.
unfold compare31.
@@ -2445,77 +2411,60 @@ Section Int31_Spec.
destruct H; auto with zarith.
replace ([|x|] mod 2) with [|r|].
destruct H; auto with zarith.
- case_eq ([|r|] ?= 0)%Z; intros.
- apply Zcompare_Eq_eq; auto.
- change ([|r|] < 0)%Z in H; auto with zarith.
- change ([|r|] > 0)%Z in H; auto with zarith.
+ case Zcompare_spec; auto with zarith.
apply Zmod_unique with [|q|]; auto with zarith.
Qed.
- Definition int31_spec : znz_spec int31_op.
- split.
- exact phi_bounded.
- exact positive_to_int31_spec.
- exact spec_zdigits.
- exact spec_more_than_1_digit.
-
- exact spec_0.
- exact spec_1.
- exact spec_Bm1.
-
- exact spec_compare.
- exact spec_eq0.
-
- exact spec_opp_c.
- exact spec_opp.
- exact spec_opp_carry.
-
- exact spec_succ_c.
- exact spec_add_c.
- exact spec_add_carry_c.
- exact spec_succ.
- exact spec_add.
- exact spec_add_carry.
-
- exact spec_pred_c.
- exact spec_sub_c.
- exact spec_sub_carry_c.
- exact spec_pred.
- exact spec_sub.
- exact spec_sub_carry.
-
- exact spec_mul_c.
- exact spec_mul.
- exact spec_square_c.
-
- exact spec_div21.
- intros; apply spec_div; auto.
- exact spec_div.
-
- intros; unfold int31_op; simpl; apply spec_mod; auto.
- exact spec_mod.
-
- intros; apply spec_gcd; auto.
- exact spec_gcd.
-
- exact spec_head00.
- exact spec_head0.
- exact spec_tail00.
- exact spec_tail0.
-
- exact spec_add_mul_div.
- exact spec_pos_mod.
-
- exact spec_is_even.
- exact spec_sqrt2.
- exact spec_sqrt.
- Qed.
-
-End Int31_Spec.
+ Global Instance int31_specs : ZnZ.Specs int31_ops := {
+ spec_to_Z := phi_bounded;
+ spec_of_pos := positive_to_int31_spec;
+ spec_zdigits := spec_zdigits;
+ spec_more_than_1_digit := spec_more_than_1_digit;
+ spec_0 := spec_0;
+ spec_1 := spec_1;
+ spec_m1 := spec_m1;
+ spec_compare := spec_compare;
+ spec_eq0 := spec_eq0;
+ spec_opp_c := spec_opp_c;
+ spec_opp := spec_opp;
+ spec_opp_carry := spec_opp_carry;
+ spec_succ_c := spec_succ_c;
+ spec_add_c := spec_add_c;
+ spec_add_carry_c := spec_add_carry_c;
+ spec_succ := spec_succ;
+ spec_add := spec_add;
+ spec_add_carry := spec_add_carry;
+ spec_pred_c := spec_pred_c;
+ spec_sub_c := spec_sub_c;
+ spec_sub_carry_c := spec_sub_carry_c;
+ spec_pred := spec_pred;
+ spec_sub := spec_sub;
+ spec_sub_carry := spec_sub_carry;
+ spec_mul_c := spec_mul_c;
+ spec_mul := spec_mul;
+ spec_square_c := spec_square_c;
+ spec_div21 := spec_div21;
+ spec_div_gt := fun a b _ => spec_div a b;
+ spec_div := spec_div;
+ spec_modulo_gt := fun a b _ => spec_mod a b;
+ spec_modulo := spec_mod;
+ spec_gcd_gt := fun a b _ => spec_gcd a b;
+ spec_gcd := spec_gcd;
+ spec_head00 := spec_head00;
+ spec_head0 := spec_head0;
+ spec_tail00 := spec_tail00;
+ spec_tail0 := spec_tail0;
+ spec_add_mul_div := spec_add_mul_div;
+ spec_pos_mod := spec_pos_mod;
+ spec_is_even := spec_is_even;
+ spec_sqrt2 := spec_sqrt2;
+ spec_sqrt := spec_sqrt }.
+
+End Int31_Specs.
Module Int31Cyclic <: CyclicType.
- Definition w := int31.
- Definition w_op := int31_op.
- Definition w_spec := int31_spec.
+ Definition t := int31.
+ Definition ops := int31_ops.
+ Definition specs := int31_specs.
End Int31Cyclic.
diff --git a/theories/Numbers/Cyclic/Int31/Ring31.v b/theories/Numbers/Cyclic/Int31/Ring31.v
index 2ec406b0f1..a9c499fb95 100644
--- a/theories/Numbers/Cyclic/Int31/Ring31.v
+++ b/theories/Numbers/Cyclic/Int31/Ring31.v
@@ -83,9 +83,10 @@ Qed.
Lemma eqb31_eq : forall x y, eqb31 x y = true <-> x=y.
Proof.
unfold eqb31. intros x y.
-generalize (Cyclic31.spec_compare x y).
-destruct (x ?= y); intuition; subst; auto with zarith; try discriminate.
-apply Int31_canonic; auto.
+rewrite Cyclic31.spec_compare. case Zcompare_spec.
+intuition. apply Int31_canonic; auto.
+intuition; subst; auto with zarith; try discriminate.
+intuition; subst; auto with zarith; try discriminate.
Qed.
Lemma eqb31_correct : forall x y, eqb31 x y = true -> x=y.
diff --git a/theories/Numbers/Cyclic/ZModulo/ZModulo.v b/theories/Numbers/Cyclic/ZModulo/ZModulo.v
index 4f0f6c7c49..da0be5e2ab 100644
--- a/theories/Numbers/Cyclic/ZModulo/ZModulo.v
+++ b/theories/Numbers/Cyclic/ZModulo/ZModulo.v
@@ -33,25 +33,23 @@ Section ZModulo.
Definition wB := base digits.
- Definition znz := Z.
- Definition znz_digits := digits.
- Definition znz_zdigits := Zpos digits.
- Definition znz_to_Z x := x mod wB.
+ Definition t := Z.
+ Definition zdigits := Zpos digits.
+ Definition to_Z x := x mod wB.
- Notation "[| x |]" := (znz_to_Z x) (at level 0, x at level 99).
+ Notation "[| x |]" := (to_Z x) (at level 0, x at level 99).
Notation "[+| c |]" :=
- (interp_carry 1 wB znz_to_Z c) (at level 0, x at level 99).
+ (interp_carry 1 wB to_Z c) (at level 0, x at level 99).
Notation "[-| c |]" :=
- (interp_carry (-1) wB znz_to_Z c) (at level 0, x at level 99).
+ (interp_carry (-1) wB to_Z c) (at level 0, x at level 99).
Notation "[|| x ||]" :=
- (zn2z_to_Z wB znz_to_Z x) (at level 0, x at level 99).
+ (zn2z_to_Z wB to_Z x) (at level 0, x at level 99).
Lemma spec_more_than_1_digit: 1 < Zpos digits.
Proof.
- unfold znz_digits.
generalize digits_ne_1; destruct digits; auto.
destruct 1; auto.
Qed.
@@ -65,12 +63,12 @@ Section ZModulo.
Lemma spec_to_Z_1 : forall x, 0 <= [|x|].
Proof.
- unfold znz_to_Z; intros; destruct (Z_mod_lt x wB wB_pos); auto.
+ unfold to_Z; intros; destruct (Z_mod_lt x wB wB_pos); auto.
Qed.
Lemma spec_to_Z_2 : forall x, [|x|] < wB.
Proof.
- unfold znz_to_Z; intros; destruct (Z_mod_lt x wB wB_pos); auto.
+ unfold to_Z; intros; destruct (Z_mod_lt x wB wB_pos); auto.
Qed.
Hint Resolve spec_to_Z_1 spec_to_Z_2.
@@ -79,16 +77,16 @@ Section ZModulo.
auto.
Qed.
- Definition znz_of_pos x :=
+ Definition of_pos x :=
let (q,r) := Zdiv_eucl_POS x wB in (N_of_Z q, r).
Lemma spec_of_pos : forall p,
- Zpos p = (Z_of_N (fst (znz_of_pos p)))*wB + [|(snd (znz_of_pos p))|].
+ Zpos p = (Z_of_N (fst (of_pos p)))*wB + [|(snd (of_pos p))|].
Proof.
- intros; unfold znz_of_pos; simpl.
+ intros; unfold of_pos; simpl.
generalize (Z_div_mod_POS wB wB_pos p).
destruct (Zdiv_eucl_POS p wB); simpl; destruct 1.
- unfold znz_to_Z; rewrite Zmod_small; auto.
+ unfold to_Z; rewrite Zmod_small; auto.
assert (0 <= z).
replace z with (Zpos p / wB) by
(symmetry; apply Zdiv_unique with z0; auto).
@@ -98,37 +96,37 @@ Section ZModulo.
rewrite Zmult_comm; auto.
Qed.
- Lemma spec_zdigits : [|znz_zdigits|] = Zpos znz_digits.
+ Lemma spec_zdigits : [|zdigits|] = Zpos digits.
Proof.
- unfold znz_to_Z, znz_zdigits, znz_digits.
+ unfold to_Z, zdigits.
apply Zmod_small.
unfold wB, base.
split; auto with zarith.
apply Zpower2_lt_lin; auto with zarith.
Qed.
- Definition znz_0 := 0.
- Definition znz_1 := 1.
- Definition znz_Bm1 := wB - 1.
+ Definition zero := 0.
+ Definition one := 1.
+ Definition minus_one := wB - 1.
- Lemma spec_0 : [|znz_0|] = 0.
+ Lemma spec_0 : [|zero|] = 0.
Proof.
- unfold znz_to_Z, znz_0.
+ unfold to_Z, zero.
apply Zmod_small; generalize wB_pos; auto with zarith.
Qed.
- Lemma spec_1 : [|znz_1|] = 1.
+ Lemma spec_1 : [|one|] = 1.
Proof.
- unfold znz_to_Z, znz_1.
+ unfold to_Z, one.
apply Zmod_small; split; auto with zarith.
unfold wB, base.
apply Zlt_trans with (Zpos digits); auto.
apply Zpower2_lt_lin; auto with zarith.
Qed.
- Lemma spec_Bm1 : [|znz_Bm1|] = wB - 1.
+ Lemma spec_Bm1 : [|minus_one|] = wB - 1.
Proof.
- unfold znz_to_Z, znz_Bm1.
+ unfold to_Z, minus_one.
apply Zmod_small; split; auto with zarith.
unfold wB, base.
cut (1 <= 2 ^ Zpos digits); auto with zarith.
@@ -136,54 +134,46 @@ Section ZModulo.
apply Zpower2_le_lin; auto with zarith.
Qed.
- Definition znz_compare x y := Zcompare [|x|] [|y|].
+ Definition compare x y := Zcompare [|x|] [|y|].
Lemma spec_compare : forall x y,
- match znz_compare x y with
- | Eq => [|x|] = [|y|]
- | Lt => [|x|] < [|y|]
- | Gt => [|x|] > [|y|]
- end.
- Proof.
- intros; unfold znz_compare, Zlt, Zgt.
- case_eq (Zcompare [|x|] [|y|]); auto.
- intros; apply Zcompare_Eq_eq; auto.
- Qed.
+ compare x y = Zcompare [|x|] [|y|].
+ Proof. reflexivity. Qed.
- Definition znz_eq0 x :=
+ Definition eq0 x :=
match [|x|] with Z0 => true | _ => false end.
- Lemma spec_eq0 : forall x, znz_eq0 x = true -> [|x|] = 0.
+ Lemma spec_eq0 : forall x, eq0 x = true -> [|x|] = 0.
Proof.
- unfold znz_eq0; intros; now destruct [|x|].
+ unfold eq0; intros; now destruct [|x|].
Qed.
- Definition znz_opp_c x :=
- if znz_eq0 x then C0 0 else C1 (- x).
- Definition znz_opp x := - x.
- Definition znz_opp_carry x := - x - 1.
+ Definition opp_c x :=
+ if eq0 x then C0 0 else C1 (- x).
+ Definition opp x := - x.
+ Definition opp_carry x := - x - 1.
- Lemma spec_opp_c : forall x, [-|znz_opp_c x|] = -[|x|].
+ Lemma spec_opp_c : forall x, [-|opp_c x|] = -[|x|].
Proof.
- intros; unfold znz_opp_c, znz_to_Z; auto.
- case_eq (znz_eq0 x); intros; unfold interp_carry.
+ intros; unfold opp_c, to_Z; auto.
+ case_eq (eq0 x); intros; unfold interp_carry.
fold [|x|]; rewrite (spec_eq0 x H); auto.
assert (x mod wB <> 0).
- unfold znz_eq0, znz_to_Z in H.
+ unfold eq0, to_Z in H.
intro H0; rewrite H0 in H; discriminate.
rewrite Z_mod_nz_opp_full; auto with zarith.
Qed.
- Lemma spec_opp : forall x, [|znz_opp x|] = (-[|x|]) mod wB.
+ Lemma spec_opp : forall x, [|opp x|] = (-[|x|]) mod wB.
Proof.
- intros; unfold znz_opp, znz_to_Z; auto.
+ intros; unfold opp, to_Z; auto.
change ((- x) mod wB = (0 - (x mod wB)) mod wB).
rewrite Zminus_mod_idemp_r; simpl; auto.
Qed.
- Lemma spec_opp_carry : forall x, [|znz_opp_carry x|] = wB - [|x|] - 1.
+ Lemma spec_opp_carry : forall x, [|opp_carry x|] = wB - [|x|] - 1.
Proof.
- intros; unfold znz_opp_carry, znz_to_Z; auto.
+ intros; unfold opp_carry, to_Z; auto.
replace (- x - 1) with (- 1 - x) by omega.
rewrite <- Zminus_mod_idemp_r.
replace ( -1 - x mod wB) with (0 + ( -1 - x mod wB)) by omega.
@@ -194,21 +184,21 @@ Section ZModulo.
generalize (Z_mod_lt x wB wB_pos); omega.
Qed.
- Definition znz_succ_c x :=
+ Definition succ_c x :=
let y := Zsucc x in
- if znz_eq0 y then C1 0 else C0 y.
+ if eq0 y then C1 0 else C0 y.
- Definition znz_add_c x y :=
+ Definition add_c x y :=
let z := [|x|] + [|y|] in
if Z_lt_le_dec z wB then C0 z else C1 (z-wB).
- Definition znz_add_carry_c x y :=
+ Definition add_carry_c x y :=
let z := [|x|]+[|y|]+1 in
if Z_lt_le_dec z wB then C0 z else C1 (z-wB).
- Definition znz_succ := Zsucc.
- Definition znz_add := Zplus.
- Definition znz_add_carry x y := x + y + 1.
+ Definition succ := Zsucc.
+ Definition add := Zplus.
+ Definition add_carry x y := x + y + 1.
Lemma Zmod_equal :
forall x y z, z>0 -> (x-y) mod z = 0 -> x mod z = y mod z.
@@ -221,10 +211,10 @@ Section ZModulo.
rewrite Zplus_comm, Zmult_comm, Z_mod_plus; auto.
Qed.
- Lemma spec_succ_c : forall x, [+|znz_succ_c x|] = [|x|] + 1.
+ Lemma spec_succ_c : forall x, [+|succ_c x|] = [|x|] + 1.
Proof.
- intros; unfold znz_succ_c, znz_to_Z, Zsucc.
- case_eq (znz_eq0 (x+1)); intros; unfold interp_carry.
+ intros; unfold succ_c, to_Z, Zsucc.
+ case_eq (eq0 (x+1)); intros; unfold interp_carry.
rewrite Zmult_1_l.
replace (wB + 0 mod wB) with wB by auto with zarith.
@@ -236,7 +226,7 @@ Section ZModulo.
apply Zmod_equal; auto.
assert ((x+1) mod wB <> 0).
- unfold znz_eq0, znz_to_Z in *; now destruct ((x+1) mod wB).
+ unfold eq0, to_Z in *; now destruct ((x+1) mod wB).
assert (x mod wB + 1 <> wB).
contradict H0.
rewrite Zeq_plus_swap in H0; simpl in H0.
@@ -247,9 +237,9 @@ Section ZModulo.
generalize (Z_mod_lt x wB wB_pos); omega.
Qed.
- Lemma spec_add_c : forall x y, [+|znz_add_c x y|] = [|x|] + [|y|].
+ Lemma spec_add_c : forall x y, [+|add_c x y|] = [|x|] + [|y|].
Proof.
- intros; unfold znz_add_c, znz_to_Z, interp_carry.
+ intros; unfold add_c, to_Z, interp_carry.
destruct Z_lt_le_dec.
apply Zmod_small;
generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
@@ -258,9 +248,9 @@ Section ZModulo.
generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
Qed.
- Lemma spec_add_carry_c : forall x y, [+|znz_add_carry_c x y|] = [|x|] + [|y|] + 1.
+ Lemma spec_add_carry_c : forall x y, [+|add_carry_c x y|] = [|x|] + [|y|] + 1.
Proof.
- intros; unfold znz_add_carry_c, znz_to_Z, interp_carry.
+ intros; unfold add_carry_c, to_Z, interp_carry.
destruct Z_lt_le_dec.
apply Zmod_small;
generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
@@ -269,59 +259,59 @@ Section ZModulo.
generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
Qed.
- Lemma spec_succ : forall x, [|znz_succ x|] = ([|x|] + 1) mod wB.
+ Lemma spec_succ : forall x, [|succ x|] = ([|x|] + 1) mod wB.
Proof.
- intros; unfold znz_succ, znz_to_Z, Zsucc.
+ intros; unfold succ, to_Z, Zsucc.
symmetry; apply Zplus_mod_idemp_l.
Qed.
- Lemma spec_add : forall x y, [|znz_add x y|] = ([|x|] + [|y|]) mod wB.
+ Lemma spec_add : forall x y, [|add x y|] = ([|x|] + [|y|]) mod wB.
Proof.
- intros; unfold znz_add, znz_to_Z; apply Zplus_mod.
+ intros; unfold add, to_Z; apply Zplus_mod.
Qed.
Lemma spec_add_carry :
- forall x y, [|znz_add_carry x y|] = ([|x|] + [|y|] + 1) mod wB.
+ forall x y, [|add_carry x y|] = ([|x|] + [|y|] + 1) mod wB.
Proof.
- intros; unfold znz_add_carry, znz_to_Z.
+ intros; unfold add_carry, to_Z.
rewrite <- Zplus_mod_idemp_l.
rewrite (Zplus_mod x y).
rewrite Zplus_mod_idemp_l; auto.
Qed.
- Definition znz_pred_c x :=
- if znz_eq0 x then C1 (wB-1) else C0 (x-1).
+ Definition pred_c x :=
+ if eq0 x then C1 (wB-1) else C0 (x-1).
- Definition znz_sub_c x y :=
+ Definition sub_c x y :=
let z := [|x|]-[|y|] in
if Z_lt_le_dec z 0 then C1 (wB+z) else C0 z.
- Definition znz_sub_carry_c x y :=
+ Definition sub_carry_c x y :=
let z := [|x|]-[|y|]-1 in
if Z_lt_le_dec z 0 then C1 (wB+z) else C0 z.
- Definition znz_pred := Zpred.
- Definition znz_sub := Zminus.
- Definition znz_sub_carry x y := x - y - 1.
+ Definition pred := Zpred.
+ Definition sub := Zminus.
+ Definition sub_carry x y := x - y - 1.
- Lemma spec_pred_c : forall x, [-|znz_pred_c x|] = [|x|] - 1.
+ Lemma spec_pred_c : forall x, [-|pred_c x|] = [|x|] - 1.
Proof.
- intros; unfold znz_pred_c, znz_to_Z, interp_carry.
- case_eq (znz_eq0 x); intros.
+ intros; unfold pred_c, to_Z, interp_carry.
+ case_eq (eq0 x); intros.
fold [|x|]; rewrite spec_eq0; auto.
replace ((wB-1) mod wB) with (wB-1); auto with zarith.
symmetry; apply Zmod_small; generalize wB_pos; omega.
assert (x mod wB <> 0).
- unfold znz_eq0, znz_to_Z in *; now destruct (x mod wB).
+ unfold eq0, to_Z in *; now destruct (x mod wB).
rewrite <- Zminus_mod_idemp_l.
apply Zmod_small.
generalize (Z_mod_lt x wB wB_pos); omega.
Qed.
- Lemma spec_sub_c : forall x y, [-|znz_sub_c x y|] = [|x|] - [|y|].
+ Lemma spec_sub_c : forall x y, [-|sub_c x y|] = [|x|] - [|y|].
Proof.
- intros; unfold znz_sub_c, znz_to_Z, interp_carry.
+ intros; unfold sub_c, to_Z, interp_carry.
destruct Z_lt_le_dec.
replace ((wB + (x mod wB - y mod wB)) mod wB) with
(wB + (x mod wB - y mod wB)).
@@ -333,9 +323,9 @@ Section ZModulo.
generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
Qed.
- Lemma spec_sub_carry_c : forall x y, [-|znz_sub_carry_c x y|] = [|x|] - [|y|] - 1.
+ Lemma spec_sub_carry_c : forall x y, [-|sub_carry_c x y|] = [|x|] - [|y|] - 1.
Proof.
- intros; unfold znz_sub_carry_c, znz_to_Z, interp_carry.
+ intros; unfold sub_carry_c, to_Z, interp_carry.
destruct Z_lt_le_dec.
replace ((wB + (x mod wB - y mod wB - 1)) mod wB) with
(wB + (x mod wB - y mod wB -1)).
@@ -347,38 +337,38 @@ Section ZModulo.
generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
Qed.
- Lemma spec_pred : forall x, [|znz_pred x|] = ([|x|] - 1) mod wB.
+ Lemma spec_pred : forall x, [|pred x|] = ([|x|] - 1) mod wB.
Proof.
- intros; unfold znz_pred, znz_to_Z, Zpred.
+ intros; unfold pred, to_Z, Zpred.
rewrite <- Zplus_mod_idemp_l; auto.
Qed.
- Lemma spec_sub : forall x y, [|znz_sub x y|] = ([|x|] - [|y|]) mod wB.
+ Lemma spec_sub : forall x y, [|sub x y|] = ([|x|] - [|y|]) mod wB.
Proof.
- intros; unfold znz_sub, znz_to_Z; apply Zminus_mod.
+ intros; unfold sub, to_Z; apply Zminus_mod.
Qed.
Lemma spec_sub_carry :
- forall x y, [|znz_sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB.
+ forall x y, [|sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB.
Proof.
- intros; unfold znz_sub_carry, znz_to_Z.
+ intros; unfold sub_carry, to_Z.
rewrite <- Zminus_mod_idemp_l.
rewrite (Zminus_mod x y).
rewrite Zminus_mod_idemp_l.
auto.
Qed.
- Definition znz_mul_c x y :=
+ Definition mul_c x y :=
let (h,l) := Zdiv_eucl ([|x|]*[|y|]) wB in
- if znz_eq0 h then if znz_eq0 l then W0 else WW h l else WW h l.
+ if eq0 h then if eq0 l then W0 else WW h l else WW h l.
- Definition znz_mul := Zmult.
+ Definition mul := Zmult.
- Definition znz_square_c x := znz_mul_c x x.
+ Definition square_c x := mul_c x x.
- Lemma spec_mul_c : forall x y, [|| znz_mul_c x y ||] = [|x|] * [|y|].
+ Lemma spec_mul_c : forall x y, [|| mul_c x y ||] = [|x|] * [|y|].
Proof.
- intros; unfold znz_mul_c, zn2z_to_Z.
+ intros; unfold mul_c, zn2z_to_Z.
assert (Zdiv_eucl ([|x|]*[|y|]) wB = (([|x|]*[|y|])/wB,([|x|]*[|y|]) mod wB)).
unfold Zmod, Zdiv; destruct Zdiv_eucl; auto.
generalize (Z_div_mod ([|x|]*[|y|]) wB wB_pos); destruct Zdiv_eucl as (h,l).
@@ -394,31 +384,31 @@ Section ZModulo.
apply Zdiv_lt_upper_bound; auto with zarith.
apply Zmult_lt_compat; auto with zarith.
clear H H0 H1 H2.
- case_eq (znz_eq0 h); simpl; intros.
- case_eq (znz_eq0 l); simpl; intros.
+ case_eq (eq0 h); simpl; intros.
+ case_eq (eq0 l); simpl; intros.
rewrite <- H3, <- H4, (spec_eq0 h), (spec_eq0 l); auto with zarith.
rewrite H3, H4; auto with zarith.
rewrite H3, H4; auto with zarith.
Qed.
- Lemma spec_mul : forall x y, [|znz_mul x y|] = ([|x|] * [|y|]) mod wB.
+ Lemma spec_mul : forall x y, [|mul x y|] = ([|x|] * [|y|]) mod wB.
Proof.
- intros; unfold znz_mul, znz_to_Z; apply Zmult_mod.
+ intros; unfold mul, to_Z; apply Zmult_mod.
Qed.
- Lemma spec_square_c : forall x, [|| znz_square_c x||] = [|x|] * [|x|].
+ Lemma spec_square_c : forall x, [|| square_c x||] = [|x|] * [|x|].
Proof.
intros x; exact (spec_mul_c x x).
Qed.
- Definition znz_div x y := Zdiv_eucl [|x|] [|y|].
+ Definition div x y := Zdiv_eucl [|x|] [|y|].
Lemma spec_div : forall a b, 0 < [|b|] ->
- let (q,r) := znz_div a b in
+ let (q,r) := div a b in
[|a|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Proof.
- intros; unfold znz_div.
+ intros; unfold div.
assert ([|b|]>0) by auto with zarith.
assert (Zdiv_eucl [|a|] [|b|] = ([|a|]/[|b|], [|a|] mod [|b|])).
unfold Zmod, Zdiv; destruct Zdiv_eucl; auto.
@@ -440,10 +430,10 @@ Section ZModulo.
rewrite H5, H6; rewrite Zmult_comm; auto with zarith.
Qed.
- Definition znz_div_gt := znz_div.
+ Definition div_gt := div.
Lemma spec_div_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
- let (q,r) := znz_div_gt a b in
+ let (q,r) := div_gt a b in
[|a|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Proof.
@@ -451,27 +441,27 @@ Section ZModulo.
apply spec_div; auto.
Qed.
- Definition znz_mod x y := [|x|] mod [|y|].
- Definition znz_mod_gt x y := [|x|] mod [|y|].
+ Definition modulo x y := [|x|] mod [|y|].
+ Definition modulo_gt x y := [|x|] mod [|y|].
- Lemma spec_mod : forall a b, 0 < [|b|] ->
- [|znz_mod a b|] = [|a|] mod [|b|].
+ Lemma spec_modulo : forall a b, 0 < [|b|] ->
+ [|modulo a b|] = [|a|] mod [|b|].
Proof.
- intros; unfold znz_mod.
+ intros; unfold modulo.
apply Zmod_small.
assert ([|b|]>0) by auto with zarith.
generalize (Z_mod_lt [|a|] [|b|] H0) (Z_mod_lt b wB wB_pos).
fold [|b|]; omega.
Qed.
- Lemma spec_mod_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
- [|znz_mod_gt a b|] = [|a|] mod [|b|].
+ Lemma spec_modulo_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
+ [|modulo_gt a b|] = [|a|] mod [|b|].
Proof.
- intros; apply spec_mod; auto.
+ intros; apply spec_modulo; auto.
Qed.
- Definition znz_gcd x y := Zgcd [|x|] [|y|].
- Definition znz_gcd_gt x y := Zgcd [|x|] [|y|].
+ Definition gcd x y := Zgcd [|x|] [|y|].
+ Definition gcd_gt x y := Zgcd [|x|] [|y|].
Lemma Zgcd_bound : forall a b, 0<=a -> 0<=b -> Zgcd a b <= Zmax a b.
Proof.
@@ -495,9 +485,9 @@ Section ZModulo.
generalize (Zmax_spec a b); omega.
Qed.
- Lemma spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|znz_gcd a b|].
+ Lemma spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|gcd a b|].
Proof.
- intros; unfold znz_gcd.
+ intros; unfold gcd.
generalize (Z_mod_lt a wB wB_pos)(Z_mod_lt b wB wB_pos); intros.
fold [|a|] in *; fold [|b|] in *.
replace ([|Zgcd [|a|] [|b|]|]) with (Zgcd [|a|] [|b|]).
@@ -511,22 +501,22 @@ Section ZModulo.
Qed.
Lemma spec_gcd_gt : forall a b, [|a|] > [|b|] ->
- Zis_gcd [|a|] [|b|] [|znz_gcd_gt a b|].
+ Zis_gcd [|a|] [|b|] [|gcd_gt a b|].
Proof.
intros. apply spec_gcd; auto.
Qed.
- Definition znz_div21 a1 a2 b :=
+ Definition div21 a1 a2 b :=
Zdiv_eucl ([|a1|]*wB+[|a2|]) [|b|].
Lemma spec_div21 : forall a1 a2 b,
wB/2 <= [|b|] ->
[|a1|] < [|b|] ->
- let (q,r) := znz_div21 a1 a2 b in
+ let (q,r) := div21 a1 a2 b in
[|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Proof.
- intros; unfold znz_div21.
+ intros; unfold div21.
generalize (Z_mod_lt a1 wB wB_pos); fold [|a1|]; intros.
generalize (Z_mod_lt a2 wB wB_pos); fold [|a2|]; intros.
assert ([|b|]>0) by auto with zarith.
@@ -552,22 +542,22 @@ Section ZModulo.
rewrite H8, H9; rewrite Zmult_comm; auto with zarith.
Qed.
- Definition znz_add_mul_div p x y :=
- ([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ((Zpos znz_digits) - [|p|]))).
+ Definition add_mul_div p x y :=
+ ([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ((Zpos digits) - [|p|]))).
Lemma spec_add_mul_div : forall x y p,
- [|p|] <= Zpos znz_digits ->
- [| znz_add_mul_div p x y |] =
+ [|p|] <= Zpos digits ->
+ [| add_mul_div p x y |] =
([|x|] * (2 ^ [|p|]) +
- [|y|] / (2 ^ ((Zpos znz_digits) - [|p|]))) mod wB.
+ [|y|] / (2 ^ ((Zpos digits) - [|p|]))) mod wB.
Proof.
- intros; unfold znz_add_mul_div; auto.
+ intros; unfold add_mul_div; auto.
Qed.
- Definition znz_pos_mod p w := [|w|] mod (2 ^ [|p|]).
+ Definition pos_mod p w := [|w|] mod (2 ^ [|p|]).
Lemma spec_pos_mod : forall w p,
- [|znz_pos_mod p w|] = [|w|] mod (2 ^ [|p|]).
+ [|pos_mod p w|] = [|w|] mod (2 ^ [|p|]).
Proof.
- intros; unfold znz_pos_mod.
+ intros; unfold pos_mod.
apply Zmod_small.
generalize (Z_mod_lt [|w|] (2 ^ [|p|])); intros.
split.
@@ -576,22 +566,22 @@ Section ZModulo.
apply Zmod_le; auto with zarith.
Qed.
- Definition znz_is_even x :=
+ Definition is_even x :=
if Z_eq_dec ([|x|] mod 2) 0 then true else false.
Lemma spec_is_even : forall x,
- if znz_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1.
+ if is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1.
Proof.
- intros; unfold znz_is_even; destruct Z_eq_dec; auto.
+ intros; unfold is_even; destruct Z_eq_dec; auto.
generalize (Z_mod_lt [|x|] 2); omega.
Qed.
- Definition znz_sqrt x := Zsqrt_plain [|x|].
+ Definition sqrt x := Zsqrt_plain [|x|].
Lemma spec_sqrt : forall x,
- [|znz_sqrt x|] ^ 2 <= [|x|] < ([|znz_sqrt x|] + 1) ^ 2.
+ [|sqrt x|] ^ 2 <= [|x|] < ([|sqrt x|] + 1) ^ 2.
Proof.
intros.
- unfold znz_sqrt.
+ unfold sqrt.
repeat rewrite Zpower_2.
replace [|Zsqrt_plain [|x|]|] with (Zsqrt_plain [|x|]).
apply Zsqrt_interval; auto with zarith.
@@ -609,7 +599,7 @@ Section ZModulo.
generalize wB_pos; auto with zarith.
Qed.
- Definition znz_sqrt2 x y :=
+ Definition sqrt2 x y :=
let z := [|x|]*wB+[|y|] in
match z with
| Z0 => (0, C0 0)
@@ -621,11 +611,11 @@ Section ZModulo.
Lemma spec_sqrt2 : forall x y,
wB/ 4 <= [|x|] ->
- let (s,r) := znz_sqrt2 x y in
+ let (s,r) := sqrt2 x y in
[||WW x y||] = [|s|] ^ 2 + [+|r|] /\
[+|r|] <= 2 * [|s|].
Proof.
- intros; unfold znz_sqrt2.
+ intros; unfold sqrt2.
simpl zn2z_to_Z.
remember ([|x|]*wB+[|y|]) as z.
destruct z.
@@ -665,15 +655,15 @@ Section ZModulo.
apply two_power_pos_correct.
Qed.
- Definition znz_head0 x := match [|x|] with
- | Z0 => znz_zdigits
- | Zpos p => znz_zdigits - log_inf p - 1
+ Definition head0 x := match [|x|] with
+ | Z0 => zdigits
+ | Zpos p => zdigits - log_inf p - 1
| _ => 0
end.
- Lemma spec_head00: forall x, [|x|] = 0 -> [|znz_head0 x|] = Zpos znz_digits.
+ Lemma spec_head00: forall x, [|x|] = 0 -> [|head0 x|] = Zpos digits.
Proof.
- unfold znz_head0; intros.
+ unfold head0; intros.
rewrite H; simpl.
apply spec_zdigits.
Qed.
@@ -701,43 +691,43 @@ Section ZModulo.
Lemma spec_head0 : forall x, 0 < [|x|] ->
- wB/ 2 <= 2 ^ ([|znz_head0 x|]) * [|x|] < wB.
+ wB/ 2 <= 2 ^ ([|head0 x|]) * [|x|] < wB.
Proof.
- intros; unfold znz_head0.
+ intros; unfold head0.
generalize (spec_to_Z x).
destruct [|x|]; try discriminate.
intros.
destruct (log_inf_correct p).
rewrite 2 two_p_power2 in H2; auto with zarith.
- assert (0 <= znz_zdigits - log_inf p - 1 < wB).
+ assert (0 <= zdigits - log_inf p - 1 < wB).
split.
- cut (log_inf p < znz_zdigits); try omega.
- unfold znz_zdigits.
+ cut (log_inf p < zdigits); try omega.
+ unfold zdigits.
unfold wB, base in *.
apply log_inf_bounded; auto with zarith.
- apply Zlt_trans with znz_zdigits.
+ apply Zlt_trans with zdigits.
omega.
- unfold znz_zdigits, wB, base; apply Zpower2_lt_lin; auto with zarith.
+ unfold zdigits, wB, base; apply Zpower2_lt_lin; auto with zarith.
- unfold znz_to_Z; rewrite (Zmod_small _ _ H3).
+ unfold to_Z; rewrite (Zmod_small _ _ H3).
destruct H2.
split.
- apply Zle_trans with (2^(znz_zdigits - log_inf p - 1)*(2^log_inf p)).
+ apply Zle_trans with (2^(zdigits - log_inf p - 1)*(2^log_inf p)).
apply Zdiv_le_upper_bound; auto with zarith.
rewrite <- Zpower_exp; auto with zarith.
rewrite Zmult_comm; rewrite <- Zpower_Zsucc; auto with zarith.
- replace (Zsucc (znz_zdigits - log_inf p -1 +log_inf p)) with znz_zdigits
+ replace (Zsucc (zdigits - log_inf p -1 +log_inf p)) with zdigits
by ring.
- unfold wB, base, znz_zdigits; auto with zarith.
+ unfold wB, base, zdigits; auto with zarith.
apply Zmult_le_compat; auto with zarith.
apply Zlt_le_trans
- with (2^(znz_zdigits - log_inf p - 1)*(2^(Zsucc (log_inf p)))).
+ with (2^(zdigits - log_inf p - 1)*(2^(Zsucc (log_inf p)))).
apply Zmult_lt_compat_l; auto with zarith.
rewrite <- Zpower_exp; auto with zarith.
- replace (znz_zdigits - log_inf p -1 +Zsucc (log_inf p)) with znz_zdigits
+ replace (zdigits - log_inf p -1 +Zsucc (log_inf p)) with zdigits
by ring.
- unfold wB, base, znz_zdigits; auto with zarith.
+ unfold wB, base, zdigits; auto with zarith.
Qed.
Fixpoint Ptail p := match p with
@@ -774,24 +764,24 @@ Section ZModulo.
rewrite <- H1; omega.
Qed.
- Definition znz_tail0 x :=
+ Definition tail0 x :=
match [|x|] with
- | Z0 => znz_zdigits
+ | Z0 => zdigits
| Zpos p => Ptail p
| Zneg _ => 0
end.
- Lemma spec_tail00: forall x, [|x|] = 0 -> [|znz_tail0 x|] = Zpos znz_digits.
+ Lemma spec_tail00: forall x, [|x|] = 0 -> [|tail0 x|] = Zpos digits.
Proof.
- unfold znz_tail0; intros.
+ unfold tail0; intros.
rewrite H; simpl.
apply spec_zdigits.
Qed.
Lemma spec_tail0 : forall x, 0 < [|x|] ->
- exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|znz_tail0 x|]).
+ exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|tail0 x|]).
Proof.
- intros; unfold znz_tail0.
+ intros; unfold tail0.
generalize (spec_to_Z x).
destruct [|x|]; try discriminate; intros.
assert ([|Ptail p|] = Ptail p).
@@ -818,60 +808,60 @@ Section ZModulo.
(** Let's now group everything in two records *)
- Definition zmod_op := mk_znz_op
- (znz_digits : positive)
- (znz_zdigits: znz)
- (znz_to_Z : znz -> Z)
- (znz_of_pos : positive -> N * znz)
- (znz_head0 : znz -> znz)
- (znz_tail0 : znz -> znz)
-
- (znz_0 : znz)
- (znz_1 : znz)
- (znz_Bm1 : znz)
-
- (znz_compare : znz -> znz -> comparison)
- (znz_eq0 : znz -> bool)
-
- (znz_opp_c : znz -> carry znz)
- (znz_opp : znz -> znz)
- (znz_opp_carry : znz -> znz)
-
- (znz_succ_c : znz -> carry znz)
- (znz_add_c : znz -> znz -> carry znz)
- (znz_add_carry_c : znz -> znz -> carry znz)
- (znz_succ : znz -> znz)
- (znz_add : znz -> znz -> znz)
- (znz_add_carry : znz -> znz -> znz)
-
- (znz_pred_c : znz -> carry znz)
- (znz_sub_c : znz -> znz -> carry znz)
- (znz_sub_carry_c : znz -> znz -> carry znz)
- (znz_pred : znz -> znz)
- (znz_sub : znz -> znz -> znz)
- (znz_sub_carry : znz -> znz -> znz)
-
- (znz_mul_c : znz -> znz -> zn2z znz)
- (znz_mul : znz -> znz -> znz)
- (znz_square_c : znz -> zn2z znz)
-
- (znz_div21 : znz -> znz -> znz -> znz*znz)
- (znz_div_gt : znz -> znz -> znz * znz)
- (znz_div : znz -> znz -> znz * znz)
-
- (znz_mod_gt : znz -> znz -> znz)
- (znz_mod : znz -> znz -> znz)
-
- (znz_gcd_gt : znz -> znz -> znz)
- (znz_gcd : znz -> znz -> znz)
- (znz_add_mul_div : znz -> znz -> znz -> znz)
- (znz_pos_mod : znz -> znz -> znz)
-
- (znz_is_even : znz -> bool)
- (znz_sqrt2 : znz -> znz -> znz * carry znz)
- (znz_sqrt : znz -> znz).
-
- Definition zmod_spec := mk_znz_spec zmod_op
+ Instance zmod_ops : ZnZ.Ops Z := ZnZ.MkOps
+ (digits : positive)
+ (zdigits: t)
+ (to_Z : t -> Z)
+ (of_pos : positive -> N * t)
+ (head0 : t -> t)
+ (tail0 : t -> t)
+
+ (zero : t)
+ (one : t)
+ (minus_one : t)
+
+ (compare : t -> t -> comparison)
+ (eq0 : t -> bool)
+
+ (opp_c : t -> carry t)
+ (opp : t -> t)
+ (opp_carry : t -> t)
+
+ (succ_c : t -> carry t)
+ (add_c : t -> t -> carry t)
+ (add_carry_c : t -> t -> carry t)
+ (succ : t -> t)
+ (add : t -> t -> t)
+ (add_carry : t -> t -> t)
+
+ (pred_c : t -> carry t)
+ (sub_c : t -> t -> carry t)
+ (sub_carry_c : t -> t -> carry t)
+ (pred : t -> t)
+ (sub : t -> t -> t)
+ (sub_carry : t -> t -> t)
+
+ (mul_c : t -> t -> zn2z t)
+ (mul : t -> t -> t)
+ (square_c : t -> zn2z t)
+
+ (div21 : t -> t -> t -> t*t)
+ (div_gt : t -> t -> t * t)
+ (div : t -> t -> t * t)
+
+ (modulo_gt : t -> t -> t)
+ (modulo : t -> t -> t)
+
+ (gcd_gt : t -> t -> t)
+ (gcd : t -> t -> t)
+ (add_mul_div : t -> t -> t -> t)
+ (pos_mod : t -> t -> t)
+
+ (is_even : t -> bool)
+ (sqrt2 : t -> t -> t * carry t)
+ (sqrt : t -> t).
+
+ Instance zmod_specs : ZnZ.Specs zmod_ops := ZnZ.MkSpecs
spec_to_Z
spec_of_pos
spec_zdigits
@@ -910,8 +900,8 @@ Section ZModulo.
spec_div_gt
spec_div
- spec_mod_gt
- spec_mod
+ spec_modulo_gt
+ spec_modulo
spec_gcd_gt
spec_gcd
@@ -934,12 +924,12 @@ End ZModulo.
Module Type PositiveNotOne.
Parameter p : positive.
- Axiom not_one : p<> 1%positive.
+ Axiom not_one : p <> 1%positive.
End PositiveNotOne.
Module ZModuloCyclicType (P:PositiveNotOne) <: CyclicType.
- Definition w := Z.
- Definition w_op := zmod_op P.p.
- Definition w_spec := zmod_spec P.not_one.
+ Definition t := Z.
+ Instance ops : ZnZ.Ops t := zmod_ops P.p.
+ Instance specs : ZnZ.Specs ops := zmod_specs P.not_one.
End ZModuloCyclicType.
diff --git a/theories/Numbers/Natural/BigN/NMake.v b/theories/Numbers/Natural/BigN/NMake.v
index 925b0535ac..b3f7befc8c 100644
--- a/theories/Numbers/Natural/BigN/NMake.v
+++ b/theories/Numbers/Natural/BigN/NMake.v
@@ -16,18 +16,204 @@
representation. The representation-dependent (and macro-generated) part
is now in [NMake_gen]. *)
-Require Import BigNumPrelude ZArith CyclicAxioms.
-Require Import Nbasic Wf_nat StreamMemo NSig NMake_gen.
+Require Import BigNumPrelude ZArith CyclicAxioms DoubleType
+ Nbasic Wf_nat StreamMemo NSig NMake_gen.
-Module Make (Import W0:CyclicType) <: NType.
+Module Make (W0:CyclicType) <: NType.
- (** Macro-generated part *)
+ (** * Macro-generated part *)
Include NMake_gen.Make W0.
+ Declare Reduction red_t :=
+ lazy beta iota delta
+ [iter_t reduce same_level mk_t mk_t_S dom_t dom_op].
+
+ Ltac red_t :=
+ match goal with |- ?u => let v := (eval red_t in u) in change v end.
+
+ (** * Generic results *)
+
+ Theorem spec_mk_t : forall n (x:dom_t n), [mk_t n x] = ZnZ.to_Z x.
+ Proof.
+ intros. change to_Z with (iter_t (fun _ x => ZnZ.to_Z x)).
+ unfold iter_t.
+ repeat (destruct n; try reflexivity).
+ Qed.
+
+ Theorem spec_mk_t_S : forall n (x:zn2z (dom_t n)),
+ [mk_t_S n x] = zn2z_to_Z (base (ZnZ.digits (dom_op n))) ZnZ.to_Z x.
+ Proof.
+ intros.
+ repeat ((simpl; rewrite !make_op_S; reflexivity) ||
+ (destruct n; [reflexivity|])).
+ Qed.
+
+ Lemma spec_iter_t : forall A (P:Z->A->Prop)(f:forall n, dom_t n -> A),
+ (forall n x, P (ZnZ.to_Z x) (f n x)) -> forall x, P [x] (iter_t f x).
+ Proof.
+ intros A P f H; destruct x; unfold iter_t;
+ match goal with |- context [f ?n _] => apply (H n) end.
+ Qed.
+
+ Lemma spec_iter_t_2 : forall A B (P:Z->A->B->Prop)
+ (f:forall n, dom_t n -> A)
+ (g:forall n, dom_t n -> B),
+ (forall n x, P (ZnZ.to_Z x) (f n x) (g n x)) ->
+ forall x, P [x] (iter_t f x) (iter_t g x).
+ Proof.
+ intros A B P f g H; destruct x; unfold iter_t;
+ match goal with |- context [f ?n _] => apply (H n) end.
+ Qed.
+
+ Lemma spec_iter_t_3 : forall A B C (P:Z->A->B->C->Prop)
+ (f:forall n, dom_t n -> A)
+ (g:forall n, dom_t n -> B)
+ (h:forall n, dom_t n -> C),
+ (forall n x, P (ZnZ.to_Z x) (f n x) (g n x) (h n x)) ->
+ forall x, P [x] (iter_t f x) (iter_t g x) (iter_t h x).
+ Proof.
+ intros A B C P f g h H; destruct x; unfold iter_t;
+ match goal with |- context [f ?n _] => apply (H n) end.
+ Qed.
+
+ Theorem spec_pos: forall x, 0 <= [x].
+ Proof.
+ intros x; apply spec_iter_t with (f := fun _ _ => 0)(P := fun u _ => 0<=u).
+ intros n wx. now case (ZnZ.spec_to_Z wx).
+ Qed.
+
+ Lemma digits_dom_op_incr : forall n m, (n<=m)%nat ->
+ (ZnZ.digits (dom_op n) <= ZnZ.digits (dom_op m))%positive.
+ Proof.
+ intros.
+ change (Zpos (ZnZ.digits (dom_op n)) <= Zpos (ZnZ.digits (dom_op m))).
+ rewrite 2 digits_dom_op.
+ apply Zmult_le_compat_l; auto with zarith.
+ apply Zpower_le_monotone2; auto with zarith.
+ Qed.
+
+ (** Number of level in the tree representation of a number.
+ NB: This function isn't a morphism for setoid [eq]. *)
+
+ Definition level := iter_t (fun n _ => n).
+
+ (** Specification of [same_level] indexed by [level] *)
+
+ Theorem spec_same_level_dep :
+ forall res
+ (P : nat -> Z -> Z -> res -> Prop)
+ (Pantimon : forall n m z z' r, (n <= m)%nat -> P m z z' r -> P n z z' r)
+ (f : forall n, dom_t n -> dom_t n -> res)
+ (Pf: forall n x y, P n (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y)),
+ forall x y, P (level y) [x] [y] (same_level f x y).
+ Proof.
+ intros res P Pantimon f Pf.
+ set (f' := fun n x y => (n, f n x y)).
+ set (P' := fun z z' r => P (fst r) z z' (snd r)).
+ assert (FST : forall x y, (level y <= fst (same_level f' x y))%nat)
+ by (destruct x, y; simpl; omega with * ).
+ assert (SND : forall x y, same_level f x y = snd (same_level f' x y))
+ by (destruct x, y; reflexivity).
+ intros. eapply Pantimon; [eapply FST|].
+ rewrite SND. eapply (@spec_same_level _ P' f'); eauto.
+ Qed.
+
+
+ (** * Zero and One *)
+
+ Theorem spec_0: [zero] = 0.
+ Proof.
+ exact ZnZ.spec_0.
+ Qed.
+
+ Theorem spec_1: [one] = 1.
+ Proof.
+ exact ZnZ.spec_1.
+ Qed.
+
+ (** * Successor *)
+
+ Local Notation succn := (fun n (x:dom_t n) =>
+ let op := dom_op n in
+ match ZnZ.succ_c x with
+ | C0 r => mk_t n r
+ | C1 r => mk_t_S n (WW ZnZ.one r)
+ end).
+
+ Definition succ : t -> t := Eval red_t in iter_t succn.
+
+ Lemma succ_fold : succ = iter_t succn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_succ: forall n, [succ n] = [n] + 1.
+ Proof.
+ intros x. rewrite succ_fold. apply spec_iter_t. clear x.
+ intros n x. simpl.
+ generalize (ZnZ.spec_succ_c x); case ZnZ.succ_c.
+ intros. rewrite spec_mk_t. assumption.
+ intros. unfold interp_carry in *.
+ rewrite spec_mk_t_S. simpl. rewrite ZnZ.spec_1. assumption.
+ Qed.
+
+ (** * Addition *)
+
+ Local Notation addn := (fun n (x y : dom_t n) =>
+ let op := dom_op n in
+ match ZnZ.add_c x y with
+ | C0 r => mk_t n r
+ | C1 r => mk_t_S n (WW ZnZ.one r)
+ end).
+
+ Definition add : t -> t -> t := Eval red_t in same_level addn.
+
+ Lemma add_fold : add = same_level addn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_add: forall x y, [add x y] = [x] + [y].
+ Proof.
+ intros x y. rewrite add_fold. apply spec_same_level; clear x y.
+ intros n x y. simpl.
+ generalize (ZnZ.spec_add_c x y); case ZnZ.add_c; intros z H.
+ rewrite spec_mk_t. assumption.
+ rewrite spec_mk_t_S. unfold interp_carry in H.
+ simpl. rewrite ZnZ.spec_1. assumption.
+ Qed.
(** * Predecessor *)
+ Local Notation predn := (fun n (x:dom_t n) =>
+ match ZnZ.pred_c x with
+ | C0 r => reduce n r
+ | C1 _ => zero
+ end).
+
+ Definition pred : t -> t := Eval red_t in iter_t predn.
+
+ Lemma pred_fold : pred = iter_t predn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_pred_pos : forall x, 0 < [x] -> [pred x] = [x] - 1.
+ Proof.
+ intros x. rewrite pred_fold. apply spec_iter_t. clear x.
+ intros n x H.
+ generalize (ZnZ.spec_pred_c x); case ZnZ.pred_c; intros y H'.
+ rewrite spec_reduce. assumption.
+ exfalso. unfold interp_carry in *.
+ generalize (ZnZ.spec_to_Z x) (ZnZ.spec_to_Z y); auto with zarith.
+ Qed.
+
+ Theorem spec_pred0 : forall x, [x] = 0 -> [pred x] = 0.
+ Proof.
+ intros x. rewrite pred_fold. apply spec_iter_t. clear x.
+ intros n x H.
+ generalize (ZnZ.spec_pred_c x); case ZnZ.pred_c; intros y H'.
+ rewrite spec_reduce.
+ unfold interp_carry in H'.
+ generalize (ZnZ.spec_to_Z y); auto with zarith.
+ exact spec_0.
+ Qed.
+
Lemma spec_pred : forall x, [pred x] = Zmax 0 ([x]-1).
Proof.
intros. destruct (Zle_lt_or_eq _ _ (spec_pos x)).
@@ -36,9 +222,42 @@ Module Make (Import W0:CyclicType) <: NType.
rewrite <- H; apply spec_pred0; auto.
Qed.
-
(** * Subtraction *)
+ Local Notation subn := (fun n (x y : dom_t n) =>
+ let op := dom_op n in
+ match ZnZ.sub_c x y with
+ | C0 r => reduce n r
+ | C1 r => zero
+ end).
+
+ Definition sub : t -> t -> t := Eval red_t in same_level subn.
+
+ Lemma sub_fold : sub = same_level subn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_sub_pos : forall x y, [y] <= [x] -> [sub x y] = [x] - [y].
+ Proof.
+ intros x y. rewrite sub_fold. apply spec_same_level. clear x y.
+ intros n x y. simpl.
+ generalize (ZnZ.spec_sub_c x y); case ZnZ.sub_c; intros z H LE.
+ rewrite spec_reduce. assumption.
+ unfold interp_carry in H.
+ exfalso.
+ generalize (ZnZ.spec_to_Z z); auto with zarith.
+ Qed.
+
+ Theorem spec_sub0 : forall x y, [x] < [y] -> [sub x y] = 0.
+ Proof.
+ intros x y. rewrite sub_fold. apply spec_same_level. clear x y.
+ intros n x y. simpl.
+ generalize (ZnZ.spec_sub_c x y); case ZnZ.sub_c; intros z H LE.
+ rewrite spec_reduce.
+ unfold interp_carry in H.
+ generalize (ZnZ.spec_to_Z z); auto with zarith.
+ exact spec_0.
+ Qed.
+
Lemma spec_sub : forall x y, [sub x y] = Zmax 0 ([x]-[y]).
Proof.
intros. destruct (Zle_or_lt [y] [x]).
@@ -48,13 +267,7 @@ Module Make (Import W0:CyclicType) <: NType.
(** * Comparison *)
- Theorem spec_compare : forall x y, compare x y = Zcompare [x] [y].
- Proof.
- intros x y. generalize (spec_compare_aux x y); destruct compare;
- intros; symmetry; try rewrite Zcompare_Eq_iff_eq; assumption.
- Qed.
-
- Definition eq_bool x y :=
+ Definition eq_bool (x y : t) : bool :=
match compare x y with
| Eq => true
| _ => false
@@ -65,18 +278,11 @@ Module Make (Import W0:CyclicType) <: NType.
intros. unfold eq_bool, Zeq_bool. rewrite spec_compare; reflexivity.
Qed.
- Theorem spec_eq_bool_aux: forall x y,
- if eq_bool x y then [x] = [y] else [x] <> [y].
- Proof.
- intros x y; unfold eq_bool.
- generalize (spec_compare_aux x y); case compare; auto with zarith.
- Qed.
-
- Definition lt n m := [n] < [m].
- Definition le n m := [n] <= [m].
+ Definition lt (n m : t) := [n] < [m].
+ Definition le (n m : t) := [n] <= [m].
- Definition min n m := match compare n m with Gt => m | _ => n end.
- Definition max n m := match compare n m with Lt => m | _ => n end.
+ Definition min (n m : t) : t := match compare n m with Gt => m | _ => n end.
+ Definition max (n m : t) : t := match compare n m with Lt => m | _ => n end.
Theorem spec_max : forall n m, [max n m] = Zmax [n] [m].
Proof.
@@ -88,10 +294,43 @@ Module Make (Import W0:CyclicType) <: NType.
intros. unfold min, Zmin. rewrite spec_compare; destruct Zcompare; reflexivity.
Qed.
+ (** * Square *)
+
+ (** TODO: use reduce (original version was using it for N0 only) *)
+
+ Local Notation squaren :=
+ (fun n (x : dom_t n) => mk_t_S n (ZnZ.square_c x)).
+
+ Definition square : t -> t := Eval red_t in iter_t squaren.
+
+ Lemma square_fold : square = iter_t squaren.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_square: forall x, [square x] = [x] * [x].
+ Proof.
+ intros x. rewrite square_fold. apply spec_iter_t. clear x.
+ intros n x. rewrite spec_mk_t_S. exact (ZnZ.spec_square_c x).
+ Qed.
+
+ (** * Sqrt *)
+
+ Local Notation sqrtn :=
+ (fun n (x : dom_t n) => reduce n (ZnZ.sqrt x)).
+
+ Definition sqrt : t -> t := Eval red_t in iter_t sqrtn.
+
+ Lemma sqrt_fold : sqrt = iter_t sqrtn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_sqrt: forall x, [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2.
+ Proof.
+ intros x. rewrite sqrt_fold. apply spec_iter_t. clear x.
+ intros n x; rewrite spec_reduce; exact (ZnZ.spec_sqrt x).
+ Qed.
(** * Power *)
- Fixpoint power_pos (x:t) (p:positive) {struct p} : t :=
+ Fixpoint power_pos (x:t)(p:positive) : t :=
match p with
| xH => x
| xO p => square (power_pos x p)
@@ -112,21 +351,20 @@ Module Make (Import W0:CyclicType) <: NType.
intros; rewrite Zpower_1_r; auto.
Qed.
- Definition power x (n:N) := match n with
+ Definition power (x:t)(n:N) : t := match n with
| BinNat.N0 => one
| BinNat.Npos p => power_pos x p
end.
Theorem spec_power: forall x n, [power x n] = [x] ^ Z_of_N n.
Proof.
- destruct n; simpl. apply (spec_1 w0_spec).
+ destruct n; simpl. apply ZnZ.spec_1.
apply spec_power_pos.
Qed.
-
(** * Div *)
- Definition div_eucl x y :=
+ Definition div_eucl (x y : t) : t * t :=
if eq_bool y zero then (zero,zero) else
match compare x y with
| Eq => (one, zero)
@@ -138,32 +376,27 @@ Module Make (Import W0:CyclicType) <: NType.
let (q,r) := div_eucl x y in
([q], [r]) = Zdiv_eucl [x] [y].
Proof.
- assert (F0: [zero] = 0).
- exact (spec_0 w0_spec).
- assert (F1: [one] = 1).
- exact (spec_1 w0_spec).
intros x y. unfold div_eucl.
- generalize (spec_eq_bool_aux y zero). destruct eq_bool; rewrite F0.
- intro H. rewrite H. destruct [x]; auto.
- intro H'.
- assert (0 < [y]) by (generalize (spec_pos y); auto with zarith).
+ rewrite spec_eq_bool, spec_compare, spec_0.
+ generalize (Zeq_bool_if [y] 0); case Zeq_bool.
+ intros ->. rewrite spec_0. destruct [x]; auto.
+ intros H'.
+ assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith).
clear H'.
- generalize (spec_compare_aux x y); case compare; try rewrite F0;
- try rewrite F1; intros; auto with zarith.
- rewrite H0; generalize (Z_div_same [y] (Zlt_gt _ _ H))
- (Z_mod_same [y] (Zlt_gt _ _ H));
+ case Zcompare_spec; intros Cmp;
+ rewrite ?spec_0, ?spec_1; intros; auto with zarith.
+ rewrite Cmp; generalize (Z_div_same [y] (Zlt_gt _ _ H))
+ (Z_mod_same [y] (Zlt_gt _ _ H));
unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto.
- assert (F2: 0 <= [x] < [y]).
- generalize (spec_pos x); auto.
- generalize (Zdiv_small _ _ F2)
- (Zmod_small _ _ F2);
+ assert (LeLt: 0 <= [x] < [y]) by (generalize (spec_pos x); auto).
+ generalize (Zdiv_small _ _ LeLt) (Zmod_small _ _ LeLt);
unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto.
- generalize (spec_div_gt _ _ H0 H); auto.
+ generalize (spec_div_gt _ _ (Zlt_gt _ _ Cmp) H); auto.
unfold Zdiv, Zmod; case Zdiv_eucl; case div_gt.
intros a b c d (H1, H2); subst; auto.
Qed.
- Definition div x y := fst (div_eucl x y).
+ Definition div (x y : t) : t := fst (div_eucl x y).
Theorem spec_div:
forall x y, [div x y] = [x] / [y].
@@ -174,10 +407,9 @@ Module Make (Import W0:CyclicType) <: NType.
injection H; auto.
Qed.
-
(** * Modulo *)
- Definition modulo x y :=
+ Definition modulo (x y : t) : t :=
if eq_bool y zero then zero else
match compare x y with
| Eq => zero
@@ -188,24 +420,45 @@ Module Make (Import W0:CyclicType) <: NType.
Theorem spec_modulo:
forall x y, [modulo x y] = [x] mod [y].
Proof.
- assert (F0: [zero] = 0).
- exact (spec_0 w0_spec).
- assert (F1: [one] = 1).
- exact (spec_1 w0_spec).
intros x y. unfold modulo.
- generalize (spec_eq_bool_aux y zero). destruct eq_bool; rewrite F0.
- intro H; rewrite H. destruct [x]; auto.
+ rewrite spec_eq_bool, spec_compare, spec_0.
+ generalize (Zeq_bool_if [y] 0). case Zeq_bool.
+ intros ->; rewrite spec_0. destruct [x]; auto.
intro H'.
assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith).
clear H'.
- generalize (spec_compare_aux x y); case compare; try rewrite F0;
- try rewrite F1; intros; try split; auto with zarith.
+ case Zcompare_spec;
+ rewrite ?spec_0, ?spec_1; intros; try split; auto with zarith.
rewrite H0; apply sym_equal; apply Z_mod_same; auto with zarith.
apply sym_equal; apply Zmod_small; auto with zarith.
generalize (spec_pos x); auto with zarith.
- apply spec_mod_gt; auto.
+ apply spec_mod_gt; auto with zarith.
Qed.
+ (** * digits
+
+ Number of digits in the representation of a numbers
+ (including head zero's).
+ NB: This function isn't a morphism for setoid [eq].
+ *)
+
+ Local Notation digitsn := (fun n _ => ZnZ.digits (dom_op n)).
+
+ Definition digits : t -> positive := Eval red_t in iter_t digitsn.
+
+ Lemma digits_fold : digits = iter_t digitsn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_digits: forall x, 0 <= [x] < 2 ^ Zpos (digits x).
+ Proof.
+ intros x. rewrite digits_fold. apply spec_iter_t. clear x.
+ intros n x. exact (ZnZ.spec_to_Z x).
+ Qed.
+
+ Lemma digits_level : forall x, digits x = ZnZ.digits (dom_op (level x)).
+ Proof.
+ destruct x; reflexivity.
+ Qed.
(** * Gcd *)
@@ -226,15 +479,12 @@ Module Make (Import W0:CyclicType) <: NType.
Zis_gcd [a1] [b1] [cont a1 b1]) ->
Zis_gcd [a] [b] [gcd_gt_body a b cont].
Proof.
- assert (F1: [zero] = 0).
- unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto.
intros a b cont p H2 H3 H4; unfold gcd_gt_body.
- generalize (spec_compare_aux b zero); case compare; try rewrite F1.
- intros HH; rewrite HH; apply Zis_gcd_0.
+ rewrite ! spec_compare, spec_0. case Zcompare_spec.
+ intros ->; apply Zis_gcd_0.
intros HH; absurd (0 <= [b]); auto with zarith.
case (spec_digits b); auto with zarith.
- intros H5; generalize (spec_compare_aux (mod_gt a b) zero);
- case compare; try rewrite F1.
+ intros H5; case Zcompare_spec.
intros H6; rewrite <- (Zmult_1_r [b]).
rewrite (Z_div_mod_eq [a] [b]); auto with zarith.
rewrite <- spec_mod_gt; auto with zarith.
@@ -273,7 +523,7 @@ Module Make (Import W0:CyclicType) <: NType.
intros HH; generalize H3; rewrite <- HH; simpl Zpower; auto with zarith.
Qed.
- Fixpoint gcd_gt_aux (p:positive) (cont:t->t->t) (a b:t) {struct p} : t :=
+ Fixpoint gcd_gt_aux (p:positive) (cont:t->t->t) (a b:t) : t :=
gcd_gt_body a b
(fun a b =>
match p with
@@ -310,12 +560,7 @@ Module Make (Import W0:CyclicType) <: NType.
(Zpos p + n - 1); auto with zarith.
intros a3 b3 H12 H13; apply H4; auto with zarith.
apply Zlt_le_trans with (1 := H12).
- case (Zle_or_lt 1 n); intros HH.
- apply Zpower_le_monotone; auto with zarith.
- apply Zle_trans with 0; auto with zarith.
- assert (HH1: n - 1 < 0); auto with zarith.
- generalize HH1; case (n - 1); auto with zarith.
- intros p1 HH2; discriminate.
+ apply Zpower_le_monotone2; auto with zarith.
intros n a b cont H H2 H3.
simpl gcd_gt_aux.
apply Zspec_gcd_gt_body with (n + 1); auto with zarith.
@@ -345,7 +590,7 @@ Module Make (Import W0:CyclicType) <: NType.
intros; apply False_ind; auto with zarith.
Qed.
- Definition gcd a b :=
+ Definition gcd (a b : t) : t :=
match compare a b with
| Eq => a
| Lt => gcd_gt b a
@@ -357,7 +602,7 @@ Module Make (Import W0:CyclicType) <: NType.
intros a b.
case (spec_digits a); intros H1 H2.
case (spec_digits b); intros H3 H4.
- unfold gcd; generalize (spec_compare_aux a b); case compare.
+ unfold gcd. rewrite spec_compare. case Zcompare_spec.
intros HH; rewrite HH; apply sym_equal; apply Zis_gcd_gcd; auto.
apply Zis_gcd_refl.
intros; apply trans_equal with (Zgcd [b] [a]).
@@ -365,13 +610,53 @@ Module Make (Import W0:CyclicType) <: NType.
apply Zis_gcd_gcd; auto with zarith.
apply Zgcd_is_pos.
apply Zis_gcd_sym; apply Zgcd_is_gcd.
- intros; apply spec_gcd_gt; auto.
+ intros; apply spec_gcd_gt; auto with zarith.
Qed.
-
(** * Conversion *)
- Definition of_N x :=
+ Definition pheight p :=
+ Peano.pred (nat_of_P (get_height (ZnZ.digits W0.ops) (plength p))).
+
+ Theorem pheight_correct: forall p,
+ Zpos p < 2 ^ (Zpos (ZnZ.digits W0.ops) * 2 ^ (Z_of_nat (pheight p))).
+ Proof.
+ intros p; unfold pheight.
+ assert (F1: forall x, Z_of_nat (Peano.pred (nat_of_P x)) = Zpos x - 1).
+ intros x.
+ assert (Zsucc (Z_of_nat (Peano.pred (nat_of_P x))) = Zpos x); auto with zarith.
+ rewrite <- inj_S.
+ rewrite <- (fun x => S_pred x 0); auto with zarith.
+ rewrite Zpos_eq_Z_of_nat_o_nat_of_P; auto.
+ apply lt_le_trans with 1%nat; auto with zarith.
+ exact (le_Pmult_nat x 1).
+ rewrite F1; clear F1.
+ assert (F2:= (get_height_correct (ZnZ.digits W0.ops) (plength p))).
+ apply Zlt_le_trans with (Zpos (Psucc p)).
+ rewrite Zpos_succ_morphism; auto with zarith.
+ apply Zle_trans with (1 := plength_pred_correct (Psucc p)).
+ rewrite Ppred_succ.
+ apply Zpower_le_monotone2; auto with zarith.
+ Qed.
+
+ Definition of_pos (x:positive) : t :=
+ let n := pheight x in
+ reduce n (snd (ZnZ.of_pos x)).
+
+ Theorem spec_of_pos: forall x,
+ [of_pos x] = Zpos x.
+ Proof.
+ intros x; unfold of_pos.
+ rewrite spec_reduce.
+ simpl.
+ apply ZnZ.of_pos_correct.
+ unfold base.
+ apply Zlt_le_trans with (1 := pheight_correct x).
+ apply Zpower_le_monotone2; auto with zarith.
+ rewrite digits_dom_op; auto with zarith.
+ Qed.
+
+ Definition of_N (x:N) : t :=
match x with
| BinNat.N0 => zero
| Npos p => of_pos p
@@ -381,37 +666,398 @@ Module Make (Import W0:CyclicType) <: NType.
[of_N x] = Z_of_N x.
Proof.
intros x; case x.
- simpl of_N.
- unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto.
+ simpl of_N. exact spec_0.
intros p; exact (spec_of_pos p).
Qed.
+ Definition to_N (x : t) := Zabs_N (to_Z x).
- (** * Shift *)
+ (** * [head0] and [tail0]
- Definition shiftr n x :=
- match compare n (Ndigits x) with
- | Lt => unsafe_shiftr n x
- | _ => N0 w_0
- end.
+ Number of zero at the beginning and at the end of
+ the representation of the number.
+ NB: these functions are not morphism for setoid [eq].
+ *)
+
+ Local Notation head0n := (fun n x => reduce n (ZnZ.head0 x)).
+
+ Definition head0 : t -> t := Eval red_t in iter_t head0n.
+
+ Lemma head0_fold : head0 = iter_t head0n.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_head00: forall x, [x] = 0 -> [head0 x] = Zpos (digits x).
+ Proof.
+ intros x. rewrite head0_fold, digits_fold.
+ apply spec_iter_t_2 with (P:=fun z u v => z=0 -> [u] = Zpos v). clear x.
+ intros n x; rewrite spec_reduce; exact (ZnZ.spec_head00 x).
+ Qed.
+
+ Lemma pow2_pos_minus_1 : forall z, 0<z -> 2^(z-1) = 2^z / 2.
+ Proof.
+ intros. apply Zdiv_unique with 0; auto with zarith.
+ change 2 with (2^1) at 2.
+ rewrite <- Zpower_exp; auto with zarith.
+ rewrite Zplus_0_r. f_equal. auto with zarith.
+ Qed.
+
+ Theorem spec_head0: forall x, 0 < [x] ->
+ 2 ^ (Zpos (digits x) - 1) <= 2 ^ [head0 x] * [x] < 2 ^ Zpos (digits x).
+ Proof.
+ intros x. rewrite pow2_pos_minus_1 by (red; auto).
+ rewrite head0_fold, digits_fold.
+ apply spec_iter_t_2 with
+ (P:=fun z u v => 0<z -> 2^(Zpos v) / 2 <= 2^[u] * z < 2^(Zpos v)).
+ clear x. intros n x. rewrite spec_reduce.
+ exact (ZnZ.spec_head0 x).
+ Qed.
+
+ Local Notation tail0n := (fun n x => reduce n (ZnZ.tail0 x)).
+
+ Definition tail0 : t -> t := Eval red_t in iter_t tail0n.
+
+ Lemma tail0_fold : tail0 = iter_t tail0n.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_tail00: forall x, [x] = 0 -> [tail0 x] = Zpos (digits x).
+ Proof.
+ intros x. rewrite tail0_fold, digits_fold.
+ apply spec_iter_t_2 with (P:=fun z u v => z=0 -> [u] = Zpos v). clear x.
+ intros n x; rewrite spec_reduce; exact (ZnZ.spec_tail00 x).
+ Qed.
+
+ Theorem spec_tail0: forall x,
+ 0 < [x] -> exists y, 0 <= y /\ [x] = (2 * y + 1) * 2 ^ [tail0 x].
+ Proof.
+ intros x. rewrite tail0_fold. apply spec_iter_t. clear x.
+ intros n x. rewrite spec_reduce. exact (ZnZ.spec_tail0 x).
+ Qed.
+
+ (** * [Ndigits]
+
+ Same as [digits] but encoded using large integers
+ NB: this function is not a morphism for setoid [eq].
+ *)
+
+ Local Notation Ndigitsn := (fun n _ => reduce n (ZnZ.zdigits (dom_op n))).
+
+ Definition Ndigits : t -> t := Eval red_t in iter_t Ndigitsn.
+
+ Lemma Ndigits_fold : Ndigits = iter_t Ndigitsn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_Ndigits: forall x, [Ndigits x] = Zpos (digits x).
+ Proof.
+ intros x. rewrite Ndigits_fold, digits_fold.
+ apply spec_iter_t_2 with (P:=fun z u v => [u] = Zpos v). clear x.
+ intros n x. rewrite spec_reduce. apply ZnZ.spec_zdigits.
+ Qed.
+
+ (** * Binary logarithm *)
+
+ Local Notation log2n := (fun n x =>
+ let op := dom_op n in
+ reduce n (ZnZ.sub_carry (ZnZ.zdigits op) (ZnZ.head0 x))).
+
+ Definition log2 : t -> t := Eval red_t in
+ fun x => if eq_bool x zero then zero else iter_t log2n x.
+
+ Lemma log2_fold :
+ log2 = fun x => if eq_bool x zero then zero else iter_t log2n x.
+ Proof. red_t; reflexivity. Qed.
+
+ Lemma spec_log2_0 : forall x, [x] = 0 -> [log2 x] = 0.
+ Proof.
+ intros x H. rewrite log2_fold.
+ rewrite spec_eq_bool, H. rewrite spec_0. simpl.
+ exact ZnZ.spec_0.
+ Qed.
+
+ Lemma head0_zdigits : forall n (x : dom_t n),
+ 0 < ZnZ.to_Z x ->
+ ZnZ.to_Z (ZnZ.head0 x) < ZnZ.to_Z (ZnZ.zdigits (dom_op n)).
+ Proof.
+ intros n x H.
+ destruct (ZnZ.spec_head0 x H) as (_,H0).
+ intros.
+ assert (H1 := ZnZ.spec_to_Z (ZnZ.head0 x)).
+ assert (H2 := ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))).
+ unfold base in *.
+ rewrite ZnZ.spec_zdigits in H2 |- *.
+ set (h := ZnZ.to_Z (ZnZ.head0 x)) in *; clearbody h.
+ set (d := ZnZ.digits (dom_op n)) in *; clearbody d.
+ destruct (Z_lt_le_dec h (Zpos d)); auto. exfalso.
+ assert (1 * 2^Zpos d <= ZnZ.to_Z x * 2^h).
+ apply Zmult_le_compat; auto with zarith.
+ apply Zpower_le_monotone2; auto with zarith.
+ rewrite Zmult_comm in H0. auto with zarith.
+ Qed.
+
+ Lemma spec_log2 : forall x, [x]<>0 ->
+ 2^[log2 x] <= [x] < 2^([log2 x]+1).
+ Proof.
+ intros x H. rewrite log2_fold.
+ rewrite spec_eq_bool. rewrite spec_0.
+ generalize (Zeq_bool_if [x] 0). destruct Zeq_bool.
+ auto with zarith.
+ apply spec_iter_t. clear x H. intros n x H. simpl.
+ rewrite spec_reduce, ZnZ.spec_sub_carry.
+ assert (H0 := ZnZ.spec_to_Z x).
+ assert (H1 := ZnZ.spec_to_Z (ZnZ.head0 x)).
+ assert (H2 := ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))).
+ assert (H3 := head0_zdigits n x).
+ rewrite Zmod_small by auto with zarith.
+ rewrite (ZBinary.ZBinPropMod.mul_lt_mono_pos_l (2^(ZnZ.to_Z (ZnZ.head0 x))));
+ auto with zarith.
+ rewrite (ZBinary.ZBinPropMod.mul_le_mono_pos_l _ _ (2^(ZnZ.to_Z (ZnZ.head0 x))));
+ auto with zarith.
+ rewrite <- 2 Zpower_exp; auto with zarith.
+ rewrite ZBinary.ZBinPropMod.add_sub_assoc, Zplus_minus.
+ rewrite ZBinary.ZBinPropMod.sub_simpl_r, Zplus_minus.
+ rewrite ZnZ.spec_zdigits.
+ rewrite pow2_pos_minus_1 by (red; auto).
+ apply ZnZ.spec_head0; auto with zarith.
+ Qed.
+
+ Lemma log2_digits_head0 : forall x, 0 < [x] ->
+ [log2 x] = Zpos (digits x) - [head0 x] - 1.
+ Proof.
+ intros.
+ rewrite log2_fold.
+ rewrite spec_eq_bool. rewrite spec_0.
+ generalize (Zeq_bool_if [x] 0). destruct Zeq_bool.
+ auto with zarith.
+ intros _. revert H.
+ rewrite digits_fold, head0_fold.
+ apply spec_iter_t_3 with (P:=fun z a b c => 0<z -> [a] = Zpos b - [c] -1).
+ clear x. intros n x. rewrite 2 spec_reduce.
+ rewrite ZnZ.spec_sub_carry.
+ intros.
+ generalize (head0_zdigits n x H).
+ generalize (ZnZ.spec_to_Z (ZnZ.head0 x)).
+ generalize (ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))).
+ rewrite ZnZ.spec_zdigits. intros. apply Zmod_small.
+ auto with zarith.
+ Qed.
+
+ (** * Right shift *)
+
+ Local Notation shiftrn := (fun n (p x : dom_t n) =>
+ let op := dom_op n in
+ match ZnZ.sub_c (ZnZ.zdigits op) p with
+ | C0 d => reduce n (ZnZ.add_mul_div d ZnZ.zero x)
+ | C1 _ => zero
+ end).
+
+ Definition shiftr : t -> t -> t := Eval red_t in
+ same_level shiftrn.
+
+ Lemma shiftr_fold : shiftr = same_level shiftrn.
+ Proof. red_t; reflexivity. Qed.
+
+ Lemma div_pow2_bound :forall x y z,
+ 0 <= x -> 0 <= y -> x < z -> 0 <= x / 2 ^ y < z.
+ Proof.
+ intros x y z HH HH1 HH2.
+ split; auto with zarith.
+ apply Zle_lt_trans with (2 := HH2); auto with zarith.
+ apply Zdiv_le_upper_bound; auto with zarith.
+ pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith.
+ apply Zmult_le_compat_l; auto.
+ apply Zpower_le_monotone2; auto with zarith.
+ rewrite Zpower_0_r; ring.
+ Qed.
Theorem spec_shiftr: forall n x,
- [shiftr n x] = [x] / 2 ^ [n].
- Proof.
- intros n x; unfold shiftr;
- generalize (spec_compare_aux n (Ndigits x)); case compare; intros H.
- apply trans_equal with (1 := spec_0 w0_spec).
- apply sym_equal; apply Zdiv_small; rewrite H.
- rewrite spec_Ndigits; exact (spec_digits x).
- rewrite <- spec_unsafe_shiftr; auto with zarith.
- apply trans_equal with (1 := spec_0 w0_spec).
- apply sym_equal; apply Zdiv_small.
- rewrite spec_Ndigits in H; case (spec_digits x); intros H1 H2.
- split; auto.
- apply Zlt_le_trans with (1 := H2).
- apply Zpower_le_monotone; auto with zarith.
+ [shiftr n x] = [x] / 2 ^ [n].
+ Proof.
+ intros x y. rewrite shiftr_fold. apply spec_same_level. clear x y.
+ intros n p x. simpl.
+ assert (Hx := ZnZ.spec_to_Z p).
+ assert (Hy := ZnZ.spec_to_Z x).
+ generalize (ZnZ.spec_sub_c (ZnZ.zdigits (dom_op n)) p).
+ case ZnZ.sub_c; intros d H; unfold interp_carry in *; simpl.
+ (** Subtraction without underflow : [ p <= digits ] *)
+ rewrite spec_reduce.
+ rewrite ZnZ.spec_zdigits in H.
+ rewrite ZnZ.spec_add_mul_div by auto with zarith.
+ rewrite ZnZ.spec_0, Zmult_0_l, Zplus_0_l.
+ rewrite Zmod_small.
+ f_equal. f_equal. auto with zarith.
+ split. auto with zarith.
+ apply div_pow2_bound; auto with zarith.
+ (** Subtraction with underflow : [ digits < p ] *)
+ rewrite ZnZ.spec_0. symmetry.
+ apply Zdiv_small.
+ split; auto with zarith.
+ apply Zlt_le_trans with (base (ZnZ.digits (dom_op n))); auto with zarith.
+ unfold base. apply Zpower_le_monotone2; auto with zarith.
+ rewrite ZnZ.spec_zdigits in H.
+ generalize (ZnZ.spec_to_Z d); auto with zarith.
+ Qed.
+
+ (** * Left shift *)
+
+ (** First an unsafe version, working correctly only if
+ the representation is large enough *)
+
+ Local Notation unsafe_shiftln := (fun n p x =>
+ let ops := dom_op n in
+ reduce n (ZnZ.add_mul_div p x ZnZ.zero)).
+
+ Definition unsafe_shiftl : t -> t -> t := Eval red_t in
+ same_level unsafe_shiftln.
+
+ Lemma unsafe_shiftl_fold : unsafe_shiftl = same_level unsafe_shiftln.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_unsafe_shiftl_aux : forall p x K,
+ 0 <= K ->
+ [x] < 2^K ->
+ [p] + K <= Zpos (digits x) ->
+ [unsafe_shiftl p x] = [x] * 2 ^ [p].
+ Proof.
+ intros p x.
+ rewrite unsafe_shiftl_fold. rewrite digits_level.
+ apply spec_same_level_dep.
+ intros n m z z' r LE H K HK H1 H2. apply (H K); auto.
+ transitivity (Zpos (ZnZ.digits (dom_op n))); auto.
+ apply digits_dom_op_incr; auto.
+ clear p x.
+ intros n p x K HK Hx Hp. lazy zeta. rewrite spec_reduce.
+ destruct (ZnZ.spec_to_Z x).
+ destruct (ZnZ.spec_to_Z p).
+ rewrite ZnZ.spec_add_mul_div by (omega with *).
+ rewrite ZnZ.spec_0, Zdiv_0_l, Zplus_0_r.
+ apply Zmod_small. unfold base.
+ split; auto with zarith.
+ rewrite Zmult_comm.
+ apply Zlt_le_trans with (2^(ZnZ.to_Z p + K)).
+ rewrite Zpower_exp; auto with zarith.
+ apply Zmult_lt_compat_l; auto with zarith.
+ apply Zpower_le_monotone2; auto with zarith.
+ Qed.
+
+ Theorem spec_unsafe_shiftl: forall p x,
+ [p] <= [head0 x] -> [unsafe_shiftl p x] = [x] * 2 ^ [p].
+ Proof.
+ intros.
+ destruct (Z_eq_dec [x] 0) as [EQ|NEQ].
+ (* [x] = 0 *)
+ apply spec_unsafe_shiftl_aux with 0; auto with zarith.
+ now rewrite EQ.
+ rewrite spec_head00 in *; auto with zarith.
+ (* [x] <> 0 *)
+ apply spec_unsafe_shiftl_aux with ([log2 x] + 1); auto with zarith.
+ generalize (spec_pos (log2 x)); auto with zarith.
+ destruct (spec_log2 x); auto with zarith.
+ rewrite log2_digits_head0; auto with zarith.
+ generalize (spec_pos x); auto with zarith.
Qed.
+ (** Then we define a function doubling the size of the representation
+ but without changing the value of the number. *)
+
+ Local Notation double_size_n :=
+ (fun n x => mk_t_S n (WW ZnZ.zero x)).
+
+ Definition double_size : t -> t := Eval red_t in
+ iter_t double_size_n.
+
+ Lemma double_size_fold : double_size = iter_t double_size_n.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_double_size_digits:
+ forall x, digits (double_size x) = xO (digits x).
+ Proof.
+ intros x; case x; unfold double_size, digits; clear x; auto.
+ intros n x; rewrite make_op_S; auto.
+ Qed.
+
+ Theorem spec_double_size: forall x, [double_size x] = [x].
+ Proof.
+ intros x. rewrite double_size_fold. apply spec_iter_t. clear x.
+ intros n x. rewrite spec_mk_t_S. simpl. rewrite ZnZ.spec_0.
+ auto with zarith.
+ Qed.
+
+ Theorem spec_double_size_head0:
+ forall x, 2 * [head0 x] <= [head0 (double_size x)].
+ Proof.
+ intros x.
+ assert (F1:= spec_pos (head0 x)).
+ assert (F2: 0 < Zpos (digits x)).
+ red; auto.
+ case (Zle_lt_or_eq _ _ (spec_pos x)); intros HH.
+ generalize HH; rewrite <- (spec_double_size x); intros HH1.
+ case (spec_head0 x HH); intros _ HH2.
+ case (spec_head0 _ HH1).
+ rewrite (spec_double_size x); rewrite (spec_double_size_digits x).
+ intros HH3 _.
+ case (Zle_or_lt ([head0 (double_size x)]) (2 * [head0 x])); auto; intros HH4.
+ absurd (2 ^ (2 * [head0 x] )* [x] < 2 ^ [head0 (double_size x)] * [x]); auto.
+ apply Zle_not_lt.
+ apply Zmult_le_compat_r; auto with zarith.
+ apply Zpower_le_monotone2; auto; auto with zarith.
+ assert (HH5: 2 ^[head0 x] <= 2 ^(Zpos (digits x) - 1)).
+ case (Zle_lt_or_eq 1 [x]); auto with zarith; intros HH5.
+ apply Zmult_le_reg_r with (2 ^ 1); auto with zarith.
+ rewrite <- (fun x y z => Zpower_exp x (y - z)); auto with zarith.
+ assert (tmp: forall x, x - 1 + 1 = x); [intros; ring | rewrite tmp; clear tmp].
+ apply Zle_trans with (2 := Zlt_le_weak _ _ HH2).
+ apply Zmult_le_compat_l; auto with zarith.
+ rewrite Zpower_1_r; auto with zarith.
+ apply Zpower_le_monotone2; auto with zarith.
+ case (Zle_or_lt (Zpos (digits x)) [head0 x]); auto with zarith; intros HH6.
+ absurd (2 ^ Zpos (digits x) <= 2 ^ [head0 x] * [x]); auto with zarith.
+ rewrite <- HH5; rewrite Zmult_1_r.
+ apply Zpower_le_monotone2; auto with zarith.
+ rewrite (Zmult_comm 2).
+ rewrite Zpower_mult; auto with zarith.
+ rewrite Zpower_2.
+ apply Zlt_le_trans with (2 := HH3).
+ rewrite <- Zmult_assoc.
+ replace (Zpos (xO (digits x)) - 1) with
+ ((Zpos (digits x) - 1) + (Zpos (digits x))).
+ rewrite Zpower_exp; auto with zarith.
+ apply Zmult_lt_compat2; auto with zarith.
+ split; auto with zarith.
+ apply Zmult_lt_0_compat; auto with zarith.
+ rewrite Zpos_xO; ring.
+ apply Zlt_le_weak; auto.
+ repeat rewrite spec_head00; auto.
+ rewrite spec_double_size_digits.
+ rewrite Zpos_xO; auto with zarith.
+ rewrite spec_double_size; auto.
+ Qed.
+
+ Theorem spec_double_size_head0_pos:
+ forall x, 0 < [head0 (double_size x)].
+ Proof.
+ intros x.
+ assert (F: 0 < Zpos (digits x)).
+ red; auto.
+ case (Zle_lt_or_eq _ _ (spec_pos (head0 (double_size x)))); auto; intros F0.
+ case (Zle_lt_or_eq _ _ (spec_pos (head0 x))); intros F1.
+ apply Zlt_le_trans with (2 := (spec_double_size_head0 x)); auto with zarith.
+ case (Zle_lt_or_eq _ _ (spec_pos x)); intros F3.
+ generalize F3; rewrite <- (spec_double_size x); intros F4.
+ absurd (2 ^ (Zpos (xO (digits x)) - 1) < 2 ^ (Zpos (digits x))).
+ apply Zle_not_lt.
+ apply Zpower_le_monotone2; auto with zarith.
+ rewrite Zpos_xO; auto with zarith.
+ case (spec_head0 x F3).
+ rewrite <- F1; rewrite Zpower_0_r; rewrite Zmult_1_l; intros _ HH.
+ apply Zle_lt_trans with (2 := HH).
+ case (spec_head0 _ F4).
+ rewrite (spec_double_size x); rewrite (spec_double_size_digits x).
+ rewrite <- F0; rewrite Zpower_0_r; rewrite Zmult_1_l; auto.
+ generalize F1; rewrite (spec_head00 _ (sym_equal F3)); auto with zarith.
+ Qed.
+
+ (** Finally we iterate [double_size] enough before [unsafe_shiftl]
+ in order to get a fully correct [shiftl]. *)
+
Definition shiftl_aux_body cont n x :=
match compare n (head0 x) with
Gt => cont n (double_size x)
@@ -425,7 +1071,7 @@ Module Make (Import W0:CyclicType) <: NType.
[shiftl_aux_body cont n x] = [x] * 2 ^ [n].
Proof.
intros n p x cont H1 H2; unfold shiftl_aux_body.
- generalize (spec_compare_aux n (head0 x)); case compare; intros H.
+ rewrite spec_compare; case Zcompare_spec; intros H.
apply spec_unsafe_shiftl; auto with zarith.
apply spec_unsafe_shiftl; auto with zarith.
rewrite H2.
@@ -435,7 +1081,7 @@ Module Make (Import W0:CyclicType) <: NType.
rewrite Zpower_1_r; apply Zmult_le_compat_l; auto with zarith.
Qed.
- Fixpoint shiftl_aux p cont n x {struct p} :=
+ Fixpoint shiftl_aux p cont n x :=
shiftl_aux_body
(fun n x => match p with
| xH => cont n x
@@ -465,7 +1111,7 @@ Module Make (Import W0:CyclicType) <: NType.
apply spec_shiftl_aux_body with (q); auto.
intros x1 H3; apply Hrec with (q); auto.
apply Zle_trans with (2 := H3); auto with zarith.
- apply Zpower_le_monotone; auto with zarith.
+ apply Zpower_le_monotone2; auto with zarith.
intros x2 H4; apply Hrec with (p + q)%positive; auto.
intros x3 H5; apply H2.
rewrite (Zpos_xO p).
@@ -486,11 +1132,11 @@ Module Make (Import W0:CyclicType) <: NType.
[shiftl n x] = [x] * 2 ^ [n].
Proof.
intros n x; unfold shiftl, shiftl_aux_body.
- generalize (spec_compare_aux n (head0 x)); case compare; intros H.
+ rewrite spec_compare; case Zcompare_spec; intros H.
apply spec_unsafe_shiftl; auto with zarith.
apply spec_unsafe_shiftl; auto with zarith.
rewrite <- (spec_double_size x).
- generalize (spec_compare_aux n (head0 (double_size x))); case compare; intros H1.
+ rewrite spec_compare; case Zcompare_spec; intros H1.
apply spec_unsafe_shiftl; auto with zarith.
apply spec_unsafe_shiftl; auto with zarith.
rewrite <- (spec_double_size (double_size x)).
@@ -504,21 +1150,22 @@ Module Make (Import W0:CyclicType) <: NType.
apply Zle_trans with (2 := H2).
apply Zle_trans with (2 ^ Zpos (digits n)); auto with zarith.
case (spec_digits n); auto with zarith.
- apply Zpower_le_monotone; auto with zarith.
+ apply Zpower_le_monotone2; auto with zarith.
Qed.
+ (** * Parity test *)
- (** * Zero and One *)
+ Definition is_even : t -> bool := Eval red_t in
+ iter_t (fun n x => ZnZ.is_even x).
- Theorem spec_0: [zero] = 0.
- Proof.
- exact (spec_0 w0_spec).
- Qed.
+ Lemma is_even_fold : is_even = iter_t (fun n x => ZnZ.is_even x).
+ Proof. red_t; reflexivity. Qed.
- Theorem spec_1: [one] = 1.
+ Theorem spec_is_even: forall x,
+ if is_even x then [x] mod 2 = 0 else [x] mod 2 = 1.
Proof.
- exact (spec_1 w0_spec).
+ intros x. rewrite is_even_fold. apply spec_iter_t. clear x.
+ intros n x; exact (ZnZ.spec_is_even x).
Qed.
-
End Make.
diff --git a/theories/Numbers/Natural/BigN/NMake_gen.ml b/theories/Numbers/Natural/BigN/NMake_gen.ml
index b8552a39b5..cd87982366 100644
--- a/theories/Numbers/Natural/BigN/NMake_gen.ml
+++ b/theories/Numbers/Natural/BigN/NMake_gen.ml
@@ -24,7 +24,7 @@ let gen_proof = true (* should we generate proofs ? *)
let t = "t"
let c = "N"
-let pz n = if n == 0 then "w_0" else "W0"
+let pz n = if n == 0 then "ZnZ.zero" else "W0"
let rec gen2 n = if n == 0 then "1" else if n == 1 then "2"
else "2 * " ^ (gen2 (n - 1))
let rec genxO n s =
@@ -73,35 +73,52 @@ let _ =
pr " DoubleType DoubleMul DoubleDivn1 DoubleCyclic Nbasic";
pr " Wf_nat StreamMemo.";
pr "";
- pr "Module Make (Import W0:CyclicType).";
+ pr "Module Make (W0:CyclicType).";
pr "";
- pr " Definition w0 := W0.w.";
+ pr " Implicit Arguments mk_zn2z_ops [t].";
+ pr " Implicit Arguments mk_zn2z_ops_karatsuba [t].";
+ pr " Implicit Arguments mk_zn2z_specs [t ops].";
+ pr " Implicit Arguments mk_zn2z_specs_karatsuba [t ops].";
+ pr " Implicit Arguments ZnZ.digits [t].";
+ pr " Implicit Arguments ZnZ.zdigits [t].";
+ pr "";
+
+ pr " (** * The word types *)";
+ pr "";
+
+ pr " Local Notation w0 := W0.t.";
for i = 1 to size do
pr " Definition w%i := zn2z w%i." i (i-1)
done;
pr "";
- pr " Definition w0_op := W0.w_op.";
+ pr " (** * The operation type classes for the word types *)";
+ pr "";
+
+ pr " Local Notation w0_op := W0.ops.";
for i = 1 to 3 do
- pr " Definition w%i_op := mk_zn2z_op w%i_op." i (i-1)
+ pr " Instance w%i_op : ZnZ.Ops w%i := mk_zn2z_ops w%i_op." i i (i-1)
done;
- for i = 4 to size + 3 do
- pr " Definition w%i_op := mk_zn2z_op_karatsuba w%i_op." i (i-1)
+ for i = 4 to size do
+ pr " Instance w%i_op : ZnZ.Ops w%i := mk_zn2z_ops_karatsuba w%i_op." i i (i-1)
+ done;
+ for i = size+1 to size+3 do
+ pr " Instance w%i_op : ZnZ.Ops (word w%i %i%%nat) := mk_zn2z_ops_karatsuba w%i_op." i size (i-size) (i-1)
done;
pr "";
pr " Section Make_op.";
- pr " Variable mk : forall w', znz_op w' -> znz_op (zn2z w').";
+ pr " Variable mk : forall w', ZnZ.Ops w' -> ZnZ.Ops (zn2z w').";
pr "";
- pr " Fixpoint make_op_aux (n:nat) : znz_op (word w%i (S n)):=" size;
- pr " match n return znz_op (word w%i (S n)) with" size;
+ pr " Fixpoint make_op_aux (n:nat) : ZnZ.Ops (word w%i (S n)):=" size;
+ pr " match n return ZnZ.Ops (word w%i (S n)) with" size;
pr " | O => w%i_op" (size+1);
pr " | S n1 =>";
- pr " match n1 return znz_op (word w%i (S (S n1))) with" size;
+ pr " match n1 return ZnZ.Ops (word w%i (S (S n1))) with" size;
pr " | O => w%i_op" (size+2);
pr " | S n2 =>";
- pr " match n2 return znz_op (word w%i (S (S (S n2)))) with" size;
+ pr " match n2 return ZnZ.Ops (word w%i (S (S (S n2)))) with" size;
pr " | O => w%i_op" (size+3);
pr " | S n3 => mk _ (mk _ (mk _ (make_op_aux n3)))";
pr " end";
@@ -110,12 +127,15 @@ let _ =
pr "";
pr " End Make_op.";
pr "";
- pr " Definition omake_op := make_op_aux mk_zn2z_op_karatsuba.";
+ pr " Definition omake_op := make_op_aux mk_zn2z_ops_karatsuba.";
pr "";
pr "";
pr " Definition make_op_list := dmemo_list _ omake_op.";
pr "";
- pr " Definition make_op n := dmemo_get _ omake_op n make_op_list.";
+ pr " Instance make_op n : ZnZ.Ops (word w6 (S n))";
+ pr " := dmemo_get _ omake_op n make_op_list.";
+ pr "";
+
pr "";
pr " Lemma make_op_omake: forall n, make_op n = omake_op n.";
pr " intros n; unfold make_op, make_op_list.";
@@ -123,6 +143,10 @@ let _ =
pr " Qed.";
pr "";
+
+ pr " (** * The main type [t], isomorphic with [exists n, word w0 n] *)";
+ pr "";
+
pr " Inductive %s_ :=" t;
for i = 0 to size do
pr " | %s%i : w%i -> %s_" c i i t
@@ -131,49 +155,98 @@ let _ =
pr "";
pr " Definition %s := %s_." t t;
pr "";
- pr " Definition w_0 := w0_op.(znz_0).";
+
+ pr " Definition zero : t := %s0 ZnZ.zero." c;
+ pr " Definition one : t := %s0 ZnZ.one." c;
+ pr "";
+
+ pr " (** * A generic toolbox for building and deconstructing [t] *)";
pr "";
+ let rec iter_str n s = if n = 0 then "" else (iter_str (n-1) s) ^ s
+ in
+ pr " Local Notation SizePlus n := %sn%s."
+ (iter_str size "(S ") (iter_str size ")");
+ pr "";
+
+ pr " Definition dom_t n := match n with";
for i = 0 to size do
- pr " Definition one%i := w%i_op.(znz_1)." i i
+ pr " | %i => w%i" i i;
done;
+ pr " | SizePlus n => word w%i n" size;
+ pr " end.";
pr "";
-
- pr " Definition zero := %s0 w_0." c;
- pr " Definition one := %s0 one0." c;
+ pr " Instance dom_op n : ZnZ.Ops (dom_t n) | 10.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " do %i (destruct n; [simpl;auto with *|])." (size+1);
+ pp " unfold dom_t. auto with *.";
+ pp " Defined.";
pr "";
- pr " Definition to_Z x :=";
+ pr " Definition iter_t {A:Type}(f : forall n, dom_t n -> A)(x:t) : A :=";
pr " match x with";
for i = 0 to size do
- pr " | %s%i wx => w%i_op.(znz_to_Z) wx" c i i
+ pr " | %s%i wx => f %i wx" c i i;
done;
- pr " | %sn n wx => (make_op n).(znz_to_Z) wx" c;
+ pr " | %sn n wx => f (SizePlus (S n)) wx" c;
pr " end.";
pr "";
- pr " Open Scope Z_scope.";
- pr " Notation \"[ x ]\" := (to_Z x).";
+ pr " Definition mk_t (n:nat) : dom_t n -> t :=";
+ pr " match n as n' return dom_t n' -> t with";
+ for i = 0 to size do
+ pr " | %i => %s%i" i c i;
+ done;
+ pr " | SizePlus (S n) => %sn n" c;
+ pr " end.";
pr "";
- pr " Definition to_N x := Zabs_N (to_Z x).";
+pr "
+ Lemma dom_t_S : forall n, zn2z (dom_t n) = dom_t (S n).
+ Proof.
+ do %i (destruct n; try reflexivity).
+ Defined.
+" (size+1);
+
+pr "
+ Definition cast w w' (H:w=w') (x:w) : w' :=
+ match H in _=y return y with
+ | eq_refl => x
+ end.
+
+ Definition mk_t_S n (x:zn2z (dom_t n)) : t :=
+ Eval lazy beta delta [cast dom_t_S] in
+ mk_t (S n) (cast _ _ (dom_t_S n) x).
+";
+pr "
+
+ (** * Projection to ZArith *)
+
+ Definition to_Z : t -> Z :=
+ Eval lazy beta iota delta [iter_t dom_t dom_op] in
+ iter_t (fun _ x => ZnZ.to_Z x).
+";
+
+ pr " Open Scope Z_scope.";
+ pr " Notation \"[ x ]\" := (to_Z x).";
pr "";
- pr " Definition eq x y := (to_Z x = to_Z y).";
+ pr " Definition eq (x y : t) := (to_Z x = to_Z y).";
pr "";
pp " (* Regular make op (no karatsuba) *)";
- pp " Fixpoint nmake_op (ww:Type) (ww_op: znz_op ww) (n: nat) :";
- pp " znz_op (word ww n) :=";
- pp " match n return znz_op (word ww n) with";
+ pp " Fixpoint nmake_op (ww:Type) (ww_op: ZnZ.Ops ww) (n: nat) :";
+ pp " ZnZ.Ops (word ww n) :=";
+ pp " match n return ZnZ.Ops (word ww n) with";
pp " O => ww_op";
- pp " | S n1 => mk_zn2z_op (nmake_op ww ww_op n1)";
+ pp " | S n1 => mk_zn2z_ops (nmake_op ww ww_op n1)";
pp " end.";
pp "";
pp " (* Simplification by rewriting for nmake_op *)";
- pp " Theorem nmake_op_S: forall ww (w_op: znz_op ww) x,";
- pp " nmake_op _ w_op (S x) = mk_zn2z_op (nmake_op _ w_op x).";
+ pp " Theorem nmake_op_S: forall ww (w_op: ZnZ.Ops ww) x,";
+ pp " nmake_op _ w_op (S x) = mk_zn2z_ops (nmake_op _ w_op x).";
pp " auto.";
pp " Qed.";
pp "";
@@ -182,27 +255,27 @@ let _ =
pr " (* Eval and extend functions for each level *)";
for i = 0 to size do
pp " Let nmake_op%i := nmake_op _ w%i_op." i i;
- pp " Let eval%in n := znz_to_Z (nmake_op%i n)." i i;
+ pp " Let eval%in n := ZnZ.to_Z (Ops:=nmake_op%i n)." i i;
if i == 0 then
- pr " Let extend%i := DoubleBase.extend (WW w_0)." i
+ pr " Let extend%i := DoubleBase.extend (WW (ZnZ.zero:w0))." i
else
- pr " Let extend%i := DoubleBase.extend (WW (W0: w%i))." i i;
+ pr " Let extend%i := DoubleBase.extend (WW (W0: w%i))." i i;
done;
pr "";
- pp " Theorem digits_doubled:forall n ww (w_op: znz_op ww),";
- pp " znz_digits (nmake_op _ w_op n) =";
- pp " DoubleBase.double_digits (znz_digits w_op) n.";
+ pp " Theorem digits_doubled:forall n ww (w_op: ZnZ.Ops ww),";
+ pp " ZnZ.digits (nmake_op _ w_op n) =";
+ pp " DoubleBase.double_digits (ZnZ.digits w_op) n.";
pp " Proof.";
pp " intros n; elim n; auto; clear n.";
pp " intros n Hrec ww ww_op; simpl DoubleBase.double_digits.";
pp " rewrite <- Hrec; auto.";
pp " Qed.";
pp "";
- pp " Theorem nmake_double: forall n ww (w_op: znz_op ww),";
- pp " znz_to_Z (nmake_op _ w_op n) =";
- pp " @DoubleBase.double_to_Z _ (znz_digits w_op) (znz_to_Z w_op) n.";
+ pp " Theorem nmake_double: forall n ww (w_op: ZnZ.Ops ww),";
+ pp " ZnZ.to_Z (Ops:=nmake_op _ w_op n) =";
+ pp " @DoubleBase.double_to_Z _ (ZnZ.digits w_op) (ZnZ.to_Z (Ops:=w_op)) n.";
pp " Proof.";
pp " intros n; elim n; auto; clear n.";
pp " intros n Hrec ww ww_op; simpl DoubleBase.double_to_Z; unfold zn2z_to_Z.";
@@ -212,9 +285,9 @@ let _ =
pp "";
- pp " Theorem digits_nmake:forall n ww (w_op: znz_op ww),";
- pp " znz_digits (nmake_op _ w_op (S n)) =";
- pp " xO (znz_digits (nmake_op _ w_op n)).";
+ pp " Theorem digits_nmake:forall n ww (w_op: ZnZ.Ops ww),";
+ pp " ZnZ.digits (nmake_op _ w_op (S n)) =";
+ pp " xO (ZnZ.digits (nmake_op _ w_op n)).";
pp " Proof.";
pp " auto.";
pp " Qed.";
@@ -222,17 +295,17 @@ let _ =
pp " Theorem znz_nmake_op: forall ww ww_op n xh xl,";
- pp " znz_to_Z (nmake_op ww ww_op (S n)) (WW xh xl) =";
- pp " znz_to_Z (nmake_op ww ww_op n) xh *";
- pp " base (znz_digits (nmake_op ww ww_op n)) +";
- pp " znz_to_Z (nmake_op ww ww_op n) xl.";
+ pp " ZnZ.to_Z (Ops:=nmake_op ww ww_op (S n)) (WW xh xl) =";
+ pp " ZnZ.to_Z (Ops:=nmake_op ww ww_op n) xh *";
+ pp " base (ZnZ.digits (nmake_op ww ww_op n)) +";
+ pp " ZnZ.to_Z (Ops:=nmake_op ww ww_op n) xl.";
pp " Proof.";
pp " auto.";
pp " Qed.";
pp "";
pp " Theorem make_op_S: forall n,";
- pp " make_op (S n) = mk_zn2z_op_karatsuba (make_op n).";
+ pp " make_op (S n) = mk_zn2z_ops_karatsuba (make_op n).";
pp " intro n.";
pp " do 2 rewrite make_op_omake.";
pp " pattern n; apply lt_wf_ind; clear n.";
@@ -244,71 +317,76 @@ let _ =
pp " intros _; unfold omake_op, make_op_aux, w%i_op, w%i_op; apply refl_equal." (size + 3) (size + 2);
pp " intros n Hrec.";
pp " change (omake_op (S (S (S (S n))))) with";
- pp " (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (omake_op (S n))))).";
+ pp " (mk_zn2z_ops_karatsuba (mk_zn2z_ops_karatsuba (mk_zn2z_ops_karatsuba (omake_op (S n))))).";
pp " change (omake_op (S (S (S n)))) with";
- pp " (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (omake_op n)))).";
+ pp " (mk_zn2z_ops_karatsuba (mk_zn2z_ops_karatsuba (mk_zn2z_ops_karatsuba (omake_op n)))).";
pp " rewrite Hrec; auto with arith.";
pp " Qed.";
pp "";
+ pr " (** * The specification proofs for the word operators *)";
+ pr "";
- for i = 1 to size + 2 do
- pp " Let znz_to_Z_%i: forall x y," i;
- pp " znz_to_Z w%i_op (WW x y) =" i;
- pp " znz_to_Z w%i_op x * base (znz_digits w%i_op) + znz_to_Z w%i_op y." (i-1) (i-1) (i-1);
- pp " Proof.";
- pp " auto.";
- pp " Qed.";
- pp "";
- done;
-
- pp " Let znz_to_Z_n: forall n x y,";
- pp " znz_to_Z (make_op (S n)) (WW x y) =";
- pp " znz_to_Z (make_op n) x * base (znz_digits (make_op n)) + znz_to_Z (make_op n) y.";
- pp " Proof.";
- pp " intros n x y; rewrite make_op_S; auto.";
- pp " Qed.";
- pp "";
+ pr " Typeclasses Opaque w1 w2 w3 w4 w5 w6.";
+ pr "";
- pp " Let w0_spec: znz_spec w0_op := W0.w_spec.";
+ pp " Instance w0_spec: ZnZ.Specs w0_op := W0.specs.";
for i = 1 to 3 do
- pp " Let w%i_spec: znz_spec w%i_op := mk_znz2_spec w%i_spec." i i (i-1)
+ pp " Instance w%i_spec: ZnZ.Specs w%i_op := mk_zn2z_specs w%i_spec." i i (i-1)
done;
for i = 4 to size + 3 do
- pp " Let w%i_spec : znz_spec w%i_op := mk_znz2_karatsuba_spec w%i_spec." i i (i-1)
+ pp " Instance w%i_spec : ZnZ.Specs w%i_op := mk_zn2z_specs_karatsuba w%i_spec." i i (i-1)
done;
pp "";
- pp " Let wn_spec: forall n, znz_spec (make_op n).";
+ pp " Instance wn_spec (n:nat) : ZnZ.Specs (make_op n).";
+ pp " Proof.";
pp " intros n; elim n; clear n.";
pp " exact w%i_spec." (size + 1);
pp " intros n Hrec; rewrite make_op_S.";
- pp " exact (mk_znz2_karatsuba_spec Hrec).";
+ pp " exact (mk_zn2z_specs_karatsuba Hrec).";
pp " Qed.";
pp "";
- for i = 0 to size do
- pr " Definition w%i_eq0 := w%i_op.(znz_eq0)." i i;
- pr " Let spec_w%i_eq0: forall x, if w%i_eq0 x then [%s%i x] = 0 else True." i i c i;
- pa " Admitted.";
+pr "
+ Instance spec_dom n : ZnZ.Specs (dom_op n) | 10.
+ Proof.
+ do %i (destruct n; auto with *). apply wn_spec.
+ Qed.
+" (size+1);
+
+ for i = 1 to size + 2 do
+ pp " Let to_Z_%i: forall x y," i;
+ pp " ZnZ.to_Z (Ops:=w%i_op) (WW x y) =" i;
+ pp " ZnZ.to_Z (Ops:=w%i_op) x * base (ZnZ.digits w%i_op) + ZnZ.to_Z (Ops:=w%i_op) y." (i-1) (i-1) (i-1);
pp " Proof.";
- pp " intros x; unfold w%i_eq0, to_Z; generalize (spec_eq0 w%i_spec x);" i i;
- pp " case znz_eq0; auto.";
+ pp " auto.";
pp " Qed.";
- pr "";
+ pp "";
done;
- pr "";
+ pp " Let to_Z_n: forall n x y,";
+ pp " ZnZ.to_Z (Ops:=make_op (S n)) (WW x y) =";
+ pp " ZnZ.to_Z (Ops:=make_op n) x * base (ZnZ.digits (make_op n)) + ZnZ.to_Z (Ops:=make_op n) y.";
+ pp " Proof.";
+ pp " intros n x y; rewrite make_op_S; auto.";
+ pp " Qed.";
+ pp "";
+
+ let rec iter_name i j base sep =
+ if i = j then base^(string_of_int i)
+ else (iter_name i (j-1) base sep)^sep^" "^base^(string_of_int j)
+ in
for i = 0 to size do
- pp " Theorem digits_w%i: znz_digits w%i_op = znz_digits (nmake_op _ w0_op %i)." i i i;
+ pp " Theorem digits_w%i: ZnZ.digits w%i_op = ZnZ.digits (nmake_op _ w0_op %i)." i i i;
if i == 0 then
pp " auto."
else
pp " rewrite digits_nmake; rewrite <- digits_w%i; auto." (i - 1);
pp " Qed.";
pp "";
- pp " Let spec_double_eval%in: forall n, eval%in n = DoubleBase.double_to_Z (znz_digits w%i_op) (znz_to_Z w%i_op) n." i i i i;
+ pp " Let spec_double_eval%in: forall n, eval%in n = DoubleBase.double_to_Z (ZnZ.digits w%i_op) (ZnZ.to_Z (Ops:=w%i_op)) n." i i i i;
pp " Proof.";
pp " intros n; exact (nmake_double n w%i w%i_op)." i i;
pp " Qed.";
@@ -317,20 +395,20 @@ let _ =
for i = 0 to size do
for j = 0 to (size - i) do
- pp " Theorem digits_w%in%i: znz_digits w%i_op = znz_digits (nmake_op _ w%i_op %i)." i j (i + j) i j;
+ pp " Theorem digits_w%in%i: ZnZ.digits w%i_op = ZnZ.digits (nmake_op _ w%i_op %i)." i j (i + j) i j;
pp " Proof.";
if j == 0 then
if i == 0 then
pp " auto."
else
begin
- pp " apply trans_equal with (xO (znz_digits w%i_op))." (i + j -1);
+ pp " apply trans_equal with (xO (ZnZ.digits w%i_op))." (i + j -1);
pp " auto.";
pp " unfold nmake_op; auto.";
end
else
begin
- pp " apply trans_equal with (xO (znz_digits w%i_op))." (i + j -1);
+ pp " apply trans_equal with (xO (ZnZ.digits w%i_op))." (i + j -1);
pp " auto.";
pp " rewrite digits_nmake.";
pp " rewrite digits_w%in%i." i (j - 1);
@@ -346,7 +424,7 @@ let _ =
begin
pp " intros x; case x.";
pp " auto.";
- pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (i + j);
+ pp " intros xh xl; unfold to_Z; rewrite to_Z_%i." (i + j);
pp " rewrite digits_w%in%i." i (j - 1);
pp " generalize (spec_eval%in%i); unfold to_Z; intros HH; repeat rewrite HH." i (j - 1);
pp " unfold eval%in, nmake_op%i." i i;
@@ -358,15 +436,15 @@ let _ =
pp " Let spec_extend%in%i: forall x, [%s%i x] = [%s%i (extend%i %i x)]." i (i + j + 1) c i c (i + j + 1) i j;
if j == 0 then
begin
- pp " intros x; change (extend%i 0 x) with (WW (znz_0 w%i_op) x)." i (i + j);
- pp " unfold to_Z; rewrite znz_to_Z_%i." (i + j + 1);
- pp " rewrite (spec_0 w%i_spec); auto." (i + j);
+ pp " intros x; change (extend%i 0 x) with (WW (ZnZ.zero (Ops:=w%i_op)) x)." i (i + j);
+ pp " unfold to_Z; rewrite to_Z_%i." (i + j + 1);
+ pp " rewrite ZnZ.spec_0; auto.";
end
else
begin
- pp " intros x; change (extend%i %i x) with (WW (znz_0 w%i_op) (extend%i %i x))." i j (i + j) i (j - 1);
- pp " unfold to_Z; rewrite znz_to_Z_%i." (i + j + 1);
- pp " rewrite (spec_0 w%i_spec)." (i + j);
+ pp " intros x; change (extend%i %i x) with (WW (ZnZ.zero (Ops:=w%i_op)) (extend%i %i x))." i j (i + j) i (j - 1);
+ pp " unfold to_Z; rewrite to_Z_%i." (i + j + 1);
+ pp " rewrite ZnZ.spec_0.";
pp " generalize (spec_extend%in%i x); unfold to_Z." i (i + j);
pp " intros HH; rewrite <- HH; auto.";
end;
@@ -375,9 +453,9 @@ let _ =
end;
done;
- pp " Theorem digits_w%in%i: znz_digits w%i_op = znz_digits (nmake_op _ w%i_op %i)." i (size - i + 1) (size + 1) i (size - i + 1);
+ pp " Theorem digits_w%in%i: ZnZ.digits w%i_op = ZnZ.digits (nmake_op _ w%i_op %i)." i (size - i + 1) (size + 1) i (size - i + 1);
pp " Proof.";
- pp " apply trans_equal with (xO (znz_digits w%i_op))." size;
+ pp " apply trans_equal with (xO (ZnZ.digits w%i_op))." size;
pp " auto.";
pp " rewrite digits_nmake.";
pp " rewrite digits_w%in%i." i (size - i);
@@ -389,7 +467,7 @@ let _ =
pp " Proof.";
pp " intros x; case x.";
pp " auto.";
- pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (size + 1);
+ pp " intros xh xl; unfold to_Z; rewrite to_Z_%i." (size + 1);
pp " rewrite digits_w%in%i." i (size - i);
pp " generalize (spec_eval%in%i); unfold to_Z; intros HH; repeat rewrite HH." i (size - i);
pp " unfold eval%in, nmake_op%i." i i;
@@ -400,7 +478,7 @@ let _ =
pp " Let spec_eval%in%i: forall x, [%sn 1 x] = eval%in %i x." i (size - i + 2) c i (size - i + 2);
pp " intros x; case x.";
pp " auto.";
- pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (size + 2);
+ pp " intros xh xl; unfold to_Z; rewrite to_Z_%i." (size + 2);
pp " rewrite digits_w%in%i." i (size + 1 - i);
pp " generalize (spec_eval%in%i); unfold to_Z; change (make_op 0) with (w%i_op); intros HH; repeat rewrite HH." i (size + 1 - i) (size + 1);
pp " unfold eval%in, nmake_op%i." i i;
@@ -410,12 +488,12 @@ let _ =
done;
pp " Let digits_w%in: forall n," size;
- pp " znz_digits (make_op n) = znz_digits (nmake_op _ w%i_op (S n))." size;
+ pp " ZnZ.digits (make_op n) = ZnZ.digits (nmake_op _ w%i_op (S n))." size;
pp " intros n; elim n; clear n.";
- pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size;
+ pp " change (ZnZ.digits (make_op 0)) with (xO (ZnZ.digits w%i_op))." size;
pp " rewrite nmake_op_S; apply sym_equal; auto.";
pp " intros n Hrec.";
- pp " replace (znz_digits (make_op (S n))) with (xO (znz_digits (make_op n))).";
+ pp " replace (ZnZ.digits (make_op (S n))) with (xO (ZnZ.digits (make_op n))).";
pp " rewrite Hrec.";
pp " rewrite nmake_op_S; apply sym_equal; auto.";
pp " rewrite make_op_S; apply sym_equal; auto.";
@@ -430,7 +508,7 @@ let _ =
pp " rewrite make_op_S; rewrite nmake_op_S; auto.";
pp " intros xh xl.";
pp " unfold to_Z in Hrec |- *.";
- pp " rewrite znz_to_Z_n.";
+ pp " rewrite to_Z_n.";
pp " rewrite digits_w%in." size;
pp " repeat rewrite Hrec.";
pp " unfold eval%in, nmake_op%i." size size;
@@ -440,29 +518,36 @@ let _ =
pp " Let spec_extend%in: forall n x, [%s%i x] = [%sn n (extend%i n x)]." size c size c size ;
pp " intros n; elim n; clear n.";
- pp " intros x; change (extend%i 0 x) with (WW (znz_0 w%i_op) x)." size size;
+ pp " intros x; change (extend%i 0 x) with (WW (ZnZ.zero (Ops:=w%i_op)) x)." size size;
pp " unfold to_Z.";
pp " change (make_op 0) with w%i_op." (size + 1);
- pp " rewrite znz_to_Z_%i; rewrite (spec_0 w%i_spec); auto." (size + 1) size;
+ pp " rewrite to_Z_%i; rewrite ZnZ.spec_0; auto." (size + 1);
pp " intros n Hrec x.";
pp " change (extend%i (S n) x) with (WW W0 (extend%i n x))." size size;
- pp " unfold to_Z in Hrec |- *; rewrite znz_to_Z_n; auto.";
+ pp " unfold to_Z in Hrec |- *; rewrite to_Z_n; auto.";
pp " rewrite <- Hrec.";
- pp " replace (znz_to_Z (make_op n) W0) with 0; auto.";
+ pp " replace (ZnZ.to_Z (Ops:=make_op n) W0) with 0; auto.";
pp " case n; auto; intros; rewrite make_op_S; auto.";
pp " Qed.";
pp "";
- pr " Theorem spec_pos: forall x, 0 <= [x].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; clear x.";
- for i = 0 to size do
- pp " intros x; case (spec_to_Z w%i_spec x); auto." i;
- done;
- pp " intros n x; case (spec_to_Z (wn_spec n) x); auto.";
- pp " Qed.";
- pr "";
+pr "
+ Lemma digits_dom_op : forall n,
+ Zpos (ZnZ.digits (dom_op n)) = Zpos (ZnZ.digits W0.ops) * 2 ^ Z_of_nat n.
+ Proof.
+ intros. rewrite Zmult_comm.
+ do 7 (destruct n; try reflexivity).
+ simpl.
+ rewrite <- shift_pos_correct. f_equal.
+ rewrite shift_pos_nat.
+ rewrite !nat_of_P_succ_morphism, nat_of_P_o_P_of_succ_nat_eq_succ.
+ unfold shift_nat. simpl.
+ generalize (digits_w%in n); simpl; intros ->.
+ rewrite digits_doubled.
+ rewrite digits_w%i, !digits_nmake. simpl.
+ induction n; simpl; congruence.
+ Qed.
+" size size;
pp " Let spec_extendn_0: forall n wx, [%sn n (extend n _ wx)] = [%sn 0 wx]." c c;
pp " intros n; elim n; auto.";
@@ -474,8 +559,8 @@ let _ =
pp " Let spec_extendn0_0: forall n wx, [%sn (S n) (WW W0 wx)] = [%sn n wx]." c c;
pp " Proof.";
pp " intros n x; unfold to_Z.";
- pp " rewrite znz_to_Z_n.";
- pp " rewrite <- (Zplus_0_l (znz_to_Z (make_op n) x)).";
+ pp " rewrite to_Z_n.";
+ pp " rewrite <- (Zplus_0_l (ZnZ.to_Z (Ops:=make_op n) x)).";
pp " apply (f_equal2 Zplus); auto.";
pp " case n; auto.";
pp " intros n1; rewrite make_op_S; auto.";
@@ -508,54 +593,29 @@ let _ =
pp " Qed.";
pp "";
-
- pr " Section LevelAndIter.";
+ pr " Section SameLevel.";
pr "";
pr " Variable res: Type.";
- pr " Variable xxx: res.";
- pr " Variable P: Z -> Z -> res -> Prop.";
- pr " (* Abstraction function for each level *)";
+ pr " Variable P : Z -> Z -> res -> Prop.";
+ pr " Variable f : forall n, dom_t n -> dom_t n -> res.";
+ pr " Variable Pf : forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y).";
+ pr "";
for i = 0 to size do
- pr " Variable f%i: w%i -> w%i -> res." i i i;
- pr " Variable f%in: forall n, w%i -> word w%i (S n) -> res." i i i;
- pr " Variable fn%i: forall n, word w%i (S n) -> w%i -> res." i i i;
- pp " Variable Pf%i: forall x y, P [%s%i x] [%s%i y] (f%i x y)." i c i c i i;
- if i == size then
- begin
- pp " Variable Pf%in: forall n x y, P [%s%i x] (eval%in (S n) y) (f%in n x y)." i c i i i;
- pp " Variable Pfn%i: forall n x y, P (eval%in (S n) x) [%s%i y] (fn%i n x y)." i i c i i;
- end
- else
- begin
- pp " Variable Pf%in: forall n x y, Z_of_nat n <= %i -> P [%s%i x] (eval%in (S n) y) (f%in n x y)." i (size - i) c i i i;
- pp " Variable Pfn%i: forall n x y, Z_of_nat n <= %i -> P (eval%in (S n) x) [%s%i y] (fn%i n x y)." i (size - i) i c i i;
- end;
- pr "";
+ pr " Let f%i : w%i -> w%i -> res := f %i." i i i i;
done;
- pr " Variable fnn: forall n, word w%i (S n) -> word w%i (S n) -> res." size size;
- pp " Variable Pfnn: forall n x y, P [%sn n x] [%sn n y] (fnn n x y)." c c;
- pr " Variable fnm: forall n m, word w%i (S n) -> word w%i (S m) -> res." size size;
- pp " Variable Pfnm: forall n m x y, P [%sn n x] [%sn m y] (fnm n m x y)." c c;
+ pr " Let fn n := f (SizePlus (S n)).";
pr "";
- pr " (* Special zero functions *)";
- pr " Variable f0t: t_ -> res.";
- pp " Variable Pf0t: forall x, P 0 [x] (f0t x).";
- pr " Variable ft0: t_ -> res.";
- pp " Variable Pft0: forall x, P [x] 0 (ft0 x).";
- pr "";
-
-
- pr " (* We level the two arguments before applying *)";
- pr " (* the functions at each leval *)";
- pr " Definition same_level (x y: t_): res :=";
- pr0 " Eval lazy zeta beta iota delta [";
for i = 0 to size do
- pr0 "extend%i " i;
+ pr " Let Pf%i : forall x y : w%i, P [%s%i x] [%s%i y] (f%i x y) := Pf %i." i i c i c i i i;
done;
+ pr " Let Pfn n : forall x y, P [%sn n x] [%sn n y] (fn n x y) := Pf (SizePlus (S n))." c c;
pr "";
- pr " DoubleBase.extend DoubleBase.extend_aux";
- pr " ] in";
- pr " match x, y with";
+ pr " (* We level the two arguments before applying *)";
+ pr " (* the functions at each level *)";
+ pr "";
+ pr " Definition same_level (x y: t_): res := Eval lazy zeta beta iota delta";
+ pr " [ DoubleBase.extend DoubleBase.extend_aux %s ]" (iter_name 0 (size-1) "extend" "");
+ pr " in match x, y with";
for i = 0 to size do
for j = 0 to i - 1 do
pr " | %s%i wx, %s%i wy => f%i wx (extend%i %i wy)" c i c j i j (i - j -1);
@@ -565,20 +625,20 @@ let _ =
pr " | %s%i wx, %s%i wy => f%i (extend%i %i wx) wy" c i c j j i (j - i - 1);
done;
if i == size then
- pr " | %s%i wx, %sn m wy => fnn m (extend%i m wx) wy" c size c size
+ pr " | %s%i wx, %sn m wy => fn m (extend%i m wx) wy" c size c size
else
- pr " | %s%i wx, %sn m wy => fnn m (extend%i m (extend%i %i wx)) wy" c i c size i (size - i - 1);
+ pr " | %s%i wx, %sn m wy => fn m (extend%i m (extend%i %i wx)) wy" c i c size i (size - i - 1);
done;
for i = 0 to size do
if i == size then
- pr " | %sn n wx, %s%i wy => fnn n wx (extend%i n wy)" c c size size
+ pr " | %sn n wx, %s%i wy => fn n wx (extend%i n wy)" c c size size
else
- pr " | %sn n wx, %s%i wy => fnn n wx (extend%i n (extend%i %i wy))" c c i size i (size - i - 1);
+ pr " | %sn n wx, %s%i wy => fn n wx (extend%i n (extend%i %i wy))" c c i size i (size - i - 1);
done;
pr " | %sn n wx, Nn m wy =>" c;
pr " let mn := Max.max n m in";
pr " let d := diff n m in";
- pr " fnn mn";
+ pr " fn mn";
pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
pr " (castm (diff_l n m) (extend_tr wy (fst d)))";
pr " end.";
@@ -597,126 +657,56 @@ let _ =
pp " intros y; rewrite spec_extend%in%i; apply Pf%i." i j j;
done;
if i == size then
- pp " intros m y; rewrite (spec_extend%in m); apply Pfnn." size
+ pp " intros m y; rewrite (spec_extend%in m); apply (Pfn m)." size
else
- pp " intros m y; rewrite spec_extend%in%i; rewrite (spec_extend%in m); apply Pfnn." i size size;
+ pp " intros m y; rewrite spec_extend%in%i; rewrite (spec_extend%in m); apply (Pfn m)." i size size;
done;
pp " intros n x y; case y; clear y.";
for i = 0 to size do
if i == size then
- pp " intros y; rewrite (spec_extend%in n); apply Pfnn." size
+ pp " intros y; rewrite (spec_extend%in n); apply (Pfn n)." size
else
- pp " intros y; rewrite spec_extend%in%i; rewrite (spec_extend%in n); apply Pfnn." i size size;
+ pp " intros y; rewrite spec_extend%in%i; rewrite (spec_extend%in n); apply (Pfn n)." i size size;
done;
pp " intros m y; rewrite <- (spec_cast_l n m x);";
- pp " rewrite <- (spec_cast_r n m y); apply Pfnn.";
+ pp " rewrite <- (spec_cast_r n m y); apply (Pfn (Max.max n m)).";
pp " Qed.";
pp "";
- pr " (* We level the two arguments before applying *)";
- pr " (* the functions at each level (special zero case) *)";
- pr " Definition same_level0 (x y: t_): res :=";
- pr0 " Eval lazy zeta beta iota delta [";
- for i = 0 to size do
- pr0 "extend%i " i;
- done;
+ pr " End SameLevel.";
pr "";
- pr " DoubleBase.extend DoubleBase.extend_aux";
- pr " ] in";
- pr " match x with";
- for i = 0 to size do
- pr " | %s%i wx =>" c i;
- if i == 0 then
- pr " if w0_eq0 wx then f0t y else";
- pr " match y with";
- for j = 0 to i - 1 do
- pr " | %s%i wy =>" c j;
- if j == 0 then
- pr " if w0_eq0 wy then ft0 x else";
- pr " f%i wx (extend%i %i wy)" i j (i - j -1);
- done;
- pr " | %s%i wy => f%i wx wy" c i i;
- for j = i + 1 to size do
- pr " | %s%i wy => f%i (extend%i %i wx) wy" c j j i (j - i - 1);
- done;
- if i == size then
- pr " | %sn m wy => fnn m (extend%i m wx) wy" c size
- else
- pr " | %sn m wy => fnn m (extend%i m (extend%i %i wx)) wy" c size i (size - i - 1);
- pr" end";
- done;
- pr " | %sn n wx =>" c;
- pr " match y with";
- for i = 0 to size do
- pr " | %s%i wy =>" c i;
- if i == 0 then
- pr " if w0_eq0 wy then ft0 x else";
- if i == size then
- pr " fnn n wx (extend%i n wy)" size
- else
- pr " fnn n wx (extend%i n (extend%i %i wy))" size i (size - i - 1);
- done;
- pr " | %sn m wy =>" c;
- pr " let mn := Max.max n m in";
- pr " let d := diff n m in";
- pr " fnn mn";
- pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
- pr " (castm (diff_l n m) (extend_tr wy (fst d)))";
- pr " end";
- pr " end.";
+ pr " Implicit Arguments same_level [res].";
pr "";
-
- pp " Lemma spec_same_level0: forall x y, P [x] [y] (same_level0 x y).";
- pp " Proof.";
- pp " intros x; case x; clear x; unfold same_level0.";
+ pr " Section Iter.";
+ pr "";
+ pr " Variable res: Type.";
+ pr " Variable P: Z -> Z -> res -> Prop.";
+ pr " (* Abstraction function for each level *)";
for i = 0 to size do
- pp " intros x.";
- if i == 0 then
- begin
- pp " generalize (spec_w0_eq0 x); case w0_eq0; intros H.";
- pp " intros y; rewrite H; apply Pf0t.";
- pp " clear H.";
- end;
- pp " intros y; case y; clear y.";
- for j = 0 to i - 1 do
- pp " intros y.";
- if j == 0 then
- begin
- pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
- pp " rewrite H; apply Pft0.";
- pp " clear H.";
- end;
- pp " rewrite spec_extend%in%i; apply Pf%i." j i i;
- done;
- pp " intros y; apply Pf%i." i;
- for j = i + 1 to size do
- pp " intros y; rewrite spec_extend%in%i; apply Pf%i." i j j;
- done;
+ pr " Variable f%i: w%i -> w%i -> res." i i i;
+ pr " Variable f%in: forall n, w%i -> word w%i (S n) -> res." i i i;
+ pr " Variable fn%i: forall n, word w%i (S n) -> w%i -> res." i i i;
+ pp " Variable Pf%i: forall x y, P [%s%i x] [%s%i y] (f%i x y)." i c i c i i;
if i == size then
- pp " intros m y; rewrite (spec_extend%in m); apply Pfnn." size
+ begin
+ pp " Variable Pf%in: forall n x y, P [%s%i x] (eval%in (S n) y) (f%in n x y)." i c i i i;
+ pp " Variable Pfn%i: forall n x y, P (eval%in (S n) x) [%s%i y] (fn%i n x y)." i i c i i;
+ end
else
- pp " intros m y; rewrite spec_extend%in%i; rewrite (spec_extend%in m); apply Pfnn." i size size;
- done;
- pp " intros n x y; case y; clear y.";
- for i = 0 to size do
- pp " intros y.";
- if i = 0 then
begin
- pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
- pp " rewrite H; apply Pft0.";
- pp " clear H.";
+ pp " Variable Pf%in: forall n x y, Z_of_nat n <= %i -> P [%s%i x] (eval%in (S n) y) (f%in n x y)." i (size - i) c i i i;
+ pp " Variable Pfn%i: forall n x y, Z_of_nat n <= %i -> P (eval%in (S n) x) [%s%i y] (fn%i n x y)." i (size - i) i c i i;
end;
- if i == size then
- pp " rewrite (spec_extend%in n); apply Pfnn." size
- else
- pp " rewrite spec_extend%in%i; rewrite (spec_extend%in n); apply Pfnn." i size size;
+ pr "";
done;
- pp " intros m y; rewrite <- (spec_cast_l n m x);";
- pp " rewrite <- (spec_cast_r n m y); apply Pfnn.";
- pp " Qed.";
- pp "";
+ pr " Variable fnn: forall n, word w%i (S n) -> word w%i (S n) -> res." size size;
+ pp " Variable Pfnn: forall n x y, P [%sn n x] [%sn n y] (fnn n x y)." c c;
+ pr " Variable fnm: forall n m, word w%i (S n) -> word w%i (S m) -> res." size size;
+ pp " Variable Pfnm: forall n m x y, P [%sn n x] [%sn m y] (fnm n m x y)." c c;
+ pr "";
pr " (* We iter the smaller argument with the bigger *)";
+ pr "";
pr " Definition iter (x y: t_): res :=";
pr0 " Eval lazy zeta beta iota delta [";
for i = 0 to size do
@@ -748,7 +738,11 @@ let _ =
pr " | %sn n wx, %sn m wy => fnm n m wx wy" c c;
pr " end.";
pr "";
-
+ let break_eq0 v =
+ pp " generalize (ZnZ.spec_eq0 %s); case ZnZ.eq0; intros H." v;
+ pp " intros; simpl [N0 %s]; rewrite H; trivial." v;
+ pp " clear H."
+ in
pp " Ltac zg_tac := try";
pp " (red; simpl Zcompare; auto;";
pp " let t := fresh \"H\" in (intros t; discriminate t)).";
@@ -782,7 +776,14 @@ let _ =
pp "";
- pr " (* We iter the smaller argument with the bigger (zero case) *)";
+ pr " (* We iter the smaller argument with the bigger *)";
+ pr " (* with special zero functions *)";
+ pr "";
+ pr " Variable f0t: t_ -> res.";
+ pp " Variable Pf0t: forall x, P 0 [x] (f0t x).";
+ pr " Variable ft0: t_ -> res.";
+ pp " Variable Pft0: forall x, P [x] 0 (ft0 x).";
+ pr "";
pr " Definition iter0 (x y: t_): res :=";
pr0 " Eval lazy zeta beta iota delta [";
for i = 0 to size do
@@ -795,12 +796,12 @@ let _ =
for i = 0 to size do
pr " | %s%i wx =>" c i;
if i == 0 then
- pr " if w0_eq0 wx then f0t y else";
+ pr " if ZnZ.eq0 wx then f0t y else";
pr " match y with";
for j = 0 to i - 1 do
pr " | %s%i wy =>" c j;
if j == 0 then
- pr " if w0_eq0 wy then ft0 x else";
+ pr " if ZnZ.eq0 wy then ft0 x else";
pr " fn%i %i wx wy" j (i - j - 1);
done;
pr " | %s%i wy => f%i wx wy" c i i;
@@ -818,7 +819,7 @@ let _ =
for i = 0 to size do
pr " | %s%i wy =>" c i;
if i == 0 then
- pr " if w0_eq0 wy then ft0 x else";
+ pr " if ZnZ.eq0 wy then ft0 x else";
if i == size then
pr " fn%i n wx wy" size
else
@@ -834,21 +835,11 @@ let _ =
pp " intros x; case x; clear x; unfold iter0.";
for i = 0 to size do
pp " intros x.";
- if i == 0 then
- begin
- pp " generalize (spec_w0_eq0 x); case w0_eq0; intros H.";
- pp " intros y; rewrite H; apply Pf0t.";
- pp " clear H.";
- end;
+ if i == 0 then break_eq0 "x";
pp " intros y; case y; clear y.";
for j = 0 to i - 1 do
pp " intros y.";
- if j == 0 then
- begin
- pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
- pp " rewrite H; apply Pft0.";
- pp " clear H.";
- end;
+ if j == 0 then break_eq0 "y";
pp " rewrite spec_eval%in%i; apply (Pfn%i %i); zg_tac." j (i - j) j (i - j - 1);
done;
pp " intros y; apply Pf%i." i;
@@ -863,12 +854,7 @@ let _ =
pp " intros n x y; case y; clear y.";
for i = 0 to size do
pp " intros y.";
- if i = 0 then
- begin
- pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
- pp " rewrite H; apply Pft0.";
- pp " clear H.";
- end;
+ if i = 0 then break_eq0 "y";
if i == size then
pp " rewrite spec_eval%in; apply Pfn%i." size size
else
@@ -879,7 +865,7 @@ let _ =
pp "";
- pr " End LevelAndIter.";
+ pr " End Iter.";
pr "";
@@ -890,19 +876,19 @@ let _ =
pr " (***************************************************************)";
pr "";
- pr " Definition reduce_0 (x:w) := %s0 x." c;
+ pr " Definition reduce_0 (x:w0) := %s0 x." c;
pr " Definition reduce_1 :=";
pr " Eval lazy beta iota delta[reduce_n1] in";
- pr " reduce_n1 _ _ zero w0_eq0 %s0 %s1." c c;
+ pr " reduce_n1 _ _ zero (ZnZ.eq0 (Ops:=w0_op)) %s0 %s1." c c;
for i = 2 to size do
pr " Definition reduce_%i :=" i;
pr " Eval lazy beta iota delta[reduce_n1] in";
- pr " reduce_n1 _ _ zero w%i_eq0 reduce_%i %s%i."
+ pr " reduce_n1 _ _ zero (ZnZ.eq0 (Ops:=w%i_op)) reduce_%i %s%i."
(i-1) (i-1) c i
done;
pr " Definition reduce_%i :=" (size+1);
pr " Eval lazy beta iota delta[reduce_n1] in";
- pr " reduce_n1 _ _ zero w%i_eq0 reduce_%i (%sn 0)."
+ pr " reduce_n1 _ _ zero (ZnZ.eq0 (Ops:=w%i_op)) reduce_%i (%sn 0)."
size size c;
pr " Definition reduce_n n :=";
@@ -924,13 +910,13 @@ let _ =
pp " Let spec_reduce_%i: forall x, [reduce_%i x] = [%s%i x]." i i c i;
pp " Proof.";
pp " intros x; case x; unfold reduce_%i." i;
- pp " exact (spec_0 w0_spec).";
+ pp " exact ZnZ.spec_0.";
pp " intros x1 y1.";
- pp " generalize (spec_w%i_eq0 x1);" (i - 1);
- pp " case w%i_eq0; intros H1; auto." (i - 1);
+ pp " generalize (ZnZ.spec_eq0 x1);";
+ pp " case ZnZ.eq0; intros H1; auto.";
if i <> 1 then
pp " rewrite spec_reduce_%i." (i - 1);
- pp " unfold to_Z; rewrite znz_to_Z_%i." i;
+ pp " unfold to_Z; rewrite to_Z_%i." i;
pp " unfold to_Z in H1; rewrite H1; auto.";
pp " Qed.";
pp "";
@@ -942,335 +928,31 @@ let _ =
pp " intros x; rewrite <- spec_reduce_%i; auto." (size + 1);
pp " intros n1 Hrec x; case x.";
pp " unfold to_Z; rewrite make_op_S; auto.";
- pp " exact (spec_0 w0_spec).";
+ pp " exact ZnZ.spec_0.";
pp " intros x1 y1; case x1; auto.";
pp " rewrite Hrec.";
pp " rewrite spec_extendn0_0; auto.";
pp " Qed.";
pp "";
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Successor *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_succ_c := w%i_op.(znz_succ_c)." i i
- done;
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_succ := w%i_op.(znz_succ)." i i
- done;
- pr "";
-
- pr " Definition succ x :=";
- pr " match x with";
- for i = 0 to size-1 do
- pr " | %s%i wx =>" c i;
- pr " match w%i_succ_c wx with" i;
- pr " | C0 r => %s%i r" c i;
- pr " | C1 r => %s%i (WW one%i r)" c (i+1) i;
- pr " end";
- done;
- pr " | %s%i wx =>" c size;
- pr " match w%i_succ_c wx with" size;
- pr " | C0 r => %s%i r" c size;
- pr " | C1 r => %sn 0 (WW one%i r)" c size ;
- pr " end";
- pr " | %sn n wx =>" c;
- pr " let op := make_op n in";
- pr " match op.(znz_succ_c) wx with";
- pr " | C0 r => %sn n r" c;
- pr " | C1 r => %sn (S n) (WW op.(znz_1) r)" c;
- pr " end";
- pr " end.";
- pr "";
-
- pr " Theorem spec_succ: forall n, [succ n] = [n] + 1.";
- pa " Admitted.";
- pp " Proof.";
- pp " intros n; case n; unfold succ, to_Z.";
- for i = 0 to size do
- pp " intros n1; generalize (spec_succ_c w%i_spec n1);" i;
- pp " unfold succ, to_Z, w%i_succ_c; case znz_succ_c; auto." i;
- pp " intros ww H; rewrite <- H.";
- pp " (rewrite znz_to_Z_%i; unfold interp_carry;" (i + 1);
- pp " apply f_equal2 with (f := Zplus); auto;";
- pp " apply f_equal2 with (f := Zmult); auto;";
- pp " exact (spec_1 w%i_spec))." i;
- done;
- pp " intros k n1; generalize (spec_succ_c (wn_spec k) n1).";
- pp " unfold succ, to_Z; case znz_succ_c; auto.";
- pp " intros ww H; rewrite <- H.";
- pp " (rewrite (znz_to_Z_n k); unfold interp_carry;";
- pp " apply f_equal2 with (f := Zplus); auto;";
- pp " apply f_equal2 with (f := Zmult); auto;";
- pp " exact (spec_1 (wn_spec k))).";
- pp " Qed.";
- pr "";
-
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Adddition *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_add_c := znz_add_c w%i_op." i i;
- pr " Definition w%i_add x y :=" i;
- pr " match w%i_add_c x y with" i;
- pr " | C0 r => %s%i r" c i;
- if i == size then
- pr " | C1 r => %sn 0 (WW one%i r)" c size
- else
- pr " | C1 r => %s%i (WW one%i r)" c (i + 1) i;
- pr " end.";
- pr "";
- done ;
- pr " Definition addn n (x y : word w%i (S n)) :=" size;
- pr " let op := make_op n in";
- pr " match op.(znz_add_c) x y with";
- pr " | C0 r => %sn n r" c;
- pr " | C1 r => %sn (S n) (WW op.(znz_1) r) end." c;
- pr "";
-
-
- for i = 0 to size do
- pp " Let spec_w%i_add: forall x y, [w%i_add x y] = [%s%i x] + [%s%i y]." i i c i c i;
- pp " Proof.";
- pp " intros n m; unfold to_Z, w%i_add, w%i_add_c." i i;
- pp " generalize (spec_add_c w%i_spec n m); case znz_add_c; auto." i;
- pp " intros ww H; rewrite <- H.";
- pp " rewrite znz_to_Z_%i; unfold interp_carry;" (i + 1);
- pp " apply f_equal2 with (f := Zplus); auto;";
- pp " apply f_equal2 with (f := Zmult); auto;";
- pp " exact (spec_1 w%i_spec)." i;
- pp " Qed.";
- pp "";
- done;
- pp " Let spec_wn_add: forall n x y, [addn n x y] = [%sn n x] + [%sn n y]." c c;
- pp " Proof.";
- pp " intros k n m; unfold to_Z, addn.";
- pp " generalize (spec_add_c (wn_spec k) n m); case znz_add_c; auto.";
- pp " intros ww H; rewrite <- H.";
- pp " rewrite (znz_to_Z_n k); unfold interp_carry;";
- pp " apply f_equal2 with (f := Zplus); auto;";
- pp " apply f_equal2 with (f := Zmult); auto;";
- pp " exact (spec_1 (wn_spec k)).";
- pp " Qed.";
-
- pr " Definition add := Eval lazy beta delta [same_level] in";
- pr0 " (same_level t_ ";
- for i = 0 to size do
- pr0 "w%i_add " i;
- done;
- pr "addn).";
- pr "";
-
- pr " Theorem spec_add: forall x y, [add x y] = [x] + [y].";
- pa " Admitted.";
- pp " Proof.";
- pp " unfold add.";
- pp " generalize (spec_same_level t_ (fun x y res => [res] = x + y)).";
- pp " unfold same_level; intros HH; apply HH; clear HH.";
- for i = 0 to size do
- pp " exact spec_w%i_add." i;
- done;
- pp " exact spec_wn_add.";
- pp " Qed.";
- pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Predecessor *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_pred_c := w%i_op.(znz_pred_c)." i i
- done;
- pr "";
-
- pr " Definition pred x :=";
- pr " match x with";
- for i = 0 to size do
- pr " | %s%i wx =>" c i;
- pr " match w%i_pred_c wx with" i;
- pr " | C0 r => reduce_%i r" i;
- pr " | C1 r => zero";
- pr " end";
- done;
- pr " | %sn n wx =>" c;
- pr " let op := make_op n in";
- pr " match op.(znz_pred_c) wx with";
- pr " | C0 r => reduce_n n r";
- pr " | C1 r => zero";
- pr " end";
- pr " end.";
- pr "";
-
- pr " Theorem spec_pred_pos : forall x, 0 < [x] -> [pred x] = [x] - 1.";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; unfold pred.";
- for i = 0 to size do
- pp " intros x1 H1; unfold w%i_pred_c;" i;
- pp " generalize (spec_pred_c w%i_spec x1); case znz_pred_c; intros y1." i;
- pp " rewrite spec_reduce_%i; auto." i;
- pp " unfold interp_carry; unfold to_Z.";
- pp " case (spec_to_Z w%i_spec x1); intros HH1 HH2." i;
- pp " case (spec_to_Z w%i_spec y1); intros HH3 HH4 HH5." i;
- pp " assert (znz_to_Z w%i_op x1 - 1 < 0); auto with zarith." i;
- pp " unfold to_Z in H1; auto with zarith.";
- done;
- pp " intros n x1 H1;";
- pp " generalize (spec_pred_c (wn_spec n) x1); case znz_pred_c; intros y1.";
- pp " rewrite spec_reduce_n; auto.";
- pp " unfold interp_carry; unfold to_Z.";
- pp " case (spec_to_Z (wn_spec n) x1); intros HH1 HH2.";
- pp " case (spec_to_Z (wn_spec n) y1); intros HH3 HH4 HH5.";
- pp " assert (znz_to_Z (make_op n) x1 - 1 < 0); auto with zarith.";
- pp " unfold to_Z in H1; auto with zarith.";
- pp " Qed.";
- pp "";
-
- pp " Let spec_pred0: forall x, [x] = 0 -> [pred x] = 0.";
- pp " Proof.";
- pp " intros x; case x; unfold pred.";
- for i = 0 to size do
- pp " intros x1 H1; unfold w%i_pred_c;" i;
- pp " generalize (spec_pred_c w%i_spec x1); case znz_pred_c; intros y1." i;
- pp " unfold interp_carry; unfold to_Z.";
- pp " unfold to_Z in H1; auto with zarith.";
- pp " case (spec_to_Z w%i_spec y1); intros HH3 HH4; auto with zarith." i;
- pp " intros; exact (spec_0 w0_spec).";
- done;
- pp " intros n x1 H1;";
- pp " generalize (spec_pred_c (wn_spec n) x1); case znz_pred_c; intros y1.";
- pp " unfold interp_carry; unfold to_Z.";
- pp " unfold to_Z in H1; auto with zarith.";
- pp " case (spec_to_Z (wn_spec n) y1); intros HH3 HH4; auto with zarith.";
- pp " intros; exact (spec_0 w0_spec).";
- pp " Qed.";
- pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Subtraction *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_sub_c := w%i_op.(znz_sub_c)." i i
- done;
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_sub x y :=" i;
- pr " match w%i_sub_c x y with" i;
- pr " | C0 r => reduce_%i r" i;
- pr " | C1 r => zero";
- pr " end."
- done;
- pr "";
-
- pr " Definition subn n (x y : word w%i (S n)) :=" size;
- pr " let op := make_op n in";
- pr " match op.(znz_sub_c) x y with";
- pr " | C0 r => %sn n r" c;
- pr " | C1 r => N0 w_0";
- pr " end.";
- pr "";
-
- for i = 0 to size do
- pp " Let spec_w%i_sub: forall x y, [%s%i y] <= [%s%i x] -> [w%i_sub x y] = [%s%i x] - [%s%i y]." i c i c i i c i c i;
- pp " Proof.";
- pp " intros n m; unfold w%i_sub, w%i_sub_c." i i;
- pp " generalize (spec_sub_c w%i_spec n m); case znz_sub_c;" i;
- if i == 0 then
- pp " intros x; auto."
- else
- pp " intros x; try rewrite spec_reduce_%i; auto." i;
- pp " unfold interp_carry; unfold zero, w_0, to_Z.";
- pp " rewrite (spec_0 w0_spec).";
- pp " case (spec_to_Z w%i_spec x); intros; auto with zarith." i;
- pp " Qed.";
- pp "";
- done;
-
- pp " Let spec_wn_sub: forall n x y, [%sn n y] <= [%sn n x] -> [subn n x y] = [%sn n x] - [%sn n y]." c c c c;
- pp " Proof.";
- pp " intros k n m; unfold subn.";
- pp " generalize (spec_sub_c (wn_spec k) n m); case znz_sub_c;";
- pp " intros x; auto.";
- pp " unfold interp_carry, to_Z.";
- pp " case (spec_to_Z (wn_spec k) x); intros; auto with zarith.";
- pp " Qed.";
- pp "";
-
- pr " Definition sub := Eval lazy beta delta [same_level] in";
- pr0 " (same_level t_ ";
- for i = 0 to size do
- pr0 "w%i_sub " i;
- done;
- pr "subn).";
- pr "";
-
- pr " Theorem spec_sub_pos : forall x y, [y] <= [x] -> [sub x y] = [x] - [y].";
- pa " Admitted.";
- pp " Proof.";
- pp " unfold sub.";
- pp " generalize (spec_same_level t_ (fun x y res => y <= x -> [res] = x - y)).";
- pp " unfold same_level; intros HH; apply HH; clear HH.";
- for i = 0 to size do
- pp " exact spec_w%i_sub." i;
- done;
- pp " exact spec_wn_sub.";
- pp " Qed.";
- pr "";
-
- for i = 0 to size do
- pp " Let spec_w%i_sub0: forall x y, [%s%i x] < [%s%i y] -> [w%i_sub x y] = 0." i c i c i i;
- pp " Proof.";
- pp " intros n m; unfold w%i_sub, w%i_sub_c." i i;
- pp " generalize (spec_sub_c w%i_spec n m); case znz_sub_c;" i;
- pp " intros x; unfold interp_carry.";
- pp " unfold to_Z; case (spec_to_Z w%i_spec x); intros; auto with zarith." i;
- pp " intros; unfold to_Z, zero, w_0; rewrite (spec_0 w0_spec); auto.";
- pp " Qed.";
- pp "";
- done;
-
- pp " Let spec_wn_sub0: forall n x y, [%sn n x] < [%sn n y] -> [subn n x y] = 0." c c;
- pp " Proof.";
- pp " intros k n m; unfold subn.";
- pp " generalize (spec_sub_c (wn_spec k) n m); case znz_sub_c;";
- pp " intros x; unfold interp_carry.";
- pp " unfold to_Z; case (spec_to_Z (wn_spec k) x); intros; auto with zarith.";
- pp " intros; unfold to_Z, w_0; rewrite (spec_0 (w0_spec)); auto.";
- pp " Qed.";
- pp "";
-
- pr " Theorem spec_sub0: forall x y, [x] < [y] -> [sub x y] = 0.";
- pa " Admitted.";
- pp " Proof.";
- pp " unfold sub.";
- pp " generalize (spec_same_level t_ (fun x y res => x < y -> [res] = 0)).";
- pp " unfold same_level; intros HH; apply HH; clear HH.";
- for i = 0 to size do
- pp " exact spec_w%i_sub0." i;
- done;
- pp " exact spec_wn_sub0.";
- pp " Qed.";
- pr "";
-
+pr " Definition reduce n : dom_t n -> t :=";
+pr " match n with";
+for i = 0 to size do
+pr " | %i => reduce_%i" i i;
+ done;
+pr " | SizePlus (S n) => reduce_n n";
+pr " end%%nat.";
+pr "";
+
+pr " Lemma spec_reduce : forall n (x:dom_t n), [reduce n x] = ZnZ.to_Z x.";
+pa " Admitted";
+pp " Proof.";
+for i = 0 to size do
+pp " destruct n. apply spec_reduce_%i." i;
+done;
+pp " apply spec_reduce_n.";
+pp " Qed.";
+pr "";
pr " (***************************************************************)";
pr " (* *)";
@@ -1280,7 +962,7 @@ let _ =
pr "";
for i = 0 to size do
- pr " Definition compare_%i := w%i_op.(znz_compare)." i i;
+ pr " Definition compare_%i := ZnZ.compare (Ops:=w%i_op)." i i;
pr " Definition comparen_%i :=" i;
pr " compare_mn_1 w%i w%i %s compare_%i (compare_%i %s) compare_%i." i i (pz i) i i (pz i) i
done;
@@ -1290,95 +972,65 @@ let _ =
pr " let mn := Max.max n m in";
pr " let d := diff n m in";
pr " let op := make_op mn in";
- pr " op.(znz_compare)";
+ pr " ZnZ.compare";
pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
pr " (castm (diff_l n m) (extend_tr wy (fst d))).";
pr "";
- pr " Definition compare := Eval lazy beta delta [iter] in";
+ pr " Local Notation compare_folded :=";
pr " (iter _";
for i = 0 to size do
pr " compare_%i" i;
- pr " (fun n x y => opp_compare (comparen_%i (S n) y x))" i;
+ pr " (fun n x y => CompOpp (comparen_%i (S n) y x))" i;
pr " (fun n => comparen_%i (S n))" i;
done;
pr " comparenm).";
+ pr " Definition compare : t -> t -> comparison :=";
+ pr " Eval lazy beta delta [iter] in compare_folded.";
pr "";
for i = 0 to size do
pp " Let spec_compare_%i: forall x y," i;
- pp " match compare_%i x y with" i;
- pp " Eq => [%s%i x] = [%s%i y]" c i c i;
- pp " | Lt => [%s%i x] < [%s%i y]" c i c i;
- pp " | Gt => [%s%i x] > [%s%i y]" c i c i;
- pp " end.";
- pp " Proof.";
- pp " unfold compare_%i, to_Z; exact (spec_compare w%i_spec)." i i;
- pp " Qed.";
+ pp " compare_%i x y = Zcompare [%s%i x] [%s%i y]." i c i c i;
+ pp " Proof.";
+ pp " unfold compare_%i, to_Z; exact ZnZ.spec_compare." i;
+ pp " Qed.";
pp "";
pp " Let spec_comparen_%i:" i;
pp " forall (n : nat) (x : word w%i n) (y : w%i)," i i;
- pp " match comparen_%i n x y with" i;
- pp " | Eq => eval%in n x = [%s%i y]" i c i;
- pp " | Lt => eval%in n x < [%s%i y]" i c i;
- pp " | Gt => eval%in n x > [%s%i y]" i c i;
- pp " end.";
+ pp " comparen_%i n x y = Zcompare (eval%in n x) [%s%i y]." i i c i;
+ pp " Proof.";
pp " intros n x y.";
pp " unfold comparen_%i, to_Z; rewrite spec_double_eval%in." i i;
pp " apply spec_compare_mn_1.";
- pp " exact (spec_0 w%i_spec)." i;
- pp " intros x1; exact (spec_compare w%i_spec %s x1)." i (pz i);
- pp " exact (spec_to_Z w%i_spec)." i;
- pp " exact (spec_compare w%i_spec)." i;
- pp " exact (spec_compare w%i_spec)." i;
- pp " exact (spec_to_Z w%i_spec)." i;
+ pp " exact ZnZ.spec_0.";
+ pp " intros x1; exact (ZnZ.spec_compare %s x1)." (pz i);
+ pp " exact ZnZ.spec_to_Z.";
+ pp " exact ZnZ.spec_compare.";
+ pp " exact ZnZ.spec_compare.";
+ pp " exact ZnZ.spec_to_Z.";
pp " Qed.";
pp "";
done;
- pp " Let spec_opp_compare: forall c (u v: Z),";
- pp " match c with Eq => u = v | Lt => u < v | Gt => u > v end ->";
- pp " match opp_compare c with Eq => v = u | Lt => v < u | Gt => v > u end.";
- pp " Proof.";
- pp " intros c u v; case c; unfold opp_compare; auto with zarith.";
- pp " Qed.";
- pp "";
-
-
- pr " Theorem spec_compare_aux: forall x y,";
- pr " match compare x y with";
- pr " Eq => [x] = [y]";
- pr " | Lt => [x] < [y]";
- pr " | Gt => [x] > [y]";
- pr " end.";
+ pr " Theorem spec_compare : forall x y,";
+ pr " compare x y = Zcompare [x] [y].";
pa " Admitted.";
pp " Proof.";
- pp " refine (spec_iter _ (fun x y res =>";
- pp " match res with";
- pp " Eq => x = y";
- pp " | Lt => x < y";
- pp " | Gt => x > y";
- pp " end)";
- for i = 0 to size do
- pp " compare_%i" i;
- pp " (fun n x y => opp_compare (comparen_%i (S n) y x))" i;
- pp " (fun n => comparen_%i (S n)) _ _ _" i;
- done;
- pp " comparenm _).";
-
+ pp " intros x y. change compare with compare_folded. apply spec_iter; clear x y.";
for i = 0 to size - 1 do
pp " exact spec_compare_%i." i;
- pp " intros n x y H;apply spec_opp_compare; apply spec_comparen_%i." i;
+ pp " intros n x y H; rewrite spec_comparen_%i; apply Zcompare_antisym." i;
pp " intros n x y H; exact (spec_comparen_%i (S n) x y)." i;
done;
pp " exact spec_compare_%i." size;
- pp " intros n x y;apply spec_opp_compare; apply spec_comparen_%i." size;
+ pp " intros n x y; rewrite spec_comparen_%i; apply Zcompare_antisym." size;
pp " intros n; exact (spec_comparen_%i (S n))." size;
pp " intros n m x y; unfold comparenm.";
pp " rewrite <- (spec_cast_l n m x); rewrite <- (spec_cast_r n m y).";
- pp " unfold to_Z; apply (spec_compare (wn_spec (Max.max n m))).";
- pp " Qed.";
+ pp " unfold to_Z; apply ZnZ.spec_compare.";
+ pp " Qed.";
pr "";
pr " (***************************************************************)";
@@ -1389,24 +1041,19 @@ let _ =
pr "";
for i = 0 to size do
- pr " Definition w%i_mul_c := w%i_op.(znz_mul_c)." i i
- done;
- pr "";
-
- for i = 0 to size do
pr " Definition w%i_mul_add :=" i;
pr " Eval lazy beta delta [w_mul_add] in";
- pr " @w_mul_add w%i %s w%i_succ w%i_add_c w%i_mul_c." i (pz i) i i i
+ pr " @w_mul_add w%i %s ZnZ.succ ZnZ.add_c ZnZ.mul_c." i (pz i)
done;
pr "";
for i = 0 to size do
- pr " Definition w%i_0W := znz_0W w%i_op." i i
+ pr " Definition w%i_0W := ZnZ.OW (ops:=w%i_op)." i i
done;
pr "";
for i = 0 to size do
- pr " Definition w%i_WW := znz_WW w%i_op." i i
+ pr " Definition w%i_WW := ZnZ.WW (ops:=w%i_op)." i i
done;
pr "";
@@ -1428,7 +1075,7 @@ let _ =
else
pr " | %i%s => fun x => %s%i x" j "%nat" c (i + j + 1)
done;
- pr " | _ => fun _ => N0 w_0";
+ pr " | _ => fun _ => zero";
pr " end.";
pr "";
done;
@@ -1436,7 +1083,7 @@ let _ =
for i = 0 to size - 1 do
pp "Theorem to_Z%i_spec:" i;
- pp " forall n x, Z_of_nat n <= %i -> [to_Z%i n x] = znz_to_Z (nmake_op _ w%i_op (S n)) x." (size + 1 - i) i i;
+ pp " forall n x, Z_of_nat n <= %i -> [to_Z%i n x] = ZnZ.to_Z (Ops:=nmake_op _ w%i_op (S n)) x." (size + 1 - i) i i;
for j = 1 to size + 2 - i do
pp " intros n; case n; clear n.";
pp " unfold to_Z%i." i;
@@ -1454,12 +1101,12 @@ let _ =
pr " let (w,r) := w%i_mul_add_n1 (S n) x y %s in" i (pz i);
if i == size then
begin
- pr " if w%i_eq0 w then %sn n r" i c;
+ pr " if ZnZ.eq0 w then %sn n r" c;
pr " else %sn (S n) (WW (extend%i n w) r)." c i;
end
else
begin
- pr " if w%i_eq0 w then to_Z%i n r" i i;
+ pr " if ZnZ.eq0 w then to_Z%i n r" i;
pr " else to_Z%i (S n) (WW (extend%i n w) r)." i i;
end;
pr "";
@@ -1469,84 +1116,87 @@ let _ =
pr " let mn := Max.max n m in";
pr " let d := diff n m in";
pr " let op := make_op mn in";
- pr " reduce_n (S mn) (op.(znz_mul_c)";
+ pr " reduce_n (S mn) (ZnZ.mul_c";
pr " (castm (diff_r n m) (extend_tr x (snd d)))";
pr " (castm (diff_l n m) (extend_tr y (fst d)))).";
pr "";
- pr " Definition mul := Eval lazy beta delta [iter0] in";
+ pr " Local Notation mul_folded :=";
pr " (iter0 t_";
for i = 0 to size do
- pr " (fun x y => reduce_%i (w%i_mul_c x y))" (i + 1) i;
+ pr " (fun x y => reduce_%i (ZnZ.mul_c x y))" (i + 1);
pr " (fun n x y => w%i_mul n y x)" i;
pr " w%i_mul" i;
done;
pr " mulnm";
- pr " (fun _ => N0 w_0)";
- pr " (fun _ => N0 w_0)";
+ pr " (fun _ => zero)";
+ pr " (fun _ => zero)";
pr " ).";
+ pr " Definition mul : t -> t -> t :=";
+ pr " Eval lazy beta delta [iter0] in mul_folded.";
pr "";
for i = 0 to size do
pp " Let spec_w%i_mul_add: forall x y z," i;
pp " let (q,r) := w%i_mul_add x y z in" i;
- pp " znz_to_Z w%i_op q * (base (znz_digits w%i_op)) + znz_to_Z w%i_op r =" i i i;
- pp " znz_to_Z w%i_op x * znz_to_Z w%i_op y + znz_to_Z w%i_op z :=" i i i ;
- pp " (spec_mul_add w%i_spec)." i;
+ pp " ZnZ.to_Z (Ops:=w%i_op) q * (base (ZnZ.digits w%i_op)) + ZnZ.to_Z (Ops:=w%i_op) r =" i i i;
+ pp " ZnZ.to_Z (Ops:=w%i_op) x * ZnZ.to_Z (Ops:=w%i_op) y + ZnZ.to_Z (Ops:=w%i_op) z :=" i i i ;
+ pp " spec_mul_add.";
pp "";
done;
for i = 0 to size do
pp " Theorem spec_w%i_mul_add_n1: forall n x y z," i;
pp " let (q,r) := w%i_mul_add_n1 n x y z in" i;
- pp " znz_to_Z w%i_op q * (base (znz_digits (nmake_op _ w%i_op n))) +" i i;
- pp " znz_to_Z (nmake_op _ w%i_op n) r =" i;
- pp " znz_to_Z (nmake_op _ w%i_op n) x * znz_to_Z w%i_op y +" i i;
- pp " znz_to_Z w%i_op z." i;
+ pp " ZnZ.to_Z (Ops:=w%i_op) q * (base (ZnZ.digits (nmake_op _ w%i_op n))) +" i i;
+ pp " ZnZ.to_Z (Ops:=nmake_op _ w%i_op n) r =" i;
+ pp " ZnZ.to_Z (Ops:=nmake_op _ w%i_op n) x * ZnZ.to_Z (Ops:=w%i_op) y +" i i;
+ pp " ZnZ.to_Z (Ops:=w%i_op) z." i;
pp " Proof.";
pp " intros n x y z; unfold w%i_mul_add_n1." i;
pp " rewrite nmake_double.";
pp " rewrite digits_doubled.";
- pp " change (base (DoubleBase.double_digits (znz_digits w%i_op) n)) with" i;
- pp " (DoubleBase.double_wB (znz_digits w%i_op) n)." i;
+ pp " change (base (DoubleBase.double_digits (ZnZ.digits w%i_op) n)) with" i;
+ pp " (DoubleBase.double_wB (ZnZ.digits w%i_op) n)." i;
pp " apply spec_double_mul_add_n1; auto.";
- if i == 0 then pp " exact (spec_0 w%i_spec)." i;
- pp " exact (spec_WW w%i_spec)." i;
- pp " exact (spec_0W w%i_spec)." i;
- pp " exact (spec_mul_add w%i_spec)." i;
+ if i == 0 then pp " exact ZnZ.spec_0.";
+ pp " exact ZnZ.spec_WW.";
+ pp " exact ZnZ.spec_OW.";
+ pp " exact spec_mul_add.";
pp " Qed.";
pp "";
done;
pp " Lemma nmake_op_WW: forall ww ww1 n x y,";
- pp " znz_to_Z (nmake_op ww ww1 (S n)) (WW x y) =";
- pp " znz_to_Z (nmake_op ww ww1 n) x * base (znz_digits (nmake_op ww ww1 n)) +";
- pp " znz_to_Z (nmake_op ww ww1 n) y.";
+ pp " ZnZ.to_Z (Ops:=nmake_op ww ww1 (S n)) (WW x y) =";
+ pp " ZnZ.to_Z (Ops:=nmake_op ww ww1 n) x * base (ZnZ.digits (nmake_op ww ww1 n)) +";
+ pp " ZnZ.to_Z (Ops:=nmake_op ww ww1 n) y.";
+ pp " Proof.";
pp " auto.";
pp " Qed.";
pp "";
for i = 0 to size do
pp " Lemma extend%in_spec: forall n x1," i;
- pp " znz_to_Z (nmake_op _ w%i_op (S n)) (extend%i n x1) =" i i;
- pp " znz_to_Z w%i_op x1." i;
+ pp " ZnZ.to_Z (Ops:=nmake_op _ w%i_op (S n)) (extend%i n x1) =" i i;
+ pp " ZnZ.to_Z (Ops:=w%i_op) x1." i;
pp " Proof.";
pp " intros n1 x2; rewrite nmake_double.";
pp " unfold extend%i." i;
pp " rewrite DoubleBase.spec_extend; auto.";
if i == 0 then
- pp " intros l; simpl; unfold w_0; rewrite (spec_0 w0_spec); ring.";
+ pp " intros l; simpl; unfold zero; rewrite ZnZ.spec_0; ring.";
pp " Qed.";
pp "";
done;
pp " Lemma spec_muln:";
pp " forall n (x: word _ (S n)) y,";
- pp " [%sn (S n) (znz_mul_c (make_op n) x y)] = [%sn n x] * [%sn n y]." c c c;
+ pp " [%sn (S n) (ZnZ.mul_c (Ops:=make_op n) x y)] = [%sn n x] * [%sn n y]." c c c;
pp " Proof.";
pp " intros n x y; unfold to_Z.";
- pp " rewrite <- (spec_mul_c (wn_spec n)).";
+ pp " rewrite <- ZnZ.spec_mul_c.";
pp " rewrite make_op_S.";
- pp " case znz_mul_c; auto.";
+ pp " case ZnZ.mul_c; auto.";
pp " Qed.";
pr "";
@@ -1565,15 +1215,15 @@ let _ =
pp " intros n x y H; unfold w%i_mul." i;
pp " generalize (spec_w%i_mul_add_n1 (S n) x y %s)." i (pz i);
pp " case w%i_mul_add_n1; intros x1 y1." i;
- pp " change (znz_to_Z (nmake_op _ w%i_op (S n)) x) with (eval%in (S n) x)." i i;
- pp " change (znz_to_Z w%i_op y) with ([%s%i y])." i c i;
+ pp " change (ZnZ.to_Z x) with (eval%in (S n) x)." i;
+ pp " change (ZnZ.to_Z y) with ([%s%i y])." c i;
if i == 0 then
- pp " unfold w_0; rewrite (spec_0 w0_spec); rewrite Zplus_0_r."
+ pp " rewrite ZnZ.spec_0; rewrite Zplus_0_r."
else
- pp " change (znz_to_Z w%i_op W0) with 0; rewrite Zplus_0_r." i;
+ pp " change (ZnZ.to_Z W0) with 0; rewrite Zplus_0_r.";
pp " intros H1; rewrite <- H1; clear H1.";
- pp " generalize (spec_w%i_eq0 x1); case w%i_eq0; intros HH." i i;
- pp " unfold to_Z in HH; rewrite HH.";
+ pp " generalize (ZnZ.spec_eq0 x1); case ZnZ.eq0; intros HH.";
+ pp " unfold to_Z in HH; rewrite HH by trivial.";
if i == size then
begin
pp " rewrite spec_eval%in; unfold eval%in, nmake_op%i; auto." i i i;
@@ -1586,20 +1236,11 @@ let _ =
end;
pp " rewrite nmake_op_WW; rewrite extend%in_spec; auto." i;
done;
- pp " refine (spec_iter0 t_ (fun x y res => [res] = x * y)";
- for i = 0 to size do
- pp " (fun x y => reduce_%i (w%i_mul_c x y))" (i + 1) i;
- pp " (fun n x y => w%i_mul n y x)" i;
- pp " w%i_mul _ _ _" i;
- done;
- pp " mulnm _";
- pp " (fun _ => N0 w_0) _";
- pp " (fun _ => N0 w_0) _";
- pp " ).";
+ pp " intros x y. change mul with mul_folded. apply spec_iter0; clear x y.";
for i = 0 to size do
pp " intros x y; rewrite spec_reduce_%i." (i + 1);
- pp " unfold w%i_mul_c, to_Z." i;
- pp " generalize (spec_mul_c w%i_spec x y)." i;
+ pp " unfold to_Z.";
+ pp " generalize (ZnZ.spec_mul_c x y).";
pp " intros HH; rewrite <- HH; clear HH; auto.";
if i == size then
begin
@@ -1617,125 +1258,44 @@ let _ =
pp " rewrite <- (spec_cast_l n m x).";
pp " rewrite <- (spec_cast_r n m y).";
pp " rewrite spec_muln; rewrite spec_cast_l; rewrite spec_cast_r; auto.";
- pp " intros x; unfold to_Z, w_0; rewrite (spec_0 w0_spec); ring.";
- pp " intros x; unfold to_Z, w_0; rewrite (spec_0 w0_spec); ring.";
+ pp " intros x; simpl; rewrite ZnZ.spec_0; ring.";
+ pp " intros x; simpl; rewrite ZnZ.spec_0; ring.";
pp " Qed.";
pr "";
pr " (***************************************************************)";
pr " (* *)";
- pr " (** * Square *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_square_c := w%i_op.(znz_square_c)." i i
- done;
- pr "";
-
- pr " Definition square x :=";
- pr " match x with";
- pr " | %s0 wx => reduce_1 (w0_square_c wx)" c;
- for i = 1 to size - 1 do
- pr " | %s%i wx => %s%i (w%i_square_c wx)" c i c (i+1) i
- done;
- pr " | %s%i wx => %sn 0 (w%i_square_c wx)" c size c size;
- pr " | %sn n wx =>" c;
- pr " let op := make_op n in";
- pr " %sn (S n) (op.(znz_square_c) wx)" c;
- pr " end.";
- pr "";
-
- pr " Theorem spec_square: forall x, [square x] = [x] * [x].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; unfold square; clear x.";
- pp " intros x; rewrite spec_reduce_1; unfold to_Z.";
- pp " exact (spec_square_c w%i_spec x)." 0;
- for i = 1 to size do
- pp " intros x; unfold to_Z.";
- pp " exact (spec_square_c w%i_spec x)." i;
- done;
- pp " intros n x; unfold to_Z.";
- pp " rewrite make_op_S.";
- pp " exact (spec_square_c (wn_spec n) x).";
- pp "Qed.";
- pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Square root *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_sqrt := w%i_op.(znz_sqrt)." i i
- done;
- pr "";
-
- pr " Definition sqrt x :=";
- pr " match x with";
- for i = 0 to size do
- pr " | %s%i wx => reduce_%i (w%i_sqrt wx)" c i i i;
- done;
- pr " | %sn n wx =>" c;
- pr " let op := make_op n in";
- pr " reduce_n n (op.(znz_sqrt) wx)";
- pr " end.";
- pr "";
-
- pr " Theorem spec_sqrt: forall x, [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2.";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; unfold sqrt; case x; clear x.";
- for i = 0 to size do
- pp " intros x; rewrite spec_reduce_%i; exact (spec_sqrt w%i_spec x)." i i;
- done;
- pp " intros n x; rewrite spec_reduce_n; exact (spec_sqrt (wn_spec n) x).";
- pp " Qed.";
- pr "";
-
-
- pr " (***************************************************************)";
- pr " (* *)";
pr " (** * Division *)";
pr " (* *)";
pr " (***************************************************************)";
pr "";
- for i = 0 to size do
- pr " Definition w%i_div_gt := w%i_op.(znz_div_gt)." i i
- done;
- pr "";
-
- pp " Let spec_divn1 ww (ww_op: znz_op ww) (ww_spec: znz_spec ww_op) :=";
+ pp " Let spec_divn1 ww (ww_op: ZnZ.Ops ww) (ww_spec: ZnZ.Specs ww_op) :=";
pp " (spec_double_divn1";
- pp " ww_op.(znz_zdigits) ww_op.(znz_0)";
- pp " (znz_WW ww_op) ww_op.(znz_head0)";
- pp " ww_op.(znz_add_mul_div) ww_op.(znz_div21)";
- pp " ww_op.(znz_compare) ww_op.(znz_sub) (znz_to_Z ww_op)";
- pp " (spec_to_Z ww_spec)";
- pp " (spec_zdigits ww_spec)";
- pp " (spec_0 ww_spec) (spec_WW ww_spec) (spec_head0 ww_spec)";
- pp " (spec_add_mul_div ww_spec) (spec_div21 ww_spec)";
- pp " (CyclicAxioms.spec_compare ww_spec) (CyclicAxioms.spec_sub ww_spec)).";
+ pp " (ZnZ.zdigits ww_op) ZnZ.zero";
+ pp " ZnZ.WW ZnZ.head0";
+ pp " ZnZ.add_mul_div ZnZ.div21";
+ pp " ZnZ.compare ZnZ.sub ZnZ.to_Z";
+ pp " ZnZ.spec_to_Z";
+ pp " ZnZ.spec_zdigits";
+ pp " ZnZ.spec_0 ZnZ.spec_WW ZnZ.spec_head0";
+ pp " ZnZ.spec_add_mul_div ZnZ.spec_div21";
+ pp " ZnZ.spec_compare ZnZ.spec_sub).";
pp "";
for i = 0 to size do
pr " Definition w%i_divn1 n x y :=" i;
pr " let (u, v) :=";
- pr " double_divn1 w%i_op.(znz_zdigits) w%i_op.(znz_0)" i i;
- pr " (znz_WW w%i_op) w%i_op.(znz_head0)" i i;
- pr " w%i_op.(znz_add_mul_div) w%i_op.(znz_div21)" i i;
- pr " w%i_op.(znz_compare) w%i_op.(znz_sub) (S n) x y in" i i;
+ pr " double_divn1 (ZnZ.zdigits w%i_op) ZnZ.zero" i;
+ pr " ZnZ.WW ZnZ.head0";
+ pr " ZnZ.add_mul_div ZnZ.div21";
+ pr " ZnZ.compare ZnZ.sub (S n) x y in";
if i == size then
pr " (%sn _ u, %s%i v)." c c i
else
pr " (to_Z%i _ u, %s%i v)." i c i;
+ pr "";
done;
- pr "";
for i = 0 to size do
pp " Lemma spec_get_end%i: forall n x y," i;
@@ -1745,17 +1305,17 @@ let _ =
pp " intros n x y H.";
pp " rewrite spec_double_eval%in; unfold to_Z." i;
pp " apply DoubleBase.spec_get_low.";
- pp " exact (spec_0 w%i_spec)." i;
- pp " exact (spec_to_Z w%i_spec)." i;
+ pp " exact ZnZ.spec_0.";
+ pp " exact ZnZ.spec_to_Z.";
pp " apply Zle_lt_trans with [%s%i y]; auto." c i;
pp " rewrite <- spec_double_eval%in; auto." i;
- pp " unfold to_Z; case (spec_to_Z w%i_spec y); auto." i;
+ pp " unfold to_Z; case (ZnZ.spec_to_Z y); auto.";
pp " Qed.";
pp "";
done;
for i = 0 to size do
- pr " Let div_gt%i x y := let (u,v) := (w%i_div_gt x y) in (reduce_%i u, reduce_%i v)." i i i i;
+ pr " Let div_gt%i (x y:w%i) := let (u,v) := ZnZ.div_gt x y in (reduce_%i u, reduce_%i v)." i i i i;
done;
pr "";
@@ -1764,13 +1324,13 @@ let _ =
pr " let mn := Max.max n m in";
pr " let d := diff n m in";
pr " let op := make_op mn in";
- pr " let (q, r):= op.(znz_div_gt)";
+ pr " let (q, r):= ZnZ.div_gt";
pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
pr " (castm (diff_l n m) (extend_tr wy (fst d))) in";
pr " (reduce_n mn q, reduce_n mn r).";
pr "";
- pr " Definition div_gt := Eval lazy beta delta [iter] in";
+ pr " Local Notation div_gt_folded :=";
pr " (iter _";
for i = 0 to size do
pr " div_gt%i" i;
@@ -1778,6 +1338,7 @@ let _ =
pr " w%i_divn1" i;
done;
pr " div_gtnm).";
+ pr " Definition div_gt := Eval lazy beta delta [iter] in div_gt_folded.";
pr "";
pr " Theorem spec_div_gt: forall x y,";
@@ -1790,44 +1351,29 @@ let _ =
pp " forall x y, [x] > [y] -> 0 < [y] ->";
pp " let (q,r) := div_gt x y in";
pp " [x] = [q] * [y] + [r] /\\ 0 <= [r] < [y]).";
- pp " refine (spec_iter (t_*t_) (fun x y res => x > y -> 0 < y ->";
- pp " let (q,r) := res in";
- pp " x = [q] * y + [r] /\\ 0 <= [r] < y)";
- for i = 0 to size do
- pp " div_gt%i" i;
- pp " (fun n x y => div_gt%i x (DoubleBase.get_low %s (S n) y))" i (pz i);
- pp " w%i_divn1 _ _ _" i;
- done;
- pp " div_gtnm _).";
+ pp " intros x y. change div_gt with div_gt_folded. apply spec_iter; clear x y.";
for i = 0 to size do
- pp " intros x y H1 H2; unfold div_gt%i, w%i_div_gt." i i;
- pp " generalize (spec_div_gt w%i_spec x y H1 H2); case znz_div_gt." i;
+ pp " (* %i *)" i;
+ pp " intros x y H1 H2; unfold div_gt%i." i;
+ pp " generalize (ZnZ.spec_div_gt x y H1 H2); case ZnZ.div_gt.";
pp " intros xx yy; repeat rewrite spec_reduce_%i; auto." i;
if i == size then
- pp " intros n x y H2 H3; unfold div_gt%i, w%i_div_gt." i i
+ pp " intros n x y H2 H3; unfold div_gt%i." i
else
- pp " intros n x y H1 H2 H3; unfold div_gt%i, w%i_div_gt." i i;
- pp " generalize (spec_div_gt w%i_spec x" i;
+ pp " intros n x y H1 H2 H3; unfold div_gt%i." i;
+ pp " generalize (ZnZ.spec_div_gt x";
pp " (DoubleBase.get_low %s (S n) y))." (pz i);
- pp0 "";
- for j = 0 to i do
- pp0 "unfold w%i; " (i-j);
- done;
- pp "case znz_div_gt.";
+ pp " case ZnZ.div_gt.";
pp " intros xx yy H4; repeat rewrite spec_reduce_%i." i;
pp " generalize (spec_get_end%i (S n) y x); unfold to_Z; intros H5." i;
pp " unfold to_Z in H2; rewrite H5 in H4; auto with zarith.";
if i == size then
- pp " intros n x y H2 H3."
+ pp " intros n x y H2 H3."
else
- pp " intros n x y H1 H2 H3.";
+ pp " intros n x y H1 H2 H3.";
pp " generalize";
pp " (spec_divn1 w%i w%i_op w%i_spec (S n) x y H3)." i i i;
- pp0 " unfold w%i_divn1; " i;
- for j = 0 to i do
- pp0 "unfold w%i; " (i-j);
- done;
- pp "case double_divn1.";
+ pp " unfold w%i_divn1; case double_divn1." i;
pp " intros xx yy H4.";
if i == size then
begin
@@ -1840,13 +1386,13 @@ let _ =
pp " repeat rewrite <- spec_double_eval%in in H4; auto." i;
end;
done;
- pp " intros n m x y H1 H2; unfold div_gtnm.";
- pp " generalize (spec_div_gt (wn_spec (Max.max n m))";
+ pp " intros n m x y H1 H2; unfold div_gtnm.";
+ pp " generalize (ZnZ.spec_div_gt";
pp " (castm (diff_r n m)";
pp " (extend_tr x (snd (diff n m))))";
pp " (castm (diff_l n m)";
pp " (extend_tr y (fst (diff n m))))).";
- pp " case znz_div_gt.";
+ pp " case ZnZ.div_gt.";
pp " intros xx yy HH.";
pp " repeat rewrite spec_reduce_n.";
pp " rewrite <- (spec_cast_l n m x).";
@@ -1872,15 +1418,10 @@ let _ =
pr "";
for i = 0 to size do
- pr " Definition w%i_mod_gt := w%i_op.(znz_mod_gt)." i i
- done;
- pr "";
-
- for i = 0 to size do
pr " Definition w%i_modn1 :=" i;
- pr " double_modn1 w%i_op.(znz_zdigits) w%i_op.(znz_0)" i i;
- pr " w%i_op.(znz_head0) w%i_op.(znz_add_mul_div) w%i_op.(znz_div21)" i i i;
- pr " w%i_op.(znz_compare) w%i_op.(znz_sub)." i i;
+ pr " double_modn1 (ZnZ.zdigits w%i_op) (ZnZ.zero (Ops:=w%i_op))" i i;
+ pr " ZnZ.head0 ZnZ.add_mul_div ZnZ.div21";
+ pr " ZnZ.compare ZnZ.sub.";
done;
pr "";
@@ -1888,56 +1429,49 @@ let _ =
pr " let mn := Max.max n m in";
pr " let d := diff n m in";
pr " let op := make_op mn in";
- pr " reduce_n mn (op.(znz_mod_gt)";
+ pr " reduce_n mn (ZnZ.modulo_gt";
pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
pr " (castm (diff_l n m) (extend_tr wy (fst d)))).";
pr "";
- pr " Definition mod_gt := Eval lazy beta delta[iter] in";
+ pr " Local Notation mod_gt_folded :=";
pr " (iter _";
for i = 0 to size do
- pr " (fun x y => reduce_%i (w%i_mod_gt x y))" i i;
- pr " (fun n x y => reduce_%i (w%i_mod_gt x (DoubleBase.get_low %s (S n) y)))" i i (pz i);
+ pr " (fun x y => reduce_%i (ZnZ.modulo_gt x y))" i;
+ pr " (fun n x y => reduce_%i (ZnZ.modulo_gt x (DoubleBase.get_low %s (S n) y)))" i (pz i);
pr " (fun n x y => reduce_%i (w%i_modn1 (S n) x y))" i i;
done;
pr " mod_gtnm).";
- pr "";
-
- pp " Let spec_modn1 ww (ww_op: znz_op ww) (ww_spec: znz_spec ww_op) :=";
- pp " (spec_double_modn1";
- pp " ww_op.(znz_zdigits) ww_op.(znz_0)";
- pp " (znz_WW ww_op) ww_op.(znz_head0)";
- pp " ww_op.(znz_add_mul_div) ww_op.(znz_div21)";
- pp " ww_op.(znz_compare) ww_op.(znz_sub) (znz_to_Z ww_op)";
- pp " (spec_to_Z ww_spec)";
- pp " (spec_zdigits ww_spec)";
- pp " (spec_0 ww_spec) (spec_WW ww_spec) (spec_head0 ww_spec)";
- pp " (spec_add_mul_div ww_spec) (spec_div21 ww_spec)";
- pp " (CyclicAxioms.spec_compare ww_spec) (CyclicAxioms.spec_sub ww_spec)).";
+ pr " Definition mod_gt := Eval lazy beta delta[iter] in mod_gt_folded.";
+ pr "";
+
+ pp " Let spec_modn1 ww (ww_op: ZnZ.Ops ww) (ww_spec: ZnZ.Specs ww_op) :=";
+ pp " spec_double_modn1";
+ pp " (ZnZ.zdigits ww_op) ZnZ.zero";
+ pp " ZnZ.WW ZnZ.head0";
+ pp " ZnZ.add_mul_div ZnZ.div21";
+ pp " ZnZ.compare ZnZ.sub ZnZ.to_Z";
+ pp " ZnZ.spec_to_Z";
+ pp " ZnZ.spec_zdigits";
+ pp " ZnZ.spec_0 ZnZ.spec_WW ZnZ.spec_head0";
+ pp " ZnZ.spec_add_mul_div ZnZ.spec_div21";
+ pp " ZnZ.spec_compare ZnZ.spec_sub.";
pp "";
pr " Theorem spec_mod_gt:";
pr " forall x y, [x] > [y] -> 0 < [y] -> [mod_gt x y] = [x] mod [y].";
pa " Admitted.";
pp " Proof.";
- pp " refine (spec_iter _ (fun x y res => x > y -> 0 < y ->";
- pp " [res] = x mod y)";
- for i = 0 to size do
- pp " (fun x y => reduce_%i (w%i_mod_gt x y))" i i;
- pp " (fun n x y => reduce_%i (w%i_mod_gt x (DoubleBase.get_low %s (S n) y)))" i i (pz i);
- pp " (fun n x y => reduce_%i (w%i_modn1 (S n) x y)) _ _ _" i i;
- done;
- pp " mod_gtnm _).";
+ pp " intros x y. change mod_gt with mod_gt_folded. apply spec_iter; clear x y.";
for i = 0 to size do
pp " intros x y H1 H2; rewrite spec_reduce_%i." i;
- pp " exact (spec_mod_gt w%i_spec x y H1 H2)." i;
+ pp " exact (ZnZ.spec_modulo_gt x y H1 H2).";
if i == size then
pp " intros n x y H2 H3; rewrite spec_reduce_%i." i
else
pp " intros n x y H1 H2 H3; rewrite spec_reduce_%i." i;
- pp " unfold w%i_mod_gt." i;
pp " rewrite <- (spec_get_end%i (S n) y x); auto with zarith." i;
- pp " unfold to_Z; apply (spec_mod_gt w%i_spec); auto." i;
+ pp " unfold to_Z; apply ZnZ.spec_modulo_gt; auto.";
pp " rewrite <- (spec_get_end%i (S n) y x) in H2; auto with zarith." i;
pp " rewrite <- (spec_get_end%i (S n) y x) in H3; auto with zarith." i;
if i == size then
@@ -1951,399 +1485,15 @@ let _ =
pp " repeat rewrite spec_reduce_n.";
pp " rewrite <- (spec_cast_l n m x).";
pp " rewrite <- (spec_cast_r n m y).";
- pp " unfold to_Z; apply (spec_mod_gt (wn_spec (Max.max n m))).";
+ pp " unfold to_Z; apply ZnZ.spec_modulo_gt.";
pp " rewrite <- (spec_cast_l n m x) in H1; auto.";
pp " rewrite <- (spec_cast_r n m y) in H1; auto.";
pp " rewrite <- (spec_cast_r n m y) in H2; auto.";
pp " Qed.";
pr "";
- pr " (** digits: a measure for gcd *)";
- pr "";
-
- pr " Definition digits x :=";
- pr " match x with";
- for i = 0 to size do
- pr " | %s%i _ => w%i_op.(znz_digits)" c i i;
- done;
- pr " | %sn n _ => (make_op n).(znz_digits)" c;
- pr " end.";
- pr "";
-
- pr " Theorem spec_digits: forall x, 0 <= [x] < 2 ^ Zpos (digits x).";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; clear x.";
- for i = 0 to size do
- pp " intros x; unfold to_Z, digits;";
- pp " generalize (spec_to_Z w%i_spec x); unfold base; intros H; exact H." i;
- done;
- pp " intros n x; unfold to_Z, digits;";
- pp " generalize (spec_to_Z (wn_spec n) x); unfold base; intros H; exact H.";
- pp " Qed.";
- pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Conversion *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- pr " Definition pheight p :=";
- pr " Peano.pred (nat_of_P (get_height w0_op.(znz_digits) (plength p))).";
- pr "";
-
- pr " Theorem pheight_correct: forall p,";
- pr " Zpos p < 2 ^ (Zpos (znz_digits w0_op) * 2 ^ (Z_of_nat (pheight p))).";
- pr " Proof.";
- pr " intros p; unfold pheight.";
- pr " assert (F1: forall x, Z_of_nat (Peano.pred (nat_of_P x)) = Zpos x - 1).";
- pr " intros x.";
- pr " assert (Zsucc (Z_of_nat (Peano.pred (nat_of_P x))) = Zpos x); auto with zarith.";
- pr " rewrite <- inj_S.";
- pr " rewrite <- (fun x => S_pred x 0); auto with zarith.";
- pr " rewrite Zpos_eq_Z_of_nat_o_nat_of_P; auto.";
- pr " apply lt_le_trans with 1%snat; auto with zarith." "%";
- pr " exact (le_Pmult_nat x 1).";
- pr " rewrite F1; clear F1.";
- pr " assert (F2:= (get_height_correct (znz_digits w0_op) (plength p))).";
- pr " apply Zlt_le_trans with (Zpos (Psucc p)).";
- pr " rewrite Zpos_succ_morphism; auto with zarith.";
- pr " apply Zle_trans with (1 := plength_pred_correct (Psucc p)).";
- pr " rewrite Ppred_succ.";
- pr " apply Zpower_le_monotone; auto with zarith.";
- pr " Qed.";
- pr "";
-
- pr " Definition of_pos x :=";
- pr " let h := pheight x in";
- pr " match h with";
- for i = 0 to size do
- pr " | %i%snat => reduce_%i (snd (w%i_op.(znz_of_pos) x))" i "%" i i;
- done;
- pr " | _ =>";
- pr " let n := minus h %i in" (size + 1);
- pr " reduce_n n (snd ((make_op n).(znz_of_pos) x))";
- pr " end.";
- pr "";
-
- pr " Theorem spec_of_pos: forall x,";
- pr " [of_pos x] = Zpos x.";
- pa " Admitted.";
- pp " Proof.";
- pp " assert (F := spec_more_than_1_digit w0_spec).";
- pp " intros x; unfold of_pos; case_eq (pheight x).";
- for i = 0 to size do
- if i <> 0 then
- pp " intros n; case n; clear n.";
- pp " intros H1; rewrite spec_reduce_%i; unfold to_Z." i;
- pp " apply (znz_of_pos_correct w%i_spec)." i;
- pp " apply Zlt_le_trans with (1 := pheight_correct x).";
- pp " rewrite H1; simpl Z_of_nat; change (2^%i) with (%s)." i (gen2 i);
- pp " unfold base.";
- pp " apply Zpower_le_monotone; split; auto with zarith.";
- if i <> 0 then
- begin
- pp " rewrite Zmult_comm; repeat rewrite <- Zmult_assoc.";
- pp " repeat rewrite <- Zpos_xO.";
- pp " refine (Zle_refl _).";
- end;
- done;
- pp " intros n.";
- pp " intros H1; rewrite spec_reduce_n; unfold to_Z.";
- pp " simpl minus; rewrite <- minus_n_O.";
- pp " apply (znz_of_pos_correct (wn_spec n)).";
- pp " apply Zlt_le_trans with (1 := pheight_correct x).";
- pp " unfold base.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " split; auto with zarith.";
- pp " rewrite H1.";
- pp " elim n; clear n H1.";
- pp " simpl Z_of_nat; change (2^%i) with (%s)." (size + 1) (gen2 (size + 1));
- pp " rewrite Zmult_comm; repeat rewrite <- Zmult_assoc.";
- pp " repeat rewrite <- Zpos_xO.";
- pp " refine (Zle_refl _).";
- pp " intros n Hrec.";
- pp " rewrite make_op_S.";
- pp " change (@znz_digits (word _ (S (S n))) (mk_zn2z_op_karatsuba (make_op n))) with";
- pp " (xO (znz_digits (make_op n))).";
- pp " rewrite (fun x y => (Zpos_xO (@znz_digits x y))).";
- pp " rewrite inj_S; unfold Zsucc.";
- pp " rewrite Zplus_comm; rewrite Zpower_exp; auto with zarith.";
- pp " rewrite Zpower_1_r.";
- pp " assert (tmp: forall x y z, x * (y * z) = y * (x * z));";
- pp " [intros; ring | rewrite tmp; clear tmp].";
- pp " apply Zmult_le_compat_l; auto with zarith.";
- pp " Qed.";
- pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Shift *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- (* Head0 *)
- pr " Definition head0 w := match w with";
- for i = 0 to size do
- pr " | %s%i w=> reduce_%i (w%i_op.(znz_head0) w)" c i i i;
- done;
- pr " | %sn n w=> reduce_n n ((make_op n).(znz_head0) w)" c;
- pr " end.";
- pr "";
-
- pr " Theorem spec_head00: forall x, [x] = 0 ->[head0 x] = Zpos (digits x).";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; unfold head0; clear x.";
- for i = 0 to size do
- pp " intros x; rewrite spec_reduce_%i; exact (spec_head00 w%i_spec x)." i i;
- done;
- pp " intros n x; rewrite spec_reduce_n; exact (spec_head00 (wn_spec n) x).";
- pp " Qed.";
- pr "";
-
- pr " Theorem spec_head0: forall x, 0 < [x] ->";
- pr " 2 ^ (Zpos (digits x) - 1) <= 2 ^ [head0 x] * [x] < 2 ^ Zpos (digits x).";
- pa " Admitted.";
- pp " Proof.";
- pp " assert (F0: forall x, (x - 1) + 1 = x).";
- pp " intros; ring.";
- pp " intros x; case x; unfold digits, head0; clear x.";
- for i = 0 to size do
- pp " intros x Hx; rewrite spec_reduce_%i." i;
- pp " assert (F1:= spec_more_than_1_digit w%i_spec)." i;
- pp " generalize (spec_head0 w%i_spec x Hx)." i;
- pp " unfold base.";
- pp " pattern (Zpos (znz_digits w%i_op)) at 1;" i;
- pp " rewrite <- (fun x => (F0 (Zpos x))).";
- pp " rewrite Zpower_exp; auto with zarith.";
- pp " rewrite Zpower_1_r; rewrite Z_div_mult; auto with zarith.";
- done;
- pp " intros n x Hx; rewrite spec_reduce_n.";
- pp " assert (F1:= spec_more_than_1_digit (wn_spec n)).";
- pp " generalize (spec_head0 (wn_spec n) x Hx).";
- pp " unfold base.";
- pp " pattern (Zpos (znz_digits (make_op n))) at 1;";
- pp " rewrite <- (fun x => (F0 (Zpos x))).";
- pp " rewrite Zpower_exp; auto with zarith.";
- pp " rewrite Zpower_1_r; rewrite Z_div_mult; auto with zarith.";
- pp " Qed.";
- pr "";
-
-
- (* Tail0 *)
- pr " Definition tail0 w := match w with";
- for i = 0 to size do
- pr " | %s%i w=> reduce_%i (w%i_op.(znz_tail0) w)" c i i i;
- done;
- pr " | %sn n w=> reduce_n n ((make_op n).(znz_tail0) w)" c;
- pr " end.";
- pr "";
-
-
- pr " Theorem spec_tail00: forall x, [x] = 0 ->[tail0 x] = Zpos (digits x).";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; unfold tail0; clear x.";
- for i = 0 to size do
- pp " intros x; rewrite spec_reduce_%i; exact (spec_tail00 w%i_spec x)." i i;
- done;
- pp " intros n x; rewrite spec_reduce_n; exact (spec_tail00 (wn_spec n) x).";
- pp " Qed.";
- pr "";
-
-
- pr " Theorem spec_tail0: forall x,";
- pr " 0 < [x] -> exists y, 0 <= y /\\ [x] = (2 * y + 1) * 2 ^ [tail0 x].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; clear x; unfold tail0.";
- for i = 0 to size do
- pp " intros x Hx; rewrite spec_reduce_%i; exact (spec_tail0 w%i_spec x Hx)." i i;
- done;
- pp " intros n x Hx; rewrite spec_reduce_n; exact (spec_tail0 (wn_spec n) x Hx).";
- pp " Qed.";
- pr "";
-
-
- (* Number of digits *)
- pr " Definition %sdigits x :=" c;
- pr " match x with";
- pr " | %s0 _ => %s0 w0_op.(znz_zdigits)" c c;
- for i = 1 to size do
- pr " | %s%i _ => reduce_%i w%i_op.(znz_zdigits)" c i i i;
- done;
- pr " | %sn n _ => reduce_n n (make_op n).(znz_zdigits)" c;
- pr " end.";
- pr "";
-
- pr " Theorem spec_Ndigits: forall x, [Ndigits x] = Zpos (digits x).";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; clear x; unfold Ndigits, digits.";
- for i = 0 to size do
- pp " intros _; try rewrite spec_reduce_%i; exact (spec_zdigits w%i_spec)." i i;
- done;
- pp " intros n _; try rewrite spec_reduce_n; exact (spec_zdigits (wn_spec n)).";
- pp " Qed.";
- pr "";
-
-
- (* Shiftr *)
- for i = 0 to size do
- pr " Definition unsafe_shiftr%i n x := w%i_op.(znz_add_mul_div) (w%i_op.(znz_sub) w%i_op.(znz_zdigits) n) w%i_op.(znz_0) x." i i i i i;
- done;
- pr " Definition unsafe_shiftrn n p x := (make_op n).(znz_add_mul_div) ((make_op n).(znz_sub) (make_op n).(znz_zdigits) p) (make_op n).(znz_0) x.";
- pr "";
-
- pr " Definition unsafe_shiftr := Eval lazy beta delta [same_level] in";
- pr " same_level _ (fun n x => %s0 (unsafe_shiftr0 n x))" c;
- for i = 1 to size do
- pr " (fun n x => reduce_%i (unsafe_shiftr%i n x))" i i;
- done;
- pr " (fun n p x => reduce_n n (unsafe_shiftrn n p x)).";
- pr "";
-
-
- pr " Theorem spec_unsafe_shiftr: forall n x,";
- pr " [n] <= [Ndigits x] -> [unsafe_shiftr n x] = [x] / 2 ^ [n].";
- pa " Admitted.";
- pp " Proof.";
- pp " assert (F0: forall x y, x - (x - y) = y).";
- pp " intros; ring.";
- pp " assert (F2: forall x y z, 0 <= x -> 0 <= y -> x < z -> 0 <= x / 2 ^ y < z).";
- pp " intros x y z HH HH1 HH2.";
- pp " split; auto with zarith.";
- pp " apply Zle_lt_trans with (2 := HH2); auto with zarith.";
- pp " apply Zdiv_le_upper_bound; auto with zarith.";
- pp " pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith.";
- pp " apply Zmult_le_compat_l; auto.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " rewrite Zpower_0_r; ring.";
- pp " assert (F3: forall x y, 0 <= y -> y <= x -> 0 <= x - y < 2 ^ x).";
- pp " intros xx y HH HH1.";
- pp " split; auto with zarith.";
- pp " apply Zle_lt_trans with xx; auto with zarith.";
- pp " apply Zpower2_lt_lin; auto with zarith.";
- pp " assert (F4: forall ww ww1 ww2";
- pp " (ww_op: znz_op ww) (ww1_op: znz_op ww1) (ww2_op: znz_op ww2)";
- pp " xx yy xx1 yy1,";
- pp " znz_to_Z ww2_op yy <= znz_to_Z ww1_op (znz_zdigits ww1_op) ->";
- pp " znz_to_Z ww1_op (znz_zdigits ww1_op) <= znz_to_Z ww_op (znz_zdigits ww_op) ->";
- pp " znz_spec ww_op -> znz_spec ww1_op -> znz_spec ww2_op ->";
- pp " znz_to_Z ww_op xx1 = znz_to_Z ww1_op xx ->";
- pp " znz_to_Z ww_op yy1 = znz_to_Z ww2_op yy ->";
- pp " znz_to_Z ww_op";
- pp " (znz_add_mul_div ww_op (znz_sub ww_op (znz_zdigits ww_op) yy1)";
- pp " (znz_0 ww_op) xx1) = znz_to_Z ww1_op xx / 2 ^ znz_to_Z ww2_op yy).";
- pp " intros ww ww1 ww2 ww_op ww1_op ww2_op xx yy xx1 yy1 Hl Hl1 Hw Hw1 Hw2 Hx Hy.";
- pp " case (spec_to_Z Hw xx1); auto with zarith; intros HH1 HH2.";
- pp " case (spec_to_Z Hw yy1); auto with zarith; intros HH3 HH4.";
- pp " rewrite <- Hx.";
- pp " rewrite <- Hy.";
- pp " generalize (spec_add_mul_div Hw";
- pp " (znz_0 ww_op) xx1";
- pp " (znz_sub ww_op (znz_zdigits ww_op)";
- pp " yy1)";
- pp " ).";
- pp " rewrite (spec_0 Hw).";
- pp " rewrite Zmult_0_l; rewrite Zplus_0_l.";
- pp " rewrite (CyclicAxioms.spec_sub Hw).";
- pp " rewrite Zmod_small; auto with zarith.";
- pp " rewrite (spec_zdigits Hw).";
- pp " rewrite F0.";
- pp " rewrite Zmod_small; auto with zarith.";
- pp " unfold base; rewrite (spec_zdigits Hw) in Hl1 |- *;";
- pp " auto with zarith.";
- pp " assert (F5: forall n m, (n <= m)%snat ->" "%";
- pp " Zpos (znz_digits (make_op n)) <= Zpos (znz_digits (make_op m))).";
- pp " intros n m HH; elim HH; clear m HH; auto with zarith.";
- pp " intros m HH Hrec; apply Zle_trans with (1 := Hrec).";
- pp " rewrite make_op_S.";
- pp " match goal with |- Zpos ?Y <= ?X => change X with (Zpos (xO Y)) end.";
- pp " rewrite Zpos_xO.";
- pp " assert (0 <= Zpos (znz_digits (make_op n))); auto with zarith.";
- pp " assert (F6: forall n, Zpos (znz_digits w%i_op) <= Zpos (znz_digits (make_op n)))." size;
- pp " intros n ; apply Zle_trans with (Zpos (znz_digits (make_op 0))).";
- pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size;
- pp " rewrite Zpos_xO.";
- pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." size;
- pp " apply F5; auto with arith.";
- pp " intros x; case x; clear x; unfold unsafe_shiftr, same_level.";
- for i = 0 to size do
- pp " intros x y; case y; clear y.";
- for j = 0 to i - 1 do
- pp " intros y; unfold unsafe_shiftr%i, Ndigits." i;
- pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j;
- pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i j i;
- pp " rewrite (spec_zdigits w%i_spec)." i;
- pp " rewrite (spec_zdigits w%i_spec)." j;
- pp " change (znz_digits w%i_op) with %s." i (genxO (i - j) (" (znz_digits w"^(string_of_int j)^"_op)"));
- pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
- pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
- pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." j;
- pp " try (apply sym_equal; exact (spec_extend%in%i y))." j i;
-
- done;
- pp " intros y; unfold unsafe_shiftr%i, Ndigits." i;
- pp " repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i;
- pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i i i;
- for j = i + 1 to size do
- pp " intros y; unfold unsafe_shiftr%i, Ndigits." j;
- pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j;
- pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." j j i;
- pp " try (apply sym_equal; exact (spec_extend%in%i x))." i j;
- done;
- if i == size then
- begin
- pp " intros m y; unfold unsafe_shiftrn, Ndigits.";
- pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
- pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." size;
- pp " try (apply sym_equal; exact (spec_extend%in m x))." size;
- end
- else
- begin
- pp " intros m y; unfold unsafe_shiftrn, Ndigits.";
- pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
- pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." i;
- pp " change ([Nn m (extend%i m (extend%i %i x))] = [N%i x])." size i (size - i - 1) i;
- pp " rewrite <- (spec_extend%in m); rewrite <- spec_extend%in%i; auto." size i size;
- end
- done;
- pp " intros n x y; case y; clear y;";
- pp " intros y; unfold unsafe_shiftrn, Ndigits; try rewrite spec_reduce_n.";
- for i = 0 to size do
- pp " try rewrite spec_reduce_%i; unfold to_Z; intros H1." i;
- pp " apply F4 with (3:=(wn_spec n))(4:=w%i_spec)(5:=wn_spec n); auto with zarith." i;
- pp " rewrite (spec_zdigits w%i_spec)." i;
- pp " rewrite (spec_zdigits (wn_spec n)).";
- pp " apply Zle_trans with (2 := F6 n).";
- pp " change (znz_digits w%i_op) with %s." size (genxO (size - i) ("(znz_digits w" ^ (string_of_int i) ^ "_op)"));
- pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
- pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
- pp " assert (H: 0 <= Zpos (znz_digits w%i_op)); auto with zarith." i;
- if i == size then
- pp " change ([Nn n (extend%i n y)] = [N%i y])." size i
- else
- pp " change ([Nn n (extend%i n (extend%i %i y))] = [N%i y])." size i (size - i - 1) i;
- pp " rewrite <- (spec_extend%in n); auto." size;
- if i <> size then
- pp " try (rewrite <- spec_extend%in%i; auto)." i size;
- done;
- pp " generalize y; clear y; intros m y.";
- pp " rewrite spec_reduce_n; unfold to_Z; intros H1.";
- pp " apply F4 with (3:=(wn_spec (Max.max n m)))(4:=wn_spec m)(5:=wn_spec n); auto with zarith.";
- pp " rewrite (spec_zdigits (wn_spec m)).";
- pp " rewrite (spec_zdigits (wn_spec (Max.max n m))).";
- pp " apply F5; auto with arith.";
- pp " exact (spec_cast_r n m y).";
- pp " exact (spec_cast_l n m x).";
- pp " Qed.";
- pr "";
+(*
(* Unsafe_Shiftl *)
for i = 0 to size do
pr " Definition unsafe_shiftl%i n x := w%i_op.(znz_add_mul_div) n x w%i_op.(znz_0)." i i i
@@ -2380,35 +1530,35 @@ let _ =
pp " apply Zle_lt_trans with xx; auto with zarith.";
pp " apply Zpower2_lt_lin; auto with zarith.";
pp " assert (F4: forall ww ww1 ww2";
- pp " (ww_op: znz_op ww) (ww1_op: znz_op ww1) (ww2_op: znz_op ww2)";
+ pp " (ww_op: ZnZ.Ops ww) (ww1_op: ZnZ.Ops ww1) (ww2_op: ZnZ.Ops ww2)";
pp " xx yy xx1 yy1,";
- pp " znz_to_Z ww2_op yy <= znz_to_Z ww1_op (znz_head0 ww1_op xx) ->";
- pp " znz_to_Z ww1_op (znz_zdigits ww1_op) <= znz_to_Z ww_op (znz_zdigits ww_op) ->";
+ pp " ZnZ.to_Z ww2_op yy <= ZnZ.to_Z ww1_op (znz_head0 ww1_op xx) ->";
+ pp " ZnZ.to_Z ww1_op (ZnZ.zdigits ww1_op) <= ZnZ.to_Z ww_op (ZnZ.zdigits ww_op) ->";
pp " znz_spec ww_op -> znz_spec ww1_op -> znz_spec ww2_op ->";
- pp " znz_to_Z ww_op xx1 = znz_to_Z ww1_op xx ->";
- pp " znz_to_Z ww_op yy1 = znz_to_Z ww2_op yy ->";
- pp " znz_to_Z ww_op";
+ pp " ZnZ.to_Z ww_op xx1 = ZnZ.to_Z ww1_op xx ->";
+ pp " ZnZ.to_Z ww_op yy1 = ZnZ.to_Z ww2_op yy ->";
+ pp " ZnZ.to_Z ww_op";
pp " (znz_add_mul_div ww_op yy1";
- pp " xx1 (znz_0 ww_op)) = znz_to_Z ww1_op xx * 2 ^ znz_to_Z ww2_op yy).";
+ pp " xx1 (znz_0 ww_op)) = ZnZ.to_Z ww1_op xx * 2 ^ ZnZ.to_Z ww2_op yy).";
pp " intros ww ww1 ww2 ww_op ww1_op ww2_op xx yy xx1 yy1 Hl Hl1 Hw Hw1 Hw2 Hx Hy.";
pp " case (spec_to_Z Hw xx1); auto with zarith; intros HH1 HH2.";
pp " case (spec_to_Z Hw yy1); auto with zarith; intros HH3 HH4.";
pp " rewrite <- Hx.";
pp " rewrite <- Hy.";
pp " generalize (spec_add_mul_div Hw xx1 (znz_0 ww_op) yy1).";
- pp " rewrite (spec_0 Hw).";
- pp " assert (F1: znz_to_Z ww1_op (znz_head0 ww1_op xx) <= Zpos (znz_digits ww1_op)).";
+ pp " rewrite ZnZ.spec_0.";
+ pp " assert (F1: ZnZ.to_Z ww1_op (znz_head0 ww1_op xx) <= Zpos (ZnZ.digits ww1_op)).";
pp " case (Zle_lt_or_eq _ _ HH1); intros HH5.";
pp " apply Zlt_le_weak.";
pp " case (CyclicAxioms.spec_head0 Hw1 xx).";
pp " rewrite <- Hx; auto.";
pp " intros _ Hu; unfold base in Hu.";
- pp " case (Zle_or_lt (Zpos (znz_digits ww1_op))";
- pp " (znz_to_Z ww1_op (znz_head0 ww1_op xx))); auto; intros H1.";
- pp " absurd (2 ^ (Zpos (znz_digits ww1_op)) <= 2 ^ (znz_to_Z ww1_op (znz_head0 ww1_op xx))).";
+ pp " case (Zle_or_lt (Zpos (ZnZ.digits ww1_op))";
+ pp " (ZnZ.to_Z ww1_op (znz_head0 ww1_op xx))); auto; intros H1.";
+ pp " absurd (2 ^ (Zpos (ZnZ.digits ww1_op)) <= 2 ^ (ZnZ.to_Z ww1_op (znz_head0 ww1_op xx))).";
pp " apply Zlt_not_le.";
pp " case (spec_to_Z Hw1 xx); intros HHx3 HHx4.";
- pp " rewrite <- (Zmult_1_r (2 ^ znz_to_Z ww1_op (znz_head0 ww1_op xx))).";
+ pp " rewrite <- (Zmult_1_r (2 ^ ZnZ.to_Z ww1_op (znz_head0 ww1_op xx))).";
pp " apply Zle_lt_trans with (2 := Hu).";
pp " apply Zmult_le_compat_l; auto with zarith.";
pp " apply Zpower_le_monotone; auto with zarith.";
@@ -2423,7 +1573,7 @@ let _ =
pp " apply Zle_trans with (2 := Hl1); auto.";
pp " rewrite (spec_zdigits Hw1); auto with zarith.";
pp " split; auto with zarith .";
- pp " apply Zlt_le_trans with (base (znz_digits ww1_op)).";
+ pp " apply Zlt_le_trans with (base (ZnZ.digits ww1_op)).";
pp " rewrite Hx.";
pp " case (CyclicAxioms.spec_head0 Hw1 xx); auto.";
pp " rewrite <- Hx; auto.";
@@ -2444,18 +1594,18 @@ let _ =
pp " rewrite <- (spec_zdigits Hw); auto with zarith.";
pp " rewrite <- (spec_zdigits Hw1); auto with zarith.";
pp " assert (F5: forall n m, (n <= m)%snat ->" "%";
- pp " Zpos (znz_digits (make_op n)) <= Zpos (znz_digits (make_op m))).";
+ pp " Zpos (ZnZ.digits (make_op n)) <= Zpos (ZnZ.digits (make_op m))).";
pp " intros n m HH; elim HH; clear m HH; auto with zarith.";
pp " intros m HH Hrec; apply Zle_trans with (1 := Hrec).";
pp " rewrite make_op_S.";
pp " match goal with |- Zpos ?Y <= ?X => change X with (Zpos (xO Y)) end.";
pp " rewrite Zpos_xO.";
- pp " assert (0 <= Zpos (znz_digits (make_op n))); auto with zarith.";
- pp " assert (F6: forall n, Zpos (znz_digits w%i_op) <= Zpos (znz_digits (make_op n)))." size;
- pp " intros n ; apply Zle_trans with (Zpos (znz_digits (make_op 0))).";
- pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size;
+ pp " assert (0 <= Zpos (ZnZ.digits (make_op n))); auto with zarith.";
+ pp " assert (F6: forall n, Zpos (ZnZ.digits w%i_op) <= Zpos (ZnZ.digits (make_op n)))." size;
+ pp " intros n ; apply Zle_trans with (Zpos (ZnZ.digits (make_op 0))).";
+ pp " change (ZnZ.digits (make_op 0)) with (xO (ZnZ.digits w%i_op))." size;
pp " rewrite Zpos_xO.";
- pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." size;
+ pp " assert (0 <= Zpos (ZnZ.digits w%i_op)); auto with zarith." size;
pp " apply F5; auto with arith.";
pp " intros x; case x; clear x; unfold unsafe_shiftl, same_level.";
for i = 0 to size do
@@ -2466,10 +1616,10 @@ let _ =
pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i j i;
pp " rewrite (spec_zdigits w%i_spec)." i;
pp " rewrite (spec_zdigits w%i_spec)." j;
- pp " change (znz_digits w%i_op) with %s." i (genxO (i - j) (" (znz_digits w"^(string_of_int j)^"_op)"));
+ pp " change (ZnZ.digits w%i_op) with %s." i (genxO (i - j) (" (ZnZ.digits w"^(string_of_int j)^"_op)"));
pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
- pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
- pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." j;
+ pp " repeat rewrite (fun x y => Zpos_xO (@ZnZ.digits x y)).";
+ pp " assert (0 <= Zpos (ZnZ.digits w%i_op)); auto with zarith." j;
pp " try (apply sym_equal; exact (spec_extend%in%i y))." j i;
done;
pp " intros y; unfold unsafe_shiftl%i, head0." i;
@@ -2505,10 +1655,10 @@ let _ =
pp " rewrite (spec_zdigits w%i_spec)." i;
pp " rewrite (spec_zdigits (wn_spec n)).";
pp " apply Zle_trans with (2 := F6 n).";
- pp " change (znz_digits w%i_op) with %s." size (genxO (size - i) ("(znz_digits w" ^ (string_of_int i) ^ "_op)"));
+ pp " change (ZnZ.digits w%i_op) with %s." size (genxO (size - i) ("(ZnZ.digits w" ^ (string_of_int i) ^ "_op)"));
pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
- pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
- pp " assert (H: 0 <= Zpos (znz_digits w%i_op)); auto with zarith." i;
+ pp " repeat rewrite (fun x y => Zpos_xO (@ZnZ.digits x y)).";
+ pp " assert (H: 0 <= Zpos (ZnZ.digits w%i_op)); auto with zarith." i;
if i == size then
pp " change ([Nn n (extend%i n y)] = [N%i y])." size i
else
@@ -2527,147 +1677,7 @@ let _ =
pp " exact (spec_cast_l n m x).";
pp " Qed.";
pr "";
-
- (* Double size *)
- pr " Definition double_size w := match w with";
- for i = 0 to size-1 do
- pr " | %s%i x => %s%i (WW (znz_0 w%i_op) x)" c i c (i + 1) i;
- done;
- pr " | %s%i x => %sn 0 (WW (znz_0 w%i_op) x)" c size c size;
- pr " | %sn n x => %sn (S n) (WW (znz_0 (make_op n)) x)" c c;
- pr " end.";
- pr "";
-
- pr " Theorem spec_double_size_digits:";
- pr " forall x, digits (double_size x) = xO (digits x).";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; unfold double_size, digits; clear x; auto.";
- pp " intros n x; rewrite make_op_S; auto.";
- pp " Qed.";
- pr "";
-
-
- pr " Theorem spec_double_size: forall x, [double_size x] = [x].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; unfold double_size; clear x.";
- for i = 0 to size do
- pp " intros x; unfold to_Z, make_op;";
- pp " rewrite znz_to_Z_%i; rewrite (spec_0 w%i_spec); auto with zarith." (i + 1) i;
- done;
- pp " intros n x; unfold to_Z;";
- pp " generalize (znz_to_Z_n n); simpl word.";
- pp " intros HH; rewrite HH; clear HH.";
- pp " generalize (spec_0 (wn_spec n)); simpl word.";
- pp " intros HH; rewrite HH; clear HH; auto with zarith.";
- pp " Qed.";
- pr "";
-
-
- pr " Theorem spec_double_size_head0:";
- pr " forall x, 2 * [head0 x] <= [head0 (double_size x)].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x.";
- pp " assert (F1:= spec_pos (head0 x)).";
- pp " assert (F2: 0 < Zpos (digits x)).";
- pp " red; auto.";
- pp " case (Zle_lt_or_eq _ _ (spec_pos x)); intros HH.";
- pp " generalize HH; rewrite <- (spec_double_size x); intros HH1.";
- pp " case (spec_head0 x HH); intros _ HH2.";
- pp " case (spec_head0 _ HH1).";
- pp " rewrite (spec_double_size x); rewrite (spec_double_size_digits x).";
- pp " intros HH3 _.";
- pp " case (Zle_or_lt ([head0 (double_size x)]) (2 * [head0 x])); auto; intros HH4.";
- pp " absurd (2 ^ (2 * [head0 x] )* [x] < 2 ^ [head0 (double_size x)] * [x]); auto.";
- pp " apply Zle_not_lt.";
- pp " apply Zmult_le_compat_r; auto with zarith.";
- pp " apply Zpower_le_monotone; auto; auto with zarith.";
- pp " generalize (spec_pos (head0 (double_size x))); auto with zarith.";
- pp " assert (HH5: 2 ^[head0 x] <= 2 ^(Zpos (digits x) - 1)).";
- pp " case (Zle_lt_or_eq 1 [x]); auto with zarith; intros HH5.";
- pp " apply Zmult_le_reg_r with (2 ^ 1); auto with zarith.";
- pp " rewrite <- (fun x y z => Zpower_exp x (y - z)); auto with zarith.";
- pp " assert (tmp: forall x, x - 1 + 1 = x); [intros; ring | rewrite tmp; clear tmp].";
- pp " apply Zle_trans with (2 := Zlt_le_weak _ _ HH2).";
- pp " apply Zmult_le_compat_l; auto with zarith.";
- pp " rewrite Zpower_1_r; auto with zarith.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " split; auto with zarith.";
- pp " case (Zle_or_lt (Zpos (digits x)) [head0 x]); auto with zarith; intros HH6.";
- pp " absurd (2 ^ Zpos (digits x) <= 2 ^ [head0 x] * [x]); auto with zarith.";
- pp " rewrite <- HH5; rewrite Zmult_1_r.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " rewrite (Zmult_comm 2).";
- pp " rewrite Zpower_mult; auto with zarith.";
- pp " rewrite Zpower_2.";
- pp " apply Zlt_le_trans with (2 := HH3).";
- pp " rewrite <- Zmult_assoc.";
- pp " replace (Zpos (xO (digits x)) - 1) with";
- pp " ((Zpos (digits x) - 1) + (Zpos (digits x))).";
- pp " rewrite Zpower_exp; auto with zarith.";
- pp " apply Zmult_lt_compat2; auto with zarith.";
- pp " split; auto with zarith.";
- pp " apply Zmult_lt_0_compat; auto with zarith.";
- pp " rewrite Zpos_xO; ring.";
- pp " apply Zlt_le_weak; auto.";
- pp " repeat rewrite spec_head00; auto.";
- pp " rewrite spec_double_size_digits.";
- pp " rewrite Zpos_xO; auto with zarith.";
- pp " rewrite spec_double_size; auto.";
- pp " Qed.";
- pr "";
-
- pr " Theorem spec_double_size_head0_pos:";
- pr " forall x, 0 < [head0 (double_size x)].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x.";
- pp " assert (F: 0 < Zpos (digits x)).";
- pp " red; auto.";
- pp " case (Zle_lt_or_eq _ _ (spec_pos (head0 (double_size x)))); auto; intros F0.";
- pp " case (Zle_lt_or_eq _ _ (spec_pos (head0 x))); intros F1.";
- pp " apply Zlt_le_trans with (2 := (spec_double_size_head0 x)); auto with zarith.";
- pp " case (Zle_lt_or_eq _ _ (spec_pos x)); intros F3.";
- pp " generalize F3; rewrite <- (spec_double_size x); intros F4.";
- pp " absurd (2 ^ (Zpos (xO (digits x)) - 1) < 2 ^ (Zpos (digits x))).";
- pp " apply Zle_not_lt.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " split; auto with zarith.";
- pp " rewrite Zpos_xO; auto with zarith.";
- pp " case (spec_head0 x F3).";
- pp " rewrite <- F1; rewrite Zpower_0_r; rewrite Zmult_1_l; intros _ HH.";
- pp " apply Zle_lt_trans with (2 := HH).";
- pp " case (spec_head0 _ F4).";
- pp " rewrite (spec_double_size x); rewrite (spec_double_size_digits x).";
- pp " rewrite <- F0; rewrite Zpower_0_r; rewrite Zmult_1_l; auto.";
- pp " generalize F1; rewrite (spec_head00 _ (sym_equal F3)); auto with zarith.";
- pp " Qed.";
- pr "";
-
- (* even *)
- pr " Definition is_even x :=";
- pr " match x with";
- for i = 0 to size do
- pr " | %s%i wx => w%i_op.(znz_is_even) wx" c i i
- done;
- pr " | %sn n wx => (make_op n).(znz_is_even) wx" c;
- pr " end.";
- pr "";
-
-
- pr " Theorem spec_is_even: forall x,";
- pr " if is_even x then [x] mod 2 = 0 else [x] mod 2 = 1.";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; unfold is_even, to_Z; clear x.";
- for i = 0 to size do
- pp " intros x; exact (spec_is_even w%i_spec x)." i;
- done;
- pp " intros n x; exact (spec_is_even (wn_spec n) x).";
- pp " Qed.";
- pr "";
+*)
pr "End Make.";
pr "";
diff --git a/theories/Numbers/Natural/BigN/Nbasic.v b/theories/Numbers/Natural/BigN/Nbasic.v
index d42db97d57..e6e4130b3e 100644
--- a/theories/Numbers/Natural/BigN/Nbasic.v
+++ b/theories/Numbers/Natural/BigN/Nbasic.v
@@ -260,13 +260,6 @@ Section ReduceRec.
End ReduceRec.
-Definition opp_compare cmp :=
- match cmp with
- | Lt => Gt
- | Eq => Eq
- | Gt => Lt
- end.
-
Section CompareRec.
Variable wm w : Type.
@@ -294,11 +287,7 @@ Section CompareRec.
Variable w_to_Z: w -> Z.
Variable w_to_Z_0: w_to_Z w_0 = 0.
Variable spec_compare0_m: forall x,
- match compare0_m x with
- Eq => w_to_Z w_0 = wm_to_Z x
- | Lt => w_to_Z w_0 < wm_to_Z x
- | Gt => w_to_Z w_0 > wm_to_Z x
- end.
+ compare0_m x = (w_to_Z w_0 ?= wm_to_Z x).
Variable wm_to_Z_pos: forall x, 0 <= wm_to_Z x < base wm_base.
Let double_to_Z := double_to_Z wm_base wm_to_Z.
@@ -315,29 +304,25 @@ Section CompareRec.
Lemma spec_compare0_mn: forall n x,
- match compare0_mn n x with
- Eq => 0 = double_to_Z n x
- | Lt => 0 < double_to_Z n x
- | Gt => 0 > double_to_Z n x
- end.
- Proof.
+ compare0_mn n x = (0 ?= double_to_Z n x).
+ Proof.
intros n; elim n; clear n; auto.
- intros x; generalize (spec_compare0_m x); rewrite w_to_Z_0; auto.
+ intros x; rewrite spec_compare0_m; rewrite w_to_Z_0; auto.
intros n Hrec x; case x; unfold compare0_mn; fold compare0_mn; auto.
+ fold word in *.
intros xh xl.
- generalize (Hrec xh); case compare0_mn; auto.
- generalize (Hrec xl); case compare0_mn; auto.
- simpl double_to_Z; intros H1 H2; rewrite H1; rewrite <- H2; auto.
- simpl double_to_Z; intros H1 H2; rewrite <- H2; auto.
- case (double_to_Z_pos n xl); auto with zarith.
- intros H1; simpl double_to_Z.
- set (u := DoubleBase.double_wB wm_base n).
- case (double_to_Z_pos n xl); intros H2 H3.
- assert (0 < u); auto with zarith.
- unfold u, DoubleBase.double_wB, base; auto with zarith.
+ rewrite 2 Hrec.
+ simpl double_to_Z.
+ set (wB := DoubleBase.double_wB wm_base n).
+ case Zcompare_spec; intros Cmp.
+ rewrite <- Cmp. reflexivity.
+ symmetry. apply Zgt_lt, Zlt_gt. (* ;-) *)
+ assert (0 < wB).
+ unfold wB, DoubleBase.double_wB, base; auto with zarith.
change 0 with (0 + 0); apply Zplus_lt_le_compat; auto with zarith.
apply Zmult_lt_0_compat; auto with zarith.
- case (double_to_Z_pos n xh); auto with zarith.
+ case (double_to_Z_pos n xl); auto with zarith.
+ case (double_to_Z_pos n xh); intros; exfalso; omega.
Qed.
Fixpoint compare_mn_1 (n:nat) : word wm n -> w -> comparison :=
@@ -355,17 +340,9 @@ Section CompareRec.
end.
Variable spec_compare: forall x y,
- match compare x y with
- Eq => w_to_Z x = w_to_Z y
- | Lt => w_to_Z x < w_to_Z y
- | Gt => w_to_Z x > w_to_Z y
- end.
+ compare x y = Zcompare (w_to_Z x) (w_to_Z y).
Variable spec_compare_m: forall x y,
- match compare_m x y with
- Eq => wm_to_Z x = w_to_Z y
- | Lt => wm_to_Z x < w_to_Z y
- | Gt => wm_to_Z x > w_to_Z y
- end.
+ compare_m x y = Zcompare (wm_to_Z x) (w_to_Z y).
Variable wm_base_lt: forall x,
0 <= w_to_Z x < base (wm_base).
@@ -387,26 +364,23 @@ Section CompareRec.
Lemma spec_compare_mn_1: forall n x y,
- match compare_mn_1 n x y with
- Eq => double_to_Z n x = w_to_Z y
- | Lt => double_to_Z n x < w_to_Z y
- | Gt => double_to_Z n x > w_to_Z y
- end.
+ compare_mn_1 n x y = Zcompare (double_to_Z n x) (w_to_Z y).
Proof.
intros n; elim n; simpl; auto; clear n.
intros n Hrec x; case x; clear x; auto.
- intros y; generalize (spec_compare w_0 y); rewrite w_to_Z_0; case compare; auto.
- intros xh xl y; simpl; generalize (spec_compare0_mn n xh); case compare0_mn; intros H1b.
+ intros y; rewrite spec_compare; rewrite w_to_Z_0. reflexivity.
+ intros xh xl y; simpl;
+ rewrite spec_compare0_mn, Hrec. case Zcompare_spec.
+ intros H1b.
rewrite <- H1b; rewrite Zmult_0_l; rewrite Zplus_0_l; auto.
- apply Hrec.
- apply Zlt_gt.
+ symmetry. apply Zlt_gt.
case (double_wB_lt n y); intros _ H0.
apply Zlt_le_trans with (1:= H0).
fold double_wB.
case (double_to_Z_pos n xl); intros H1 H2.
apply Zle_trans with (double_to_Z n xh * double_wB n); auto with zarith.
apply Zle_trans with (1 * double_wB n); auto with zarith.
- case (double_to_Z_pos n xh); auto with zarith.
+ case (double_to_Z_pos n xh); intros; exfalso; omega.
Qed.
End CompareRec.
@@ -440,22 +414,6 @@ Section AddS.
End AddS.
-
- Lemma spec_opp: forall u x y,
- match u with
- | Eq => y = x
- | Lt => y < x
- | Gt => y > x
- end ->
- match opp_compare u with
- | Eq => x = y
- | Lt => x < y
- | Gt => x > y
- end.
- Proof.
- intros u x y; case u; simpl; auto with zarith.
- Qed.
-
Fixpoint length_pos x :=
match x with xH => O | xO x1 => S (length_pos x1) | xI x1 => S (length_pos x1) end.
@@ -481,33 +439,37 @@ End AddS.
Variable w: Type.
- Theorem digits_zop: forall w (x: znz_op w),
- znz_digits (mk_zn2z_op x) = xO (znz_digits x).
+ Theorem digits_zop: forall t (ops : ZnZ.Ops t),
+ @ZnZ.digits _ mk_zn2z_ops = xO ZnZ.digits.
+ Proof.
intros ww x; auto.
Qed.
- Theorem digits_kzop: forall w (x: znz_op w),
- znz_digits (mk_zn2z_op_karatsuba x) = xO (znz_digits x).
+ Theorem digits_kzop: forall t (ops : ZnZ.Ops t),
+ @ZnZ.digits _ mk_zn2z_ops_karatsuba = xO (@ZnZ.digits _ ops).
+ Proof.
intros ww x; auto.
Qed.
- Theorem make_zop: forall w (x: znz_op w),
- znz_to_Z (mk_zn2z_op x) =
+ Theorem make_zop: forall t (ops : ZnZ.Ops t),
+ @ZnZ.to_Z _ mk_zn2z_ops =
fun z => match z with
- W0 => 0
- | WW xh xl => znz_to_Z x xh * base (znz_digits x)
- + znz_to_Z x xl
+ | W0 => 0
+ | WW xh xl => ZnZ.to_Z xh * base ZnZ.digits
+ + ZnZ.to_Z xl
end.
+ Proof.
intros ww x; auto.
Qed.
- Theorem make_kzop: forall w (x: znz_op w),
- znz_to_Z (mk_zn2z_op_karatsuba x) =
+ Theorem make_kzop: forall t (x: ZnZ.Ops t),
+ @ZnZ.to_Z _ mk_zn2z_ops_karatsuba =
fun z => match z with
- W0 => 0
- | WW xh xl => znz_to_Z x xh * base (znz_digits x)
- + znz_to_Z x xl
+ | W0 => 0
+ | WW xh xl => ZnZ.to_Z xh * base ZnZ.digits
+ + ZnZ.to_Z xl
end.
+ Proof.
intros ww x; auto.
Qed.
diff --git a/theories/Numbers/Natural/SpecViaZ/NSig.v b/theories/Numbers/Natural/SpecViaZ/NSig.v
index 85639aa6ae..3f60cbf1a7 100644
--- a/theories/Numbers/Natural/SpecViaZ/NSig.v
+++ b/theories/Numbers/Natural/SpecViaZ/NSig.v
@@ -51,6 +51,7 @@ Module Type NType.
Parameter power_pos : t -> positive -> t.
Parameter power : t -> N -> t.
Parameter sqrt : t -> t.
+ Parameter log2 : t -> t.
Parameter div_eucl : t -> t -> t * t.
Parameter div : t -> t -> t.
Parameter modulo : t -> t -> t.
@@ -74,6 +75,8 @@ Module Type NType.
Parameter spec_power_pos: forall x n, [power_pos x n] = [x] ^ Zpos n.
Parameter spec_power: forall x n, [power x n] = [x] ^ Z_of_N n.
Parameter spec_sqrt: forall x, [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2.
+ Parameter spec_log2_0: forall x, [x] = 0 -> [log2 x] = 0.
+ Parameter spec_log2: forall x, [x]<>0 -> 2^[log2 x] <= [x] < 2^([log2 x]+1).
Parameter spec_div_eucl: forall x y,
let (q,r) := div_eucl x y in ([q], [r]) = Zdiv_eucl [x] [y].
Parameter spec_div: forall x y, [div x y] = [x] / [y].