diff options
| author | Jasper Hugunin | 2020-12-15 20:27:13 -0800 |
|---|---|---|
| committer | Jasper Hugunin | 2020-12-15 20:27:13 -0800 |
| commit | 84da55bda44aa9e4891cfe1226bc18183df23bcf (patch) | |
| tree | 8fa82798bb8df367e1d624b9b19af6399a69eb4c | |
| parent | 607682395b25dc73ae7537d5d996670037a18cc2 (diff) | |
Modify ZArith/Zpower.v to compile with -mangle-names
| -rw-r--r-- | theories/ZArith/Zpower.v | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/theories/ZArith/Zpower.v b/theories/ZArith/Zpower.v index 6f464d89bb..6b01d798e4 100644 --- a/theories/ZArith/Zpower.v +++ b/theories/ZArith/Zpower.v @@ -42,7 +42,7 @@ Lemma Zpower_nat_is_exp : forall (n m:nat) (z:Z), Zpower_nat z (n + m) = Zpower_nat z n * Zpower_nat z m. Proof. - induction n. + intros n; induction n as [|n IHn]. - intros. now rewrite Zpower_nat_0_r, Z.mul_1_l. - intros. simpl. now rewrite IHn, Z.mul_assoc. Qed. @@ -135,7 +135,7 @@ Section Powers_of_2. Lemma two_power_nat_equiv n : two_power_nat n = 2 ^ (Z.of_nat n). Proof. - induction n. + induction n as [|n IHn]. - trivial. - now rewrite Nat2Z.inj_succ, Z.pow_succ_r, <- IHn by apply Nat2Z.is_nonneg. Qed. @@ -164,7 +164,7 @@ Section Powers_of_2. Theorem shift_nat_correct n x : Zpos (shift_nat n x) = Zpower_nat 2 n * Zpos x. Proof. - induction n. + induction n as [|n IHn]. - trivial. - now rewrite Zpower_nat_succ_r, <- Z.mul_assoc, <- IHn. Qed. @@ -295,7 +295,7 @@ Section power_div_with_rest. rewrite Z.mul_sub_distr_r, Z.mul_shuffle3, Z.mul_assoc. repeat split; auto. rewrite !Z.mul_1_l, H, Z.add_assoc. - apply f_equal2 with (f := Z.add); auto. + apply (f_equal2 Z.add); auto. rewrite <- Z.sub_sub_distr, <- !Z.add_diag, Z.add_simpl_r. now rewrite Z.mul_1_l. - rewrite Pos2Z.neg_xO in H. @@ -303,7 +303,7 @@ Section power_div_with_rest. repeat split; auto. - repeat split; auto. rewrite H, (Z.mul_opp_l 1), Z.mul_1_l, Z.add_assoc. - apply f_equal2 with (f := Z.add); auto. + apply (f_equal2 Z.add); auto. rewrite Z.add_comm, <- Z.add_diag. rewrite Z.mul_add_distr_l. replace (-1 * d) with (-d). |
