aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPierre-Marie Pédrot2020-02-08 13:14:20 +0100
committerPierre-Marie Pédrot2020-02-08 13:14:20 +0100
commit80010afc70eee3df65b6f8a16a202fb9da11fb80 (patch)
treef7251eb90109afb1e12f799bb87ea06791ebf302
parent79e9700d0533c3f36c9fbf0011f816981b8a3a3d (diff)
parent0fe99a0d6a4d643cf311200c870aeaff042d7069 (diff)
Merge PR #11404: replace RList by list R in all files where it is used in this directory
Ack-by: SkySkimmer Reviewed-by: herbelin
-rw-r--r--doc/changelog/10-standard-library/11404-removeRList.rst15
-rw-r--r--theories/Reals/RList.v496
-rw-r--r--theories/Reals/RiemannInt.v38
-rw-r--r--theories/Reals/RiemannInt_SF.v342
-rw-r--r--theories/Reals/Rtopology.v20
5 files changed, 451 insertions, 460 deletions
diff --git a/doc/changelog/10-standard-library/11404-removeRList.rst b/doc/changelog/10-standard-library/11404-removeRList.rst
new file mode 100644
index 0000000000..88e22d128c
--- /dev/null
+++ b/doc/changelog/10-standard-library/11404-removeRList.rst
@@ -0,0 +1,15 @@
+- **Removed:**
+ Type `RList` has been removed. All uses have been replaced by `list R`.
+ Functions from `RList` named `In`, `Rlength`, `cons_Rlist`, `app_Rlist`
+ have also been removed as they are essentially the same as `In`, `length`,
+ `app`, and `map` from `List`, modulo the following changes:
+
+ - `RList.In x (RList.cons a l)` used to be convertible to
+ `(x = a) \\/ RList.In x l`,
+ but `List.In x (a :: l)` is convertible to
+ `(a = x) \\/ List.In l`.
+ The equality is reversed.
+ - `app_Rlist` and `List.map` take arguments in different order.
+
+ (`#11404 <https://github.com/coq/coq/pull/11404>`_,
+ by Yves Bertot).
diff --git a/theories/Reals/RList.v b/theories/Reals/RList.v
index 128543d8ab..18cc3aa034 100644
--- a/theories/Reals/RList.v
+++ b/theories/Reals/RList.v
@@ -8,98 +8,90 @@
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
+Require Import List.
Require Import Rbase.
Require Import Rfunctions.
Local Open Scope R_scope.
-Inductive Rlist : Type :=
-| nil : Rlist
-| cons : R -> Rlist -> Rlist.
-Fixpoint In (x:R) (l:Rlist) : Prop :=
- match l with
- | nil => False
- | cons a l' => x = a \/ In x l'
- end.
+#[deprecated(since="8.12",note="use (list R) instead")]
+Notation Rlist := (list R).
-Fixpoint Rlength (l:Rlist) : nat :=
- match l with
- | nil => 0%nat
- | cons a l' => S (Rlength l')
- end.
+#[deprecated(since="8.12",note="use List.length instead")]
+Notation Rlength := List.length.
-Fixpoint MaxRlist (l:Rlist) : R :=
+Fixpoint MaxRlist (l:list R) : R :=
match l with
| nil => 0
- | cons a l1 =>
+ | a :: l1 =>
match l1 with
| nil => a
- | cons a' l2 => Rmax a (MaxRlist l1)
+ | a' :: l2 => Rmax a (MaxRlist l1)
end
end.
-Fixpoint MinRlist (l:Rlist) : R :=
+Fixpoint MinRlist (l:list R) : R :=
match l with
| nil => 1
- | cons a l1 =>
+ | a :: l1 =>
match l1 with
| nil => a
- | cons a' l2 => Rmin a (MinRlist l1)
+ | a' :: l2 => Rmin a (MinRlist l1)
end
end.
-Lemma MaxRlist_P1 : forall (l:Rlist) (x:R), In x l -> x <= MaxRlist l.
+Lemma MaxRlist_P1 : forall (l:list R) (x:R), In x l -> x <= MaxRlist l.
Proof.
intros; induction l as [| r l Hrecl].
simpl in H; elim H.
induction l as [| r0 l Hrecl0].
simpl in H; elim H; intro.
- simpl; right; assumption.
+ simpl; right; symmetry; assumption.
elim H0.
- replace (MaxRlist (cons r (cons r0 l))) with (Rmax r (MaxRlist (cons r0 l))).
+ replace (MaxRlist (r :: r0 :: l)) with (Rmax r (MaxRlist (r0 :: l))).
simpl in H; decompose [or] H.
rewrite H0; apply RmaxLess1.
- unfold Rmax; case (Rle_dec r (MaxRlist (cons r0 l))); intro.
+ unfold Rmax; case (Rle_dec r (MaxRlist (r0 :: l))); intro.
apply Hrecl; simpl; tauto.
- apply Rle_trans with (MaxRlist (cons r0 l));
+ apply Rle_trans with (MaxRlist (r0 :: l));
[ apply Hrecl; simpl; tauto | left; auto with real ].
- unfold Rmax; case (Rle_dec r (MaxRlist (cons r0 l))); intro.
+ unfold Rmax; case (Rle_dec r (MaxRlist (r0 :: l))); intro.
apply Hrecl; simpl; tauto.
- apply Rle_trans with (MaxRlist (cons r0 l));
+ apply Rle_trans with (MaxRlist (r0 :: l));
[ apply Hrecl; simpl; tauto | left; auto with real ].
reflexivity.
Qed.
-Fixpoint AbsList (l:Rlist) (x:R) : Rlist :=
+Fixpoint AbsList (l:list R) (x:R) : list R :=
match l with
| nil => nil
- | cons a l' => cons (Rabs (a - x) / 2) (AbsList l' x)
+ | a :: l' => (Rabs (a - x) / 2) :: (AbsList l' x)
end.
-Lemma MinRlist_P1 : forall (l:Rlist) (x:R), In x l -> MinRlist l <= x.
+Lemma MinRlist_P1 : forall (l:list R) (x:R), In x l -> MinRlist l <= x.
Proof.
intros; induction l as [| r l Hrecl].
simpl in H; elim H.
induction l as [| r0 l Hrecl0].
simpl in H; elim H; intro.
- simpl; right; symmetry ; assumption.
+ simpl; right; assumption.
elim H0.
- replace (MinRlist (cons r (cons r0 l))) with (Rmin r (MinRlist (cons r0 l))).
+ replace (MinRlist (r :: r0 :: l)) with (Rmin r (MinRlist (r0 :: l))).
simpl in H; decompose [or] H.
rewrite H0; apply Rmin_l.
- unfold Rmin; case (Rle_dec r (MinRlist (cons r0 l))); intro.
- apply Rle_trans with (MinRlist (cons r0 l)).
+ unfold Rmin; case (Rle_dec r (MinRlist (r0 :: l))); intro.
+ apply Rle_trans with (MinRlist (r0 :: l)).
assumption.
apply Hrecl; simpl; tauto.
apply Hrecl; simpl; tauto.
- apply Rle_trans with (MinRlist (cons r0 l)).
+ apply Rle_trans with (MinRlist (r0 :: l)).
apply Rmin_r.
apply Hrecl; simpl; tauto.
reflexivity.
Qed.
Lemma AbsList_P1 :
- forall (l:Rlist) (x y:R), In y l -> In (Rabs (y - x) / 2) (AbsList l x).
+ forall (l:list R) (x y:R), In y l -> In (Rabs (y - x) / 2) (AbsList l x).
Proof.
intros; induction l as [| r l Hrecl].
elim H.
@@ -109,21 +101,21 @@ Proof.
Qed.
Lemma MinRlist_P2 :
- forall l:Rlist, (forall y:R, In y l -> 0 < y) -> 0 < MinRlist l.
+ forall l:list R, (forall y:R, In y l -> 0 < y) -> 0 < MinRlist l.
Proof.
intros; induction l as [| r l Hrecl].
apply Rlt_0_1.
induction l as [| r0 l Hrecl0].
simpl; apply H; simpl; tauto.
- replace (MinRlist (cons r (cons r0 l))) with (Rmin r (MinRlist (cons r0 l))).
- unfold Rmin; case (Rle_dec r (MinRlist (cons r0 l))); intro.
+ replace (MinRlist (r :: r0 :: l)) with (Rmin r (MinRlist (r0 :: l))).
+ unfold Rmin; case (Rle_dec r (MinRlist (r0 :: l))); intro.
apply H; simpl; tauto.
apply Hrecl; intros; apply H; simpl; simpl in H0; tauto.
reflexivity.
Qed.
Lemma AbsList_P2 :
- forall (l:Rlist) (x y:R),
+ forall (l:list R) (x y:R),
In y (AbsList l x) -> exists z : R, In z l /\ y = Rabs (z - x) / 2.
Proof.
intros; induction l as [| r l Hrecl].
@@ -131,47 +123,48 @@ Proof.
elim H; intro.
exists r; split.
simpl; tauto.
+ symmetry.
assumption.
assert (H1 := Hrecl H0); elim H1; intros; elim H2; clear H2; intros;
exists x0; simpl; simpl in H2; tauto.
Qed.
Lemma MaxRlist_P2 :
- forall l:Rlist, (exists y : R, In y l) -> In (MaxRlist l) l.
+ forall l:list R, (exists y : R, In y l) -> In (MaxRlist l) l.
Proof.
intros; induction l as [| r l Hrecl].
simpl in H; elim H; trivial.
induction l as [| r0 l Hrecl0].
simpl; left; reflexivity.
- change (In (Rmax r (MaxRlist (cons r0 l))) (cons r (cons r0 l)));
- unfold Rmax; case (Rle_dec r (MaxRlist (cons r0 l)));
+ change (In (Rmax r (MaxRlist (r0 :: l))) (r :: r0 :: l));
+ unfold Rmax; case (Rle_dec r (MaxRlist (r0 :: l)));
intro.
right; apply Hrecl; exists r0; left; reflexivity.
left; reflexivity.
Qed.
-Fixpoint pos_Rl (l:Rlist) (i:nat) : R :=
+Fixpoint pos_Rl (l:list R) (i:nat) : R :=
match l with
| nil => 0
- | cons a l' => match i with
+ | a :: l' => match i with
| O => a
| S i' => pos_Rl l' i'
end
end.
Lemma pos_Rl_P1 :
- forall (l:Rlist) (a:R),
- (0 < Rlength l)%nat ->
- pos_Rl (cons a l) (Rlength l) = pos_Rl l (pred (Rlength l)).
+ forall (l:list R) (a:R),
+ (0 < length l)%nat ->
+ pos_Rl (a :: l) (length l) = pos_Rl l (pred (length l)).
Proof.
intros; induction l as [| r l Hrecl];
[ elim (lt_n_O _ H)
- | simpl; case (Rlength l); [ reflexivity | intro; reflexivity ] ].
+ | simpl; case (length l); [ reflexivity | intro; reflexivity ] ].
Qed.
Lemma pos_Rl_P2 :
- forall (l:Rlist) (x:R),
- In x l <-> (exists i : nat, (i < Rlength l)%nat /\ x = pos_Rl l i).
+ forall (l:list R) (x:R),
+ In x l <-> (exists i : nat, (i < length l)%nat /\ x = pos_Rl l i).
Proof.
intros; induction l as [| r l Hrecl].
split; intro;
@@ -179,12 +172,12 @@ Proof.
split; intro.
elim H; intro.
exists 0%nat; split;
- [ simpl; apply lt_O_Sn | simpl; apply H0 ].
+ [ simpl; apply lt_O_Sn | simpl; symmetry; apply H0 ].
elim Hrecl; intros; assert (H3 := H1 H0); elim H3; intros; elim H4; intros;
exists (S x0); split;
[ simpl; apply lt_n_S; assumption | simpl; assumption ].
elim H; intros; elim H0; intros; destruct (zerop x0) as [->|].
- simpl in H2; left; assumption.
+ simpl in H2; left; symmetry; assumption.
right; elim Hrecl; intros H4 H5; apply H5; assert (H6 : S (pred x0) = x0).
symmetry ; apply S_pred with 0%nat; assumption.
exists (pred x0); split;
@@ -193,21 +186,21 @@ Proof.
Qed.
Lemma Rlist_P1 :
- forall (l:Rlist) (P:R -> R -> Prop),
+ forall (l:list R) (P:R -> R -> Prop),
(forall x:R, In x l -> exists y : R, P x y) ->
- exists l' : Rlist,
- Rlength l = Rlength l' /\
- (forall i:nat, (i < Rlength l)%nat -> P (pos_Rl l i) (pos_Rl l' i)).
+ exists l' : list R,
+ length l = length l' /\
+ (forall i:nat, (i < length l)%nat -> P (pos_Rl l i) (pos_Rl l' i)).
Proof.
intros; induction l as [| r l Hrecl].
exists nil; intros; split;
[ reflexivity | intros; simpl in H0; elim (lt_n_O _ H0) ].
- assert (H0 : In r (cons r l)).
+ assert (H0 : In r (r :: l)).
simpl; left; reflexivity.
assert (H1 := H _ H0);
assert (H2 : forall x:R, In x l -> exists y : R, P x y).
intros; apply H; simpl; right; assumption.
- assert (H3 := Hrecl H2); elim H1; intros; elim H3; intros; exists (cons x x0);
+ assert (H3 := Hrecl H2); elim H1; intros; elim H3; intros; exists (x :: x0);
intros; elim H5; clear H5; intros; split.
simpl; rewrite H5; reflexivity.
intros; destruct (zerop i) as [->|].
@@ -218,57 +211,45 @@ Proof.
assumption.
Qed.
-Definition ordered_Rlist (l:Rlist) : Prop :=
- forall i:nat, (i < pred (Rlength l))%nat -> pos_Rl l i <= pos_Rl l (S i).
+Definition ordered_Rlist (l:list R) : Prop :=
+ forall i:nat, (i < pred (length l))%nat -> pos_Rl l i <= pos_Rl l (S i).
-Fixpoint insert (l:Rlist) (x:R) : Rlist :=
+Fixpoint insert (l:list R) (x:R) : list R :=
match l with
- | nil => cons x nil
- | cons a l' =>
+ | nil => x :: nil
+ | a :: l' =>
match Rle_dec a x with
- | left _ => cons a (insert l' x)
- | right _ => cons x l
+ | left _ => a :: (insert l' x)
+ | right _ => x :: l
end
end.
-Fixpoint cons_Rlist (l k:Rlist) : Rlist :=
- match l with
- | nil => k
- | cons a l' => cons a (cons_Rlist l' k)
- end.
-
-Fixpoint cons_ORlist (k l:Rlist) : Rlist :=
+Fixpoint cons_ORlist (k l:list R) : list R :=
match k with
| nil => l
- | cons a k' => cons_ORlist k' (insert l a)
+ | a :: k' => cons_ORlist k' (insert l a)
end.
-Fixpoint app_Rlist (l:Rlist) (f:R -> R) : Rlist :=
+Fixpoint mid_Rlist (l:list R) (x:R) : list R :=
match l with
| nil => nil
- | cons a l' => cons (f a) (app_Rlist l' f)
+ | a :: l' => ((x + a) / 2) :: (mid_Rlist l' a)
end.
-Fixpoint mid_Rlist (l:Rlist) (x:R) : Rlist :=
+Definition Rtail (l:list R) : list R :=
match l with
| nil => nil
- | cons a l' => cons ((x + a) / 2) (mid_Rlist l' a)
+ | a :: l' => l'
end.
-Definition Rtail (l:Rlist) : Rlist :=
+Definition FF (l:list R) (f:R -> R) : list R :=
match l with
| nil => nil
- | cons a l' => l'
- end.
-
-Definition FF (l:Rlist) (f:R -> R) : Rlist :=
- match l with
- | nil => nil
- | cons a l' => app_Rlist (mid_Rlist l' a) f
+ | a :: l' => map f (mid_Rlist l' a)
end.
Lemma RList_P0 :
- forall (l:Rlist) (a:R),
+ forall (l:list R) (a:R),
pos_Rl (insert l a) 0 = a \/ pos_Rl (insert l a) 0 = pos_Rl l 0.
Proof.
intros; induction l as [| r l Hrecl];
@@ -278,7 +259,7 @@ Proof.
Qed.
Lemma RList_P1 :
- forall (l:Rlist) (a:R), ordered_Rlist l -> ordered_Rlist (insert l a).
+ forall (l:list R) (a:R), ordered_Rlist l -> ordered_Rlist (insert l a).
Proof.
intros; induction l as [| r l Hrecl].
simpl; unfold ordered_Rlist; intros; simpl in H0;
@@ -286,8 +267,8 @@ Proof.
simpl; case (Rle_dec r a); intro.
assert (H1 : ordered_Rlist l).
unfold ordered_Rlist; unfold ordered_Rlist in H; intros;
- assert (H1 : (S i < pred (Rlength (cons r l)))%nat);
- [ simpl; replace (Rlength l) with (S (pred (Rlength l)));
+ assert (H1 : (S i < pred (length (r :: l)))%nat);
+ [ simpl; replace (length l) with (S (pred (length l)));
[ apply lt_n_S; assumption
| symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red;
intro; rewrite <- H1 in H0; simpl in H0; elim (lt_n_O _ H0) ]
@@ -300,18 +281,18 @@ Proof.
[ simpl; assumption
| rewrite H4; apply (H 0%nat); simpl; apply lt_O_Sn ].
simpl; apply H2; simpl in H0; apply lt_S_n;
- replace (S (pred (Rlength (insert l a)))) with (Rlength (insert l a));
+ replace (S (pred (length (insert l a)))) with (length (insert l a));
[ assumption
| apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H3 in H0; elim (lt_n_O _ H0) ].
unfold ordered_Rlist; intros; induction i as [| i Hreci];
[ simpl; auto with real
- | change (pos_Rl (cons r l) i <= pos_Rl (cons r l) (S i)); apply H;
+ | change (pos_Rl (r :: l) i <= pos_Rl (r :: l) (S i)); apply H;
simpl in H0; simpl; apply (lt_S_n _ _ H0) ].
Qed.
Lemma RList_P2 :
- forall l1 l2:Rlist, ordered_Rlist l2 -> ordered_Rlist (cons_ORlist l1 l2).
+ forall l1 l2:list R, ordered_Rlist l2 -> ordered_Rlist (cons_ORlist l1 l2).
Proof.
simple induction l1;
[ intros; simpl; apply H
@@ -319,36 +300,36 @@ Proof.
Qed.
Lemma RList_P3 :
- forall (l:Rlist) (x:R),
- In x l <-> (exists i : nat, x = pos_Rl l i /\ (i < Rlength l)%nat).
+ forall (l:list R) (x:R),
+ In x l <-> (exists i : nat, x = pos_Rl l i /\ (i < length l)%nat).
Proof.
intros; split; intro;
[ induction l as [| r l Hrecl] | induction l as [| r l Hrecl] ].
elim H.
elim H; intro;
- [ exists 0%nat; split; [ apply H0 | simpl; apply lt_O_Sn ]
+ [ exists 0%nat; split; [ symmetry; apply H0 | simpl; apply lt_O_Sn ]
| elim (Hrecl H0); intros; elim H1; clear H1; intros; exists (S x0); split;
[ apply H1 | simpl; apply lt_n_S; assumption ] ].
elim H; intros; elim H0; intros; elim (lt_n_O _ H2).
simpl; elim H; intros; elim H0; clear H0; intros;
induction x0 as [| x0 Hrecx0];
- [ left; apply H0
+ [ left; symmetry; apply H0
| right; apply Hrecl; exists x0; split;
[ apply H0 | simpl in H1; apply lt_S_n; assumption ] ].
Qed.
Lemma RList_P4 :
- forall (l1:Rlist) (a:R), ordered_Rlist (cons a l1) -> ordered_Rlist l1.
+ forall (l1:list R) (a:R), ordered_Rlist (a :: l1) -> ordered_Rlist l1.
Proof.
intros; unfold ordered_Rlist; intros; apply (H (S i)); simpl;
- replace (Rlength l1) with (S (pred (Rlength l1)));
+ replace (length l1) with (S (pred (length l1)));
[ apply lt_n_S; assumption
| symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red;
intro; rewrite <- H1 in H0; elim (lt_n_O _ H0) ].
Qed.
Lemma RList_P5 :
- forall (l:Rlist) (x:R), ordered_Rlist l -> In x l -> pos_Rl l 0 <= x.
+ forall (l:list R) (x:R), ordered_Rlist l -> In x l -> pos_Rl l 0 <= x.
Proof.
intros; induction l as [| r l Hrecl];
[ elim H0
@@ -361,14 +342,14 @@ Proof.
Qed.
Lemma RList_P6 :
- forall l:Rlist,
+ forall l:list R,
ordered_Rlist l <->
(forall i j:nat,
- (i <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i <= pos_Rl l j).
+ (i <= j)%nat -> (j < length l)%nat -> pos_Rl l i <= pos_Rl l j).
Proof.
- simple induction l; split; intro.
+ induction l as [ | r r0 H]; split; intro.
intros; right; reflexivity.
- unfold ordered_Rlist; intros; simpl in H0; elim (lt_n_O _ H0).
+ unfold ordered_Rlist;intros; simpl in H0; elim (lt_n_O _ H0).
intros; induction i as [| i Hreci];
[ induction j as [| j Hrecj];
[ right; reflexivity
@@ -391,14 +372,14 @@ Proof.
Qed.
Lemma RList_P7 :
- forall (l:Rlist) (x:R),
- ordered_Rlist l -> In x l -> x <= pos_Rl l (pred (Rlength l)).
+ forall (l:list R) (x:R),
+ ordered_Rlist l -> In x l -> x <= pos_Rl l (pred (length l)).
Proof.
intros; assert (H1 := RList_P6 l); elim H1; intros H2 _; assert (H3 := H2 H);
clear H1 H2; assert (H1 := RList_P3 l x); elim H1;
clear H1; intros; assert (H4 := H1 H0); elim H4; clear H4;
intros; elim H4; clear H4; intros; rewrite H4;
- assert (H6 : Rlength l = S (pred (Rlength l))).
+ assert (H6 : length l = S (pred (length l))).
apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H6 in H5; elim (lt_n_O _ H5).
apply H3;
@@ -408,52 +389,55 @@ Proof.
Qed.
Lemma RList_P8 :
- forall (l:Rlist) (a x:R), In x (insert l a) <-> x = a \/ In x l.
-Proof.
- simple induction l.
- intros; split; intro; simpl in H; apply H.
- intros; split; intro;
- [ simpl in H0; generalize H0; case (Rle_dec r a); intros;
- [ simpl in H1; elim H1; intro;
- [ right; left; assumption
- | elim (H a x); intros; elim (H3 H2); intro;
- [ left; assumption | right; right; assumption ] ]
- | simpl in H1; decompose [or] H1;
- [ left; assumption
- | right; left; assumption
- | right; right; assumption ] ]
- | simpl; case (Rle_dec r a); intro;
- [ simpl in H0; decompose [or] H0;
- [ right; elim (H a x); intros; apply H3; left
- | left
- | right; elim (H a x); intros; apply H3; right ]
- | simpl in H0; decompose [or] H0; [ left | right; left | right; right ] ];
- assumption ].
+ forall (l:list R) (a x:R), In x (insert l a) <-> x = a \/ In x l.
+Proof.
+ induction l as [ | r r0 H].
+ intros; split; intro; destruct H as [ax | []]; left; symmetry; exact ax.
+ intros; split; intro.
+ simpl in H0; generalize H0; case (Rle_dec r a); intros.
+ simpl in H1; elim H1; intro.
+ right; left; assumption.
+ elim (H a x); intros; elim (H3 H2); intro.
+ left; assumption.
+ right; right; assumption.
+ simpl in H1; decompose [or] H1.
+ left; symmetry; assumption.
+ right; left; assumption.
+ right; right; assumption.
+ simpl; case (Rle_dec r a); intro.
+ simpl in H0; decompose [or] H0.
+ right; elim (H a x); intros; apply H3; left. assumption.
+ left. assumption.
+ right; elim (H a x); intros; apply H3; right; assumption.
+ simpl in H0; decompose [or] H0; [ left | right; left | right; right];
+ trivial; symmetry; assumption.
Qed.
Lemma RList_P9 :
- forall (l1 l2:Rlist) (x:R), In x (cons_ORlist l1 l2) <-> In x l1 \/ In x l2.
+ forall (l1 l2:list R) (x:R), In x (cons_ORlist l1 l2) <-> In x l1 \/ In x l2.
Proof.
- simple induction l1.
+ induction l1 as [ | r r0 H].
intros; split; intro;
[ simpl in H; right; assumption
| simpl; elim H; intro; [ elim H0 | assumption ] ].
intros; split.
simpl; intros; elim (H (insert l2 r) x); intros; assert (H3 := H1 H0);
- elim H3; intro;
- [ left; right; assumption
- | elim (RList_P8 l2 r x); intros H5 _; assert (H6 := H5 H4); elim H6; intro;
- [ left; left; assumption | right; assumption ] ].
+ elim H3; intro.
+ left; right; assumption.
+ elim (RList_P8 l2 r x); intros H5 _; assert (H6 := H5 H4); elim H6; intro.
+ left; left; symmetry; assumption.
+ right; assumption.
intro; simpl; elim (H (insert l2 r) x); intros _ H1; apply H1;
- elim H0; intro;
- [ elim H2; intro;
- [ right; elim (RList_P8 l2 r x); intros _ H4; apply H4; left; assumption
- | left; assumption ]
- | right; elim (RList_P8 l2 r x); intros _ H3; apply H3; right; assumption ].
+ elim H0; intro.
+ elim H2; intro.
+ right; elim (RList_P8 l2 r x); intros _ H4; apply H4; left.
+ symmetry; assumption.
+ left; assumption.
+ right; elim (RList_P8 l2 r x); intros _ H3; apply H3; right; assumption.
Qed.
Lemma RList_P10 :
- forall (l:Rlist) (a:R), Rlength (insert l a) = S (Rlength l).
+ forall (l:list R) (a:R), length (insert l a) = S (length l).
Proof.
intros; induction l as [| r l Hrecl];
[ reflexivity
@@ -462,10 +446,10 @@ Proof.
Qed.
Lemma RList_P11 :
- forall l1 l2:Rlist,
- Rlength (cons_ORlist l1 l2) = (Rlength l1 + Rlength l2)%nat.
+ forall l1 l2:list R,
+ length (cons_ORlist l1 l2) = (length l1 + length l2)%nat.
Proof.
- simple induction l1;
+ induction l1 as [ | r r0 H];
[ intro; reflexivity
| intros; simpl; rewrite (H (insert l2 r)); rewrite RList_P10;
apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR;
@@ -473,8 +457,8 @@ Proof.
Qed.
Lemma RList_P12 :
- forall (l:Rlist) (i:nat) (f:R -> R),
- (i < Rlength l)%nat -> pos_Rl (app_Rlist l f) i = f (pos_Rl l i).
+ forall (l:list R) (i:nat) (f:R -> R),
+ (i < length l)%nat -> pos_Rl (map f l) i = f (pos_Rl l i).
Proof.
simple induction l;
[ intros; elim (lt_n_O _ H)
@@ -483,30 +467,30 @@ Proof.
Qed.
Lemma RList_P13 :
- forall (l:Rlist) (i:nat) (a:R),
- (i < pred (Rlength l))%nat ->
+ forall (l:list R) (i:nat) (a:R),
+ (i < pred (length l))%nat ->
pos_Rl (mid_Rlist l a) (S i) = (pos_Rl l i + pos_Rl l (S i)) / 2.
Proof.
- simple induction l.
+ induction l as [ | r r0 H].
intros; simpl in H; elim (lt_n_O _ H).
- simple induction r0.
+ induction r0 as [ | r1 r2 H0].
intros; simpl in H0; elim (lt_n_O _ H0).
intros; simpl in H1; induction i as [| i Hreci].
reflexivity.
change
- (pos_Rl (mid_Rlist (cons r1 r2) r) (S i) =
- (pos_Rl (cons r1 r2) i + pos_Rl (cons r1 r2) (S i)) / 2)
- ; apply H0; simpl; apply lt_S_n; assumption.
+ (pos_Rl (mid_Rlist (r1 :: r2) r) (S i) =
+ (pos_Rl (r1 :: r2) i + pos_Rl (r1 :: r2) (S i)) / 2).
+ apply H; simpl; apply lt_S_n; assumption.
Qed.
-Lemma RList_P14 : forall (l:Rlist) (a:R), Rlength (mid_Rlist l a) = Rlength l.
+Lemma RList_P14 : forall (l:list R) (a:R), length (mid_Rlist l a) = length l.
Proof.
- simple induction l; intros;
+ induction l as [ | r r0 H]; intros;
[ reflexivity | simpl; rewrite (H r); reflexivity ].
Qed.
Lemma RList_P15 :
- forall l1 l2:Rlist,
+ forall l1 l2:list R,
ordered_Rlist l1 ->
ordered_Rlist l2 ->
pos_Rl l1 0 = pos_Rl l2 0 -> pos_Rl (cons_ORlist l1 l2) 0 = pos_Rl l1 0.
@@ -514,10 +498,10 @@ Proof.
intros; apply Rle_antisym.
induction l1 as [| r l1 Hrecl1];
[ simpl; simpl in H1; right; symmetry ; assumption
- | elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) 0)); intros;
+ | elim (RList_P9 (r :: l1) l2 (pos_Rl (r :: l1) 0)); intros;
assert
(H4 :
- In (pos_Rl (cons r l1) 0) (cons r l1) \/ In (pos_Rl (cons r l1) 0) l2);
+ In (pos_Rl (r :: l1) 0) (r :: l1) \/ In (pos_Rl (r :: l1) 0) l2);
[ left; left; reflexivity
| assert (H5 := H3 H4); apply RList_P5;
[ apply RList_P2; assumption | assumption ] ] ].
@@ -525,25 +509,25 @@ Proof.
[ simpl; simpl in H1; right; assumption
| assert
(H2 :
- In (pos_Rl (cons_ORlist (cons r l1) l2) 0) (cons_ORlist (cons r l1) l2));
+ In (pos_Rl (cons_ORlist (r :: l1) l2) 0) (cons_ORlist (r :: l1) l2));
[ elim
- (RList_P3 (cons_ORlist (cons r l1) l2)
- (pos_Rl (cons_ORlist (cons r l1) l2) 0));
+ (RList_P3 (cons_ORlist (r :: l1) l2)
+ (pos_Rl (cons_ORlist (r :: l1) l2) 0));
intros; apply H3; exists 0%nat; split;
[ reflexivity | rewrite RList_P11; simpl; apply lt_O_Sn ]
- | elim (RList_P9 (cons r l1) l2 (pos_Rl (cons_ORlist (cons r l1) l2) 0));
+ | elim (RList_P9 (r :: l1) l2 (pos_Rl (cons_ORlist (r :: l1) l2) 0));
intros; assert (H5 := H3 H2); elim H5; intro;
[ apply RList_P5; assumption
| rewrite H1; apply RList_P5; assumption ] ] ].
Qed.
Lemma RList_P16 :
- forall l1 l2:Rlist,
+ forall l1 l2:list R,
ordered_Rlist l1 ->
ordered_Rlist l2 ->
- pos_Rl l1 (pred (Rlength l1)) = pos_Rl l2 (pred (Rlength l2)) ->
- pos_Rl (cons_ORlist l1 l2) (pred (Rlength (cons_ORlist l1 l2))) =
- pos_Rl l1 (pred (Rlength l1)).
+ pos_Rl l1 (pred (length l1)) = pos_Rl l2 (pred (length l2)) ->
+ pos_Rl (cons_ORlist l1 l2) (pred (length (cons_ORlist l1 l2))) =
+ pos_Rl l1 (pred (length l1)).
Proof.
intros; apply Rle_antisym.
induction l1 as [| r l1 Hrecl1].
@@ -551,99 +535,99 @@ Proof.
assert
(H2 :
In
- (pos_Rl (cons_ORlist (cons r l1) l2)
- (pred (Rlength (cons_ORlist (cons r l1) l2))))
- (cons_ORlist (cons r l1) l2));
+ (pos_Rl (cons_ORlist (r :: l1) l2)
+ (pred (length (cons_ORlist (r :: l1) l2))))
+ (cons_ORlist (r :: l1) l2));
[ elim
- (RList_P3 (cons_ORlist (cons r l1) l2)
- (pos_Rl (cons_ORlist (cons r l1) l2)
- (pred (Rlength (cons_ORlist (cons r l1) l2)))));
- intros; apply H3; exists (pred (Rlength (cons_ORlist (cons r l1) l2)));
+ (RList_P3 (cons_ORlist (r :: l1) l2)
+ (pos_Rl (cons_ORlist (r :: l1) l2)
+ (pred (length (cons_ORlist (r :: l1) l2)))));
+ intros; apply H3; exists (pred (length (cons_ORlist (r :: l1) l2)));
split; [ reflexivity | rewrite RList_P11; simpl; apply lt_n_Sn ]
| elim
- (RList_P9 (cons r l1) l2
- (pos_Rl (cons_ORlist (cons r l1) l2)
- (pred (Rlength (cons_ORlist (cons r l1) l2)))));
+ (RList_P9 (r :: l1) l2
+ (pos_Rl (cons_ORlist (r :: l1) l2)
+ (pred (length (cons_ORlist (r :: l1) l2)))));
intros; assert (H5 := H3 H2); elim H5; intro;
[ apply RList_P7; assumption | rewrite H1; apply RList_P7; assumption ] ].
induction l1 as [| r l1 Hrecl1].
simpl; simpl in H1; right; assumption.
elim
- (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))));
+ (RList_P9 (r :: l1) l2 (pos_Rl (r :: l1) (pred (length (r :: l1))))).
intros;
assert
(H4 :
- In (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))) (cons r l1) \/
- In (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))) l2);
- [ left; change (In (pos_Rl (cons r l1) (Rlength l1)) (cons r l1));
- elim (RList_P3 (cons r l1) (pos_Rl (cons r l1) (Rlength l1)));
- intros; apply H5; exists (Rlength l1); split;
+ In (pos_Rl (r :: l1) (pred (length (r :: l1)))) (r :: l1) \/
+ In (pos_Rl (r :: l1) (pred (length (r :: l1)))) l2);
+ [ left; change (In (pos_Rl (r :: l1) (length l1)) (r :: l1));
+ elim (RList_P3 (r :: l1) (pos_Rl (r :: l1) (length l1)));
+ intros; apply H5; exists (length l1); split;
[ reflexivity | simpl; apply lt_n_Sn ]
| assert (H5 := H3 H4); apply RList_P7;
[ apply RList_P2; assumption
| elim
- (RList_P9 (cons r l1) l2
- (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))));
+ (RList_P9 (r :: l1) l2
+ (pos_Rl (r :: l1) (pred (length (r :: l1)))));
intros; apply H7; left;
elim
- (RList_P3 (cons r l1)
- (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))));
- intros; apply H9; exists (pred (Rlength (cons r l1)));
+ (RList_P3 (r :: l1)
+ (pos_Rl (r :: l1) (pred (length (r :: l1)))));
+ intros; apply H9; exists (pred (length (r :: l1)));
split; [ reflexivity | simpl; apply lt_n_Sn ] ] ].
Qed.
Lemma RList_P17 :
- forall (l1:Rlist) (x:R) (i:nat),
+ forall (l1:list R) (x:R) (i:nat),
ordered_Rlist l1 ->
In x l1 ->
- pos_Rl l1 i < x -> (i < pred (Rlength l1))%nat -> pos_Rl l1 (S i) <= x.
+ pos_Rl l1 i < x -> (i < pred (length l1))%nat -> pos_Rl l1 (S i) <= x.
Proof.
- simple induction l1.
+ induction l1 as [ | r r0 H].
intros; elim H0.
intros; induction i as [| i Hreci].
simpl; elim H1; intro;
[ simpl in H2; rewrite H4 in H2; elim (Rlt_irrefl _ H2)
| apply RList_P5; [ apply RList_P4 with r; assumption | assumption ] ].
simpl; simpl in H2; elim H1; intro.
- rewrite H4 in H2; assert (H5 : r <= pos_Rl r0 i);
+ rewrite <- H4 in H2; assert (H5 : r <= pos_Rl r0 i);
[ apply Rle_trans with (pos_Rl r0 0);
[ apply (H0 0%nat); simpl; simpl in H3; apply neq_O_lt;
red; intro; rewrite <- H5 in H3; elim (lt_n_O _ H3)
| elim (RList_P6 r0); intros; apply H5;
[ apply RList_P4 with r; assumption
| apply le_O_n
- | simpl in H3; apply lt_S_n; apply lt_trans with (Rlength r0);
+ | simpl in H3; apply lt_S_n; apply lt_trans with (length r0);
[ apply H3 | apply lt_n_Sn ] ] ]
| elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H5 H2)) ].
apply H; try assumption;
[ apply RList_P4 with r; assumption
| simpl in H3; apply lt_S_n;
- replace (S (pred (Rlength r0))) with (Rlength r0);
+ replace (S (pred (length r0))) with (length r0);
[ apply H3
| apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H5 in H3; elim (lt_n_O _ H3) ] ].
Qed.
Lemma RList_P18 :
- forall (l:Rlist) (f:R -> R), Rlength (app_Rlist l f) = Rlength l.
+ forall (l:list R) (f:R -> R), length (map f l) = length l.
Proof.
simple induction l; intros;
[ reflexivity | simpl; rewrite H; reflexivity ].
Qed.
Lemma RList_P19 :
- forall l:Rlist,
- l <> nil -> exists r : R, (exists r0 : Rlist, l = cons r r0).
+ forall l:list R,
+ l <> nil -> exists r : R, (exists r0 : list R, l = r :: r0).
Proof.
intros; induction l as [| r l Hrecl];
[ elim H; reflexivity | exists r; exists l; reflexivity ].
Qed.
Lemma RList_P20 :
- forall l:Rlist,
- (2 <= Rlength l)%nat ->
+ forall l:list R,
+ (2 <= length l)%nat ->
exists r : R,
- (exists r1 : R, (exists l' : Rlist, l = cons r (cons r1 l'))).
+ (exists r1 : R, (exists l' : list R, l = r :: r1 :: l')).
Proof.
intros; induction l as [| r l Hrecl];
[ simpl in H; elim (le_Sn_O _ H)
@@ -652,40 +636,32 @@ Proof.
| exists r; exists r0; exists l; reflexivity ] ].
Qed.
-Lemma RList_P21 : forall l l':Rlist, l = l' -> Rtail l = Rtail l'.
+Lemma RList_P21 : forall l l':list R, l = l' -> Rtail l = Rtail l'.
Proof.
intros; rewrite H; reflexivity.
Qed.
Lemma RList_P22 :
- forall l1 l2:Rlist, l1 <> nil -> pos_Rl (cons_Rlist l1 l2) 0 = pos_Rl l1 0.
+ forall l1 l2:list R, l1 <> nil -> pos_Rl (app l1 l2) 0 = pos_Rl l1 0.
Proof.
simple induction l1; [ intros; elim H; reflexivity | intros; reflexivity ].
Qed.
-Lemma RList_P23 :
- forall l1 l2:Rlist,
- Rlength (cons_Rlist l1 l2) = (Rlength l1 + Rlength l2)%nat.
-Proof.
- simple induction l1;
- [ intro; reflexivity | intros; simpl; rewrite H; reflexivity ].
-Qed.
-
Lemma RList_P24 :
- forall l1 l2:Rlist,
+ forall l1 l2:list R,
l2 <> nil ->
- pos_Rl (cons_Rlist l1 l2) (pred (Rlength (cons_Rlist l1 l2))) =
- pos_Rl l2 (pred (Rlength l2)).
+ pos_Rl (app l1 l2) (pred (length (app l1 l2))) =
+ pos_Rl l2 (pred (length l2)).
Proof.
- simple induction l1.
+ induction l1 as [ | r r0 H].
intros; reflexivity.
intros; rewrite <- (H l2 H0); induction l2 as [| r1 l2 Hrecl2].
elim H0; reflexivity.
- do 2 rewrite RList_P23;
- replace (Rlength (cons r r0) + Rlength (cons r1 l2))%nat with
- (S (S (Rlength r0 + Rlength l2)));
- [ replace (Rlength r0 + Rlength (cons r1 l2))%nat with
- (S (Rlength r0 + Rlength l2));
+ do 2 rewrite app_length;
+ replace (length (r :: r0) + length (r1 :: l2))%nat with
+ (S (S (length r0 + length l2)));
+ [ replace (length r0 + length (r1 :: l2))%nat with
+ (S (length r0 + length l2));
[ reflexivity
| simpl; apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR;
rewrite S_INR; ring ]
@@ -694,39 +670,39 @@ Proof.
Qed.
Lemma RList_P25 :
- forall l1 l2:Rlist,
+ forall l1 l2:list R,
ordered_Rlist l1 ->
ordered_Rlist l2 ->
- pos_Rl l1 (pred (Rlength l1)) <= pos_Rl l2 0 ->
- ordered_Rlist (cons_Rlist l1 l2).
+ pos_Rl l1 (pred (length l1)) <= pos_Rl l2 0 ->
+ ordered_Rlist (app l1 l2).
Proof.
- simple induction l1.
+ induction l1 as [ | r r0 H].
intros; simpl; assumption.
- simple induction r0.
+ induction r0 as [ | r1 r2 H0].
intros; simpl; simpl in H2; unfold ordered_Rlist; intros;
simpl in H3.
induction i as [| i Hreci].
simpl; assumption.
change (pos_Rl l2 i <= pos_Rl l2 (S i)); apply (H1 i); apply lt_S_n;
- replace (S (pred (Rlength l2))) with (Rlength l2);
+ replace (S (pred (length l2))) with (length l2);
[ assumption
| apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H4 in H3; elim (lt_n_O _ H3) ].
- intros; clear H; assert (H : ordered_Rlist (cons_Rlist (cons r1 r2) l2)).
- apply H0; try assumption.
+ intros; assert (H4 : ordered_Rlist (app (r1 :: r2) l2)).
+ apply H; try assumption.
apply RList_P4 with r; assumption.
- unfold ordered_Rlist; intros; simpl in H4;
+ unfold ordered_Rlist; intros i H5; simpl in H5.
induction i as [| i Hreci].
simpl; apply (H1 0%nat); simpl; apply lt_O_Sn.
change
- (pos_Rl (cons_Rlist (cons r1 r2) l2) i <=
- pos_Rl (cons_Rlist (cons r1 r2) l2) (S i));
- apply (H i); simpl; apply lt_S_n; assumption.
+ (pos_Rl (app (r1 :: r2) l2) i <=
+ pos_Rl (app (r1 :: r2) l2) (S i));
+ apply (H4 i); simpl; apply lt_S_n; assumption.
Qed.
Lemma RList_P26 :
- forall (l1 l2:Rlist) (i:nat),
- (i < Rlength l1)%nat -> pos_Rl (cons_Rlist l1 l2) i = pos_Rl l1 i.
+ forall (l1 l2:list R) (i:nat),
+ (i < length l1)%nat -> pos_Rl (app l1 l2) i = pos_Rl l1 i.
Proof.
simple induction l1.
intros; elim (lt_n_O _ H).
@@ -735,49 +711,41 @@ Proof.
apply (H l2 i); simpl in H0; apply lt_S_n; assumption.
Qed.
-Lemma RList_P27 :
- forall l1 l2 l3:Rlist,
- cons_Rlist l1 (cons_Rlist l2 l3) = cons_Rlist (cons_Rlist l1 l2) l3.
-Proof.
- simple induction l1; intros;
- [ reflexivity | simpl; rewrite (H l2 l3); reflexivity ].
-Qed.
-
-Lemma RList_P28 : forall l:Rlist, cons_Rlist l nil = l.
-Proof.
- simple induction l;
- [ reflexivity | intros; simpl; rewrite H; reflexivity ].
-Qed.
-
Lemma RList_P29 :
- forall (l2 l1:Rlist) (i:nat),
- (Rlength l1 <= i)%nat ->
- (i < Rlength (cons_Rlist l1 l2))%nat ->
- pos_Rl (cons_Rlist l1 l2) i = pos_Rl l2 (i - Rlength l1).
+ forall (l2 l1:list R) (i:nat),
+ (length l1 <= i)%nat ->
+ (i < length (app l1 l2))%nat ->
+ pos_Rl (app l1 l2) i = pos_Rl l2 (i - length l1).
Proof.
- simple induction l2.
- intros; rewrite RList_P28 in H0; elim (lt_irrefl _ (le_lt_trans _ _ _ H H0)).
+ induction l2 as [ | r r0 H].
+ intros; rewrite app_nil_r in H0; elim (lt_irrefl _ (le_lt_trans _ _ _ H H0)).
intros;
- replace (cons_Rlist l1 (cons r r0)) with
- (cons_Rlist (cons_Rlist l1 (cons r nil)) r0).
+ replace (app l1 (r :: r0)) with
+ (app (app l1 (r :: nil)) r0).
inversion H0.
rewrite <- minus_n_n; simpl; rewrite RList_P26.
- clear l2 r0 H i H0 H1 H2; induction l1 as [| r0 l1 Hrecl1].
+ clear r0 H i H0 H1 H2; induction l1 as [| r0 l1 Hrecl1].
reflexivity.
simpl; assumption.
- rewrite RList_P23; rewrite plus_comm; simpl; apply lt_n_Sn.
- replace (S m - Rlength l1)%nat with (S (S m - S (Rlength l1))).
+ rewrite app_length; rewrite plus_comm; simpl; apply lt_n_Sn.
+ replace (S m - length l1)%nat with (S (S m - S (length l1))).
rewrite H3; simpl;
- replace (S (Rlength l1)) with (Rlength (cons_Rlist l1 (cons r nil))).
- apply (H (cons_Rlist l1 (cons r nil)) i).
- rewrite RList_P23; rewrite plus_comm; simpl; rewrite <- H3;
+ replace (S (length l1)) with (length (app l1 (r :: nil))).
+ apply (H (app l1 (r :: nil)) i).
+ rewrite app_length; rewrite plus_comm; simpl; rewrite <- H3;
apply le_n_S; assumption.
- repeat rewrite RList_P23; simpl; rewrite RList_P23 in H1;
- rewrite plus_comm in H1; simpl in H1; rewrite (plus_comm (Rlength l1));
+ repeat rewrite app_length; simpl; rewrite app_length in H1;
+ rewrite plus_comm in H1; simpl in H1; rewrite (plus_comm (length l1));
simpl; rewrite plus_comm; apply H1.
- rewrite RList_P23; rewrite plus_comm; reflexivity.
- change (S (m - Rlength l1) = (S m - Rlength l1)%nat);
+ rewrite app_length; rewrite plus_comm; reflexivity.
+ change (S (m - length l1) = (S m - length l1)%nat);
apply minus_Sn_m; assumption.
- replace (cons r r0) with (cons_Rlist (cons r nil) r0);
- [ symmetry ; apply RList_P27 | reflexivity ].
+ replace (r :: r0) with (app (r :: nil) r0);
+ [ symmetry ; apply app_assoc | reflexivity ].
Qed.
+
+#[deprecated(since="8.12",note="use List.cons instead")]
+Notation cons := List.cons.
+
+#[deprecated(since="8.12",note="use List.nil instead")]
+Notation nil := List.nil.
diff --git a/theories/Reals/RiemannInt.v b/theories/Reals/RiemannInt.v
index 0337b12cad..23094c6b93 100644
--- a/theories/Reals/RiemannInt.v
+++ b/theories/Reals/RiemannInt.v
@@ -464,7 +464,7 @@ Proof.
elim (Rlt_irrefl _ H7) ] ].
Qed.
-Fixpoint SubEquiN (N:nat) (x y:R) (del:posreal) : Rlist :=
+Fixpoint SubEquiN (N:nat) (x y:R) (del:posreal) : list R :=
match N with
| O => cons y nil
| S p => cons x (SubEquiN p (x + del) y del)
@@ -473,7 +473,7 @@ Fixpoint SubEquiN (N:nat) (x y:R) (del:posreal) : Rlist :=
Definition max_N (a b:R) (del:posreal) (h:a < b) : nat :=
let (N,_) := maxN del h in N.
-Definition SubEqui (a b:R) (del:posreal) (h:a < b) : Rlist :=
+Definition SubEqui (a b:R) (del:posreal) (h:a < b) : list R :=
SubEquiN (S (max_N del h)) a b del.
Lemma Heine_cor1 :
@@ -566,25 +566,25 @@ Qed.
Lemma SubEqui_P2 :
forall (a b:R) (del:posreal) (h:a < b),
- pos_Rl (SubEqui del h) (pred (Rlength (SubEqui del h))) = b.
+ pos_Rl (SubEqui del h) (pred (length (SubEqui del h))) = b.
Proof.
intros; unfold SubEqui; destruct (maxN del h)as (x,_).
cut
(forall (x:nat) (a:R) (del:posreal),
pos_Rl (SubEquiN (S x) a b del)
- (pred (Rlength (SubEquiN (S x) a b del))) = b);
+ (pred (length (SubEquiN (S x) a b del))) = b);
[ intro; apply H
| simple induction x0;
[ intros; reflexivity
| intros;
change
(pos_Rl (SubEquiN (S n) (a0 + del0) b del0)
- (pred (Rlength (SubEquiN (S n) (a0 + del0) b del0))) = b)
+ (pred (length (SubEquiN (S n) (a0 + del0) b del0))) = b)
; apply H ] ].
Qed.
Lemma SubEqui_P3 :
- forall (N:nat) (a b:R) (del:posreal), Rlength (SubEquiN N a b del) = S N.
+ forall (N:nat) (a b:R) (del:posreal), length (SubEquiN N a b del) = S N.
Proof.
simple induction N; intros;
[ reflexivity | simpl; rewrite H; reflexivity ].
@@ -605,7 +605,7 @@ Qed.
Lemma SubEqui_P5 :
forall (a b:R) (del:posreal) (h:a < b),
- Rlength (SubEqui del h) = S (S (max_N del h)).
+ length (SubEqui del h) = S (S (max_N del h)).
Proof.
intros; unfold SubEqui; apply SubEqui_P3.
Qed.
@@ -623,7 +623,7 @@ Proof.
intros; unfold ordered_Rlist; intros; rewrite SubEqui_P5 in H;
simpl in H; inversion H.
rewrite (SubEqui_P6 del h (i:=(max_N del h))).
- replace (S (max_N del h)) with (pred (Rlength (SubEqui del h))).
+ replace (S (max_N del h)) with (pred (length (SubEqui del h))).
rewrite SubEqui_P2; unfold max_N; case (maxN del h) as (?&?&?); left;
assumption.
rewrite SubEqui_P5; reflexivity.
@@ -639,7 +639,7 @@ Qed.
Lemma SubEqui_P8 :
forall (a b:R) (del:posreal) (h:a < b) (i:nat),
- (i < Rlength (SubEqui del h))%nat -> a <= pos_Rl (SubEqui del h) i <= b.
+ (i < length (SubEqui del h))%nat -> a <= pos_Rl (SubEqui del h) i <= b.
Proof.
intros; split.
pattern a at 1; rewrite <- (SubEqui_P1 del h); apply RList_P5.
@@ -657,7 +657,7 @@ Lemma SubEqui_P9 :
{ g:StepFun a b |
g b = f b /\
(forall i:nat,
- (i < pred (Rlength (SubEqui del h)))%nat ->
+ (i < pred (length (SubEqui del h)))%nat ->
constant_D_eq g
(co_interval (pos_Rl (SubEqui del h) i)
(pos_Rl (SubEqui del h) (S i)))
@@ -713,7 +713,7 @@ Proof.
a <= t <= b ->
t = b \/
(exists i : nat,
- (i < pred (Rlength (SubEqui del H)))%nat /\
+ (i < pred (length (SubEqui del H)))%nat /\
co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))
t)).
intro; elim (H8 _ H7); intro.
@@ -722,7 +722,7 @@ Proof.
elim H9; clear H9; intros I [H9 H10]; assert (H11 := H6 I H9 t H10);
rewrite H11; left; apply H4.
assumption.
- apply SubEqui_P8; apply lt_trans with (pred (Rlength (SubEqui del H))).
+ apply SubEqui_P8; apply lt_trans with (pred (length (SubEqui del H))).
assumption.
apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H12 in H9;
elim (lt_n_O _ H9).
@@ -734,7 +734,7 @@ Proof.
(t - pos_Rl (SubEqui del H) (max_N del H))) with t;
[ idtac | ring ]; apply Rlt_le_trans with b.
rewrite H14 in H12;
- assert (H13 : S (max_N del H) = pred (Rlength (SubEqui del H))).
+ assert (H13 : S (max_N del H) = pred (length (SubEqui del H))).
rewrite SubEqui_P5; reflexivity.
rewrite H13 in H12; rewrite SubEqui_P2 in H12; apply H12.
rewrite SubEqui_P6.
@@ -785,7 +785,7 @@ Proof.
apply H5.
assumption.
inversion H7.
- replace (S (max_N del H)) with (pred (Rlength (SubEqui del H))).
+ replace (S (max_N del H)) with (pred (length (SubEqui del H))).
rewrite (SubEqui_P2 del H); elim H8; intros.
elim H11; intro.
assumption.
@@ -1753,7 +1753,7 @@ Proof.
rewrite <- H5; elim (RList_P6 l); intros; apply H10.
assumption.
apply le_O_n.
- apply lt_trans with (pred (Rlength l)); [ assumption | apply lt_pred_n_n ].
+ apply lt_trans with (pred (length l)); [ assumption | apply lt_pred_n_n ].
apply neq_O_lt; intro; rewrite <- H12 in H6; discriminate.
unfold Rmin; decide (Rle_dec a b) with H; reflexivity.
assert (H11 : pos_Rl l (S i) <= b).
@@ -1960,7 +1960,7 @@ Proof.
replace b with (Rmin b c).
rewrite <- H5; elim (RList_P6 l1); intros; apply H10; try assumption.
apply le_O_n.
- apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
+ apply lt_trans with (pred (length l1)); try assumption; apply lt_pred_n_n;
apply neq_O_lt; red; intro; rewrite <- H12 in H6;
discriminate.
unfold Rmin; decide (Rle_dec b c) with Hyp2;
@@ -1991,7 +1991,7 @@ Proof.
replace a with (Rmin a b).
rewrite <- H5; elim (RList_P6 l1); intros; apply H11; try assumption.
apply le_O_n.
- apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
+ apply lt_trans with (pred (length l1)); try assumption; apply lt_pred_n_n;
apply neq_O_lt; red; intro; rewrite <- H13 in H6;
discriminate.
unfold Rmin; decide (Rle_dec a b) with Hyp1; reflexivity.
@@ -2018,7 +2018,7 @@ Proof.
replace a with (Rmin a b).
rewrite <- H5; elim (RList_P6 l1); intros; apply H11; try assumption.
apply le_O_n.
- apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
+ apply lt_trans with (pred (length l1)); try assumption; apply lt_pred_n_n;
apply neq_O_lt; red; intro; rewrite <- H13 in H6;
discriminate.
unfold Rmin; decide (Rle_dec a b) with Hyp1; reflexivity.
@@ -2037,7 +2037,7 @@ Proof.
replace b with (Rmin b c).
rewrite <- H5; elim (RList_P6 l1); intros; apply H10; try assumption.
apply le_O_n.
- apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
+ apply lt_trans with (pred (length l1)); try assumption; apply lt_pred_n_n;
apply neq_O_lt; red; intro; rewrite <- H12 in H6;
discriminate.
unfold Rmin; decide (Rle_dec b c) with Hyp2; reflexivity.
diff --git a/theories/Reals/RiemannInt_SF.v b/theories/Reals/RiemannInt_SF.v
index c8ec4782d9..65221c67d2 100644
--- a/theories/Reals/RiemannInt_SF.v
+++ b/theories/Reals/RiemannInt_SF.v
@@ -12,6 +12,7 @@ Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis_reg.
Require Import Classical_Prop.
+Require Import List.
Require Import RList.
Local Open Scope R_scope.
@@ -114,41 +115,41 @@ Qed.
Definition open_interval (a b x:R) : Prop := a < x < b.
Definition co_interval (a b x:R) : Prop := a <= x < b.
-Definition adapted_couple (f:R -> R) (a b:R) (l lf:Rlist) : Prop :=
+Definition adapted_couple (f:R -> R) (a b:R) (l lf:list R) : Prop :=
ordered_Rlist l /\
pos_Rl l 0 = Rmin a b /\
- pos_Rl l (pred (Rlength l)) = Rmax a b /\
- Rlength l = S (Rlength lf) /\
+ pos_Rl l (pred (length l)) = Rmax a b /\
+ length l = S (length lf) /\
(forall i:nat,
- (i < pred (Rlength l))%nat ->
+ (i < pred (length l))%nat ->
constant_D_eq f (open_interval (pos_Rl l i) (pos_Rl l (S i)))
(pos_Rl lf i)).
-Definition adapted_couple_opt (f:R -> R) (a b:R) (l lf:Rlist) :=
+Definition adapted_couple_opt (f:R -> R) (a b:R) (l lf:list R) :=
adapted_couple f a b l lf /\
(forall i:nat,
- (i < pred (Rlength lf))%nat ->
+ (i < pred (length lf))%nat ->
pos_Rl lf i <> pos_Rl lf (S i) \/ f (pos_Rl l (S i)) <> pos_Rl lf i) /\
- (forall i:nat, (i < pred (Rlength l))%nat -> pos_Rl l i <> pos_Rl l (S i)).
+ (forall i:nat, (i < pred (length l))%nat -> pos_Rl l i <> pos_Rl l (S i)).
-Definition is_subdivision (f:R -> R) (a b:R) (l:Rlist) : Type :=
- { l0:Rlist & adapted_couple f a b l l0 }.
+Definition is_subdivision (f:R -> R) (a b:R) (l:list R) : Type :=
+ { l0:list R & adapted_couple f a b l l0 }.
Definition IsStepFun (f:R -> R) (a b:R) : Type :=
- { l:Rlist & is_subdivision f a b l }.
+ { l:list R & is_subdivision f a b l }.
(** ** Class of step functions *)
Record StepFun (a b:R) : Type := mkStepFun
{fe :> R -> R; pre : IsStepFun fe a b}.
-Definition subdivision (a b:R) (f:StepFun a b) : Rlist := projT1 (pre f).
+Definition subdivision (a b:R) (f:StepFun a b) : list R := projT1 (pre f).
-Definition subdivision_val (a b:R) (f:StepFun a b) : Rlist :=
+Definition subdivision_val (a b:R) (f:StepFun a b) : list R :=
match projT2 (pre f) with
| existT _ a b => a
end.
-Fixpoint Int_SF (l k:Rlist) : R :=
+Fixpoint Int_SF (l k:list R) : R :=
match l with
| nil => 0
| cons a l' =>
@@ -179,7 +180,7 @@ Proof.
Qed.
Lemma StepFun_P2 :
- forall (a b:R) (f:R -> R) (l lf:Rlist),
+ forall (a b:R) (f:R -> R) (l lf:list R),
adapted_couple f a b l lf -> adapted_couple f b a l lf.
Proof.
unfold adapted_couple; intros; decompose [and] H; clear H;
@@ -219,7 +220,7 @@ Proof.
Qed.
Lemma StepFun_P5 :
- forall (a b:R) (f:R -> R) (l:Rlist),
+ forall (a b:R) (f:R -> R) (l:list R),
is_subdivision f a b l -> is_subdivision f b a l.
Proof.
destruct 1 as (x,(H0,(H1,(H2,(H3,H4))))); exists x;
@@ -236,7 +237,7 @@ Proof.
Qed.
Lemma StepFun_P7 :
- forall (a b r1 r2 r3:R) (f:R -> R) (l lf:Rlist),
+ forall (a b r1 r2 r3:R) (f:R -> R) (l lf:list R),
a <= b ->
adapted_couple f a b (cons r1 (cons r2 l)) (cons r3 lf) ->
adapted_couple f r2 b (cons r2 l) lf.
@@ -257,31 +258,36 @@ Proof.
rewrite H4; reflexivity.
intros; unfold constant_D_eq, open_interval; intros;
unfold constant_D_eq, open_interval in H6;
- assert (H9 : (S i < pred (Rlength (cons r1 (cons r2 l))))%nat).
+ assert (H9 : (S i < pred (length (cons r1 (cons r2 l))))%nat).
simpl; simpl in H0; apply lt_n_S; assumption.
assert (H10 := H6 _ H9); apply H10; assumption.
Qed.
Lemma StepFun_P8 :
- forall (f:R -> R) (l1 lf1:Rlist) (a b:R),
+ forall (f:R -> R) (l1 lf1:list R) (a b:R),
adapted_couple f a b l1 lf1 -> a = b -> Int_SF lf1 l1 = 0.
Proof.
simple induction l1.
intros; induction lf1 as [| r lf1 Hreclf1]; reflexivity.
- simple induction r0.
+ intros r r0.
+ induction r0 as [ | r1 r2 H0].
intros; induction lf1 as [| r1 lf1 Hreclf1].
reflexivity.
unfold adapted_couple in H0; decompose [and] H0; clear H0; simpl in H5;
discriminate.
- intros; induction lf1 as [| r3 lf1 Hreclf1].
+ intros H.
+ induction lf1 as [| r3 lf1 Hreclf1]; intros a b H1 H2.
reflexivity.
simpl; cut (r = r1).
- intro; rewrite H3; rewrite (H0 lf1 r b).
+ intros H3.
+ rewrite H3; rewrite (H lf1 r b).
ring.
rewrite H3; apply StepFun_P7 with a r r3; [ right; assumption | assumption ].
- clear H H0 Hreclf1 r0; unfold adapted_couple in H1; decompose [and] H1;
+ clear H H0 Hreclf1; unfold adapted_couple in H1.
+ decompose [and] H1.
intros; simpl in H4; rewrite H4; unfold Rmin;
case (Rle_dec a b); intro; [ assumption | reflexivity ].
+
unfold adapted_couple in H1; decompose [and] H1; intros; apply Rle_antisym.
apply (H3 0%nat); simpl; apply lt_O_Sn.
simpl in H5; rewrite H2 in H5; rewrite H5; replace (Rmin b b) with (Rmax a b);
@@ -292,8 +298,8 @@ Proof.
Qed.
Lemma StepFun_P9 :
- forall (a b:R) (f:R -> R) (l lf:Rlist),
- adapted_couple f a b l lf -> a <> b -> (2 <= Rlength l)%nat.
+ forall (a b:R) (f:R -> R) (l lf:list R),
+ adapted_couple f a b l lf -> a <> b -> (2 <= length l)%nat.
Proof.
intros; unfold adapted_couple in H; decompose [and] H; clear H;
induction l as [| r l Hrecl];
@@ -307,13 +313,13 @@ Proof.
Qed.
Lemma StepFun_P10 :
- forall (f:R -> R) (l lf:Rlist) (a b:R),
+ forall (f:R -> R) (l lf:list R) (a b:R),
a <= b ->
adapted_couple f a b l lf ->
- exists l' : Rlist,
- (exists lf' : Rlist, adapted_couple_opt f a b l' lf').
+ exists l' : list R,
+ (exists lf' : list R, adapted_couple_opt f a b l' lf').
Proof.
- simple induction l.
+ induction l as [ | r r0 H].
intros; unfold adapted_couple in H0; decompose [and] H0; simpl in H4;
discriminate.
intros; case (Req_dec a b); intro.
@@ -503,7 +509,7 @@ Proof.
Qed.
Lemma StepFun_P11 :
- forall (a b r r1 r3 s1 s2 r4:R) (r2 lf1 s3 lf2:Rlist)
+ forall (a b r r1 r3 s1 s2 r4:R) (r2 lf1 s3 lf2:list R)
(f:R -> R),
a < b ->
adapted_couple f a b (cons r (cons r1 r2)) (cons r3 lf1) ->
@@ -627,7 +633,7 @@ Proof.
Qed.
Lemma StepFun_P12 :
- forall (a b:R) (f:R -> R) (l lf:Rlist),
+ forall (a b:R) (f:R -> R) (l lf:list R),
adapted_couple_opt f a b l lf -> adapted_couple_opt f b a l lf.
Proof.
unfold adapted_couple_opt; unfold adapted_couple; intros;
@@ -643,7 +649,7 @@ Proof.
Qed.
Lemma StepFun_P13 :
- forall (a b r r1 r3 s1 s2 r4:R) (r2 lf1 s3 lf2:Rlist)
+ forall (a b r r1 r3 s1 s2 r4:R) (r2 lf1 s3 lf2:list R)
(f:R -> R),
a <> b ->
adapted_couple f a b (cons r (cons r1 r2)) (cons r3 lf1) ->
@@ -657,15 +663,15 @@ Proof.
Qed.
Lemma StepFun_P14 :
- forall (f:R -> R) (l1 l2 lf1 lf2:Rlist) (a b:R),
+ forall (f:R -> R) (l1 l2 lf1 lf2:list R) (a b:R),
a <= b ->
adapted_couple f a b l1 lf1 ->
adapted_couple_opt f a b l2 lf2 -> Int_SF lf1 l1 = Int_SF lf2 l2.
Proof.
- simple induction l1.
+ induction l1 as [ | r r0 H0].
intros l2 lf1 lf2 a b Hyp H H0; unfold adapted_couple in H; decompose [and] H;
clear H H0 H2 H3 H1 H6; simpl in H4; discriminate.
- simple induction r0.
+ induction r0 as [|r1 r2 H].
intros; case (Req_dec a b); intro.
unfold adapted_couple_opt in H2; elim H2; intros; rewrite (StepFun_P8 H4 H3);
rewrite (StepFun_P8 H1 H3); reflexivity.
@@ -798,7 +804,7 @@ Proof.
rewrite H9;
change
(forall i:nat,
- (i < pred (Rlength (cons r4 lf2)))%nat ->
+ (i < pred (length (cons r4 lf2)))%nat ->
pos_Rl (cons r4 lf2) i <> pos_Rl (cons r4 lf2) (S i) \/
f (pos_Rl (cons s1 (cons s2 s3)) (S i)) <> pos_Rl (cons r4 lf2) i)
; rewrite <- H5; apply H3.
@@ -840,7 +846,7 @@ Proof.
rewrite <- H10; unfold open_interval; apply H2.
elim H3; clear H3; intros; split.
rewrite H5 in H3; intros; apply (H3 (S i)).
- simpl; replace (Rlength lf2) with (S (pred (Rlength lf2))).
+ simpl; replace (length lf2) with (S (pred (length lf2))).
apply lt_n_S; apply H12.
symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red;
intro; rewrite <- H13 in H12; elim (lt_n_O _ H12).
@@ -863,7 +869,7 @@ Proof.
Qed.
Lemma StepFun_P15 :
- forall (f:R -> R) (l1 l2 lf1 lf2:Rlist) (a b:R),
+ forall (f:R -> R) (l1 l2 lf1 lf2:list R) (a b:R),
adapted_couple f a b l1 lf1 ->
adapted_couple_opt f a b l2 lf2 -> Int_SF lf1 l1 = Int_SF lf2 l2.
Proof.
@@ -876,10 +882,10 @@ Proof.
Qed.
Lemma StepFun_P16 :
- forall (f:R -> R) (l lf:Rlist) (a b:R),
+ forall (f:R -> R) (l lf:list R) (a b:R),
adapted_couple f a b l lf ->
- exists l' : Rlist,
- (exists lf' : Rlist, adapted_couple_opt f a b l' lf').
+ exists l' : list R,
+ (exists lf' : list R, adapted_couple_opt f a b l' lf').
Proof.
intros; destruct (Rle_dec a b) as [Hle|Hnle];
[ apply (StepFun_P10 Hle H)
@@ -891,7 +897,7 @@ Proof.
Qed.
Lemma StepFun_P17 :
- forall (f:R -> R) (l1 l2 lf1 lf2:Rlist) (a b:R),
+ forall (f:R -> R) (l1 l2 lf1 lf2:list R) (a b:R),
adapted_couple f a b l1 lf1 ->
adapted_couple f a b l2 lf2 -> Int_SF lf1 l1 = Int_SF lf2 l2.
Proof.
@@ -922,7 +928,7 @@ Proof.
Qed.
Lemma StepFun_P19 :
- forall (l1:Rlist) (f g:R -> R) (l:R),
+ forall (l1:list R) (f g:R -> R) (l:R),
Int_SF (FF l1 (fun x:R => f x + l * g x)) l1 =
Int_SF (FF l1 f) l1 + l * Int_SF (FF l1 g) l1.
Proof.
@@ -933,8 +939,8 @@ Proof.
Qed.
Lemma StepFun_P20 :
- forall (l:Rlist) (f:R -> R),
- (0 < Rlength l)%nat -> Rlength l = S (Rlength (FF l f)).
+ forall (l:list R) (f:R -> R),
+ (0 < length l)%nat -> length l = S (length (FF l f)).
Proof.
intros l f H; induction l;
[ elim (lt_irrefl _ H)
@@ -942,7 +948,7 @@ Proof.
Qed.
Lemma StepFun_P21 :
- forall (a b:R) (f:R -> R) (l:Rlist),
+ forall (a b:R) (f:R -> R) (l:list R),
is_subdivision f a b l -> adapted_couple f a b l (FF l f).
Proof.
intros * (x & H & H1 & H0 & H2 & H4).
@@ -979,7 +985,7 @@ Proof.
Qed.
Lemma StepFun_P22 :
- forall (a b:R) (f g:R -> R) (lf lg:Rlist),
+ forall (a b:R) (f g:R -> R) (lf lg:list R),
a <= b ->
is_subdivision f a b lf ->
is_subdivision g a b lg -> is_subdivision f a b (cons_ORlist lf lg).
@@ -1032,25 +1038,25 @@ Proof.
(H8 :
In
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg))))
+ (pred (length (cons_ORlist (cons r lf) lg))))
(cons_ORlist (cons r lf) lg)).
elim
(RList_P3 (cons_ORlist (cons r lf) lg)
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ (pred (length (cons_ORlist (cons r lf) lg)))));
intros _ H10; apply H10;
- exists (pred (Rlength (cons_ORlist (cons r lf) lg)));
+ exists (pred (length (cons_ORlist (cons r lf) lg)));
split; [ reflexivity | rewrite RList_P11; simpl; apply lt_n_Sn ].
elim
(RList_P9 (cons r lf) lg
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ (pred (length (cons_ORlist (cons r lf) lg)))));
intros H10 _.
assert (H11 := H10 H8); elim H11; intro.
elim
(RList_P3 (cons r lf)
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ (pred (length (cons_ORlist (cons r lf) lg)))));
intros H13 _; assert (H14 := H13 H12); elim H14; intros;
elim H15; clear H15; intros; rewrite H15; rewrite <- H5;
elim (RList_P6 (cons r lf)); intros; apply H17;
@@ -1060,10 +1066,10 @@ Proof.
elim
(RList_P3 lg
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ (pred (length (cons_ORlist (cons r lf) lg)))));
intros H13 _; assert (H14 := H13 H12); elim H14; intros;
elim H15; clear H15; intros.
- rewrite H15; assert (H17 : Rlength lg = S (pred (Rlength lg))).
+ rewrite H15; assert (H17 : length lg = S (pred (length lg))).
apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H17 in H16; elim (lt_n_O _ H16).
rewrite <- H0; elim (RList_P6 lg); intros; apply H18;
@@ -1075,7 +1081,7 @@ Proof.
assert (H8 : In b (cons_ORlist (cons r lf) lg)).
elim (RList_P9 (cons r lf) lg b); intros; apply H10; left;
elim (RList_P3 (cons r lf) b); intros; apply H12;
- exists (pred (Rlength (cons r lf))); split;
+ exists (pred (length (cons r lf))); split;
[ symmetry ; assumption | simpl; apply lt_n_Sn ].
apply RList_P7; [ apply RList_P2; assumption | assumption ].
apply StepFun_P20; rewrite RList_P11; rewrite H2; rewrite H7; simpl;
@@ -1089,7 +1095,7 @@ Proof.
intros; elim H11; clear H11; intros; assert (H12 := H11);
assert
(Hyp_cons :
- exists r : R, (exists r0 : Rlist, cons_ORlist lf lg = cons r r0)).
+ exists r : R, (exists r0 : list R, cons_ORlist lf lg = cons r r0)).
apply RList_P19; red; intro; rewrite H13 in H8; elim (lt_n_O _ H8).
elim Hyp_cons; clear Hyp_cons; intros r [r0 Hyp_cons]; rewrite Hyp_cons;
unfold FF; rewrite RList_P12.
@@ -1128,7 +1134,7 @@ Proof.
elim (RList_P6 (cons_ORlist lf lg)); intros; apply H11.
apply RList_P2; assumption.
apply le_O_n.
- apply lt_trans with (pred (Rlength (cons_ORlist lf lg)));
+ apply lt_trans with (pred (length (cons_ORlist lf lg)));
[ assumption
| apply lt_pred_n_n; apply neq_O_lt; red; intro;
rewrite <- H13 in H8; elim (lt_n_O _ H8) ].
@@ -1147,9 +1153,9 @@ Proof.
set
(I :=
fun j:nat =>
- pos_Rl lf j <= pos_Rl (cons_ORlist lf lg) i /\ (j < Rlength lf)%nat);
+ pos_Rl lf j <= pos_Rl (cons_ORlist lf lg) i /\ (j < length lf)%nat);
assert (H12 : Nbound I).
- unfold Nbound; exists (Rlength lf); intros; unfold I in H12; elim H12;
+ unfold Nbound; exists (length lf); intros; unfold I in H12; elim H12;
intros; apply lt_le_weak; assumption.
assert (H13 : exists n : nat, I n).
exists 0%nat; unfold I; split.
@@ -1159,7 +1165,7 @@ Proof.
elim (RList_P6 (cons_ORlist lf lg)); intros; apply H13.
apply RList_P2; assumption.
apply le_O_n.
- apply lt_trans with (pred (Rlength (cons_ORlist lf lg))).
+ apply lt_trans with (pred (length (cons_ORlist lf lg))).
assumption.
apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H15 in H8;
elim (lt_n_O _ H8).
@@ -1167,12 +1173,12 @@ Proof.
rewrite <- H6 in H11; rewrite <- H5 in H11; elim (Rlt_irrefl _ H11).
assert (H14 := Nzorn H13 H12); elim H14; clear H14; intros x0 H14;
exists (pos_Rl lf0 x0); unfold constant_D_eq, open_interval;
- intros; assert (H16 := H9 x0); assert (H17 : (x0 < pred (Rlength lf))%nat).
+ intros; assert (H16 := H9 x0); assert (H17 : (x0 < pred (length lf))%nat).
elim H14; clear H14; intros; unfold I in H14; elim H14; clear H14; intros;
- apply lt_S_n; replace (S (pred (Rlength lf))) with (Rlength lf).
+ apply lt_S_n; replace (S (pred (length lf))) with (length lf).
inversion H18.
2: apply lt_n_S; assumption.
- cut (x0 = pred (Rlength lf)).
+ cut (x0 = pred (length lf)).
intro; rewrite H19 in H14; rewrite H5 in H14;
cut (pos_Rl (cons_ORlist lf lg) i < b).
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H14 H21)).
@@ -1180,7 +1186,7 @@ Proof.
elim H10; intros; apply Rlt_trans with x; assumption.
rewrite <- H5;
apply Rle_trans with
- (pos_Rl (cons_ORlist lf lg) (pred (Rlength (cons_ORlist lf lg)))).
+ (pos_Rl (cons_ORlist lf lg) (pred (length (cons_ORlist lf lg)))).
elim (RList_P6 (cons_ORlist lf lg)); intros; apply H21.
apply RList_P2; assumption.
apply lt_n_Sm_le; apply lt_n_S; assumption.
@@ -1197,8 +1203,8 @@ Proof.
elim H14; clear H14; intros; split.
apply Rle_lt_trans with (pos_Rl (cons_ORlist lf lg) i); assumption.
apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)); try assumption.
- assert (H22 : (S x0 < Rlength lf)%nat).
- replace (Rlength lf) with (S (pred (Rlength lf)));
+ assert (H22 : (S x0 < length lf)%nat).
+ replace (length lf) with (S (pred (length lf)));
[ apply lt_n_S; assumption
| symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red;
intro; rewrite <- H22 in H21; elim (lt_n_O _ H21) ].
@@ -1216,7 +1222,7 @@ Proof.
Qed.
Lemma StepFun_P23 :
- forall (a b:R) (f g:R -> R) (lf lg:Rlist),
+ forall (a b:R) (f g:R -> R) (lf lg:list R),
is_subdivision f a b lf ->
is_subdivision g a b lg -> is_subdivision f a b (cons_ORlist lf lg).
Proof.
@@ -1229,7 +1235,7 @@ Proof.
Qed.
Lemma StepFun_P24 :
- forall (a b:R) (f g:R -> R) (lf lg:Rlist),
+ forall (a b:R) (f g:R -> R) (lf lg:list R),
a <= b ->
is_subdivision f a b lf ->
is_subdivision g a b lg -> is_subdivision g a b (cons_ORlist lf lg).
@@ -1282,24 +1288,24 @@ Proof.
(H8 :
In
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg))))
+ (pred (length (cons_ORlist (cons r lf) lg))))
(cons_ORlist (cons r lf) lg)).
elim
(RList_P3 (cons_ORlist (cons r lf) lg)
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ (pred (length (cons_ORlist (cons r lf) lg)))));
intros _ H10; apply H10;
- exists (pred (Rlength (cons_ORlist (cons r lf) lg)));
+ exists (pred (length (cons_ORlist (cons r lf) lg)));
split; [ reflexivity | rewrite RList_P11; simpl; apply lt_n_Sn ].
elim
(RList_P9 (cons r lf) lg
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ (pred (length (cons_ORlist (cons r lf) lg)))));
intros H10 _; assert (H11 := H10 H8); elim H11; intro.
elim
(RList_P3 (cons r lf)
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ (pred (length (cons_ORlist (cons r lf) lg)))));
intros H13 _; assert (H14 := H13 H12); elim H14; intros;
elim H15; clear H15; intros; rewrite H15; rewrite <- H5;
elim (RList_P6 (cons r lf)); intros; apply H17;
@@ -1309,10 +1315,10 @@ Proof.
elim
(RList_P3 lg
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ (pred (length (cons_ORlist (cons r lf) lg)))));
intros H13 _; assert (H14 := H13 H12); elim H14; intros;
elim H15; clear H15; intros; rewrite H15;
- assert (H17 : Rlength lg = S (pred (Rlength lg))).
+ assert (H17 : length lg = S (pred (length lg))).
apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H17 in H16; elim (lt_n_O _ H16).
rewrite <- H0; elim (RList_P6 lg); intros; apply H18;
@@ -1324,7 +1330,7 @@ Proof.
assert (H8 : In b (cons_ORlist (cons r lf) lg)).
elim (RList_P9 (cons r lf) lg b); intros; apply H10; left;
elim (RList_P3 (cons r lf) b); intros; apply H12;
- exists (pred (Rlength (cons r lf))); split;
+ exists (pred (length (cons r lf))); split;
[ symmetry ; assumption | simpl; apply lt_n_Sn ].
apply RList_P7; [ apply RList_P2; assumption | assumption ].
apply StepFun_P20; rewrite RList_P11; rewrite H7; rewrite H2; simpl;
@@ -1338,7 +1344,7 @@ Proof.
intros; elim H11; clear H11; intros; assert (H12 := H11);
assert
(Hyp_cons :
- exists r : R, (exists r0 : Rlist, cons_ORlist lf lg = cons r r0)).
+ exists r : R, (exists r0 : list R, cons_ORlist lf lg = cons r r0)).
apply RList_P19; red; intro; rewrite H13 in H8; elim (lt_n_O _ H8).
elim Hyp_cons; clear Hyp_cons; intros r [r0 Hyp_cons]; rewrite Hyp_cons;
unfold FF; rewrite RList_P12.
@@ -1377,7 +1383,7 @@ Proof.
elim (RList_P6 (cons_ORlist lf lg)); intros; apply H11.
apply RList_P2; assumption.
apply le_O_n.
- apply lt_trans with (pred (Rlength (cons_ORlist lf lg)));
+ apply lt_trans with (pred (length (cons_ORlist lf lg)));
[ assumption
| apply lt_pred_n_n; apply neq_O_lt; red; intro;
rewrite <- H13 in H8; elim (lt_n_O _ H8) ].
@@ -1394,9 +1400,9 @@ Proof.
set
(I :=
fun j:nat =>
- pos_Rl lg j <= pos_Rl (cons_ORlist lf lg) i /\ (j < Rlength lg)%nat);
+ pos_Rl lg j <= pos_Rl (cons_ORlist lf lg) i /\ (j < length lg)%nat);
assert (H12 : Nbound I).
- unfold Nbound; exists (Rlength lg); intros; unfold I in H12; elim H12;
+ unfold Nbound; exists (length lg); intros; unfold I in H12; elim H12;
intros; apply lt_le_weak; assumption.
assert (H13 : exists n : nat, I n).
exists 0%nat; unfold I; split.
@@ -1406,7 +1412,7 @@ Proof.
elim (RList_P6 (cons_ORlist lf lg)); intros; apply H13;
[ apply RList_P2; assumption
| apply le_O_n
- | apply lt_trans with (pred (Rlength (cons_ORlist lf lg)));
+ | apply lt_trans with (pred (length (cons_ORlist lf lg)));
[ assumption
| apply lt_pred_n_n; apply neq_O_lt; red; intro;
rewrite <- H15 in H8; elim (lt_n_O _ H8) ] ].
@@ -1414,12 +1420,12 @@ Proof.
rewrite <- H1 in H11; rewrite <- H0 in H11; elim (Rlt_irrefl _ H11).
assert (H14 := Nzorn H13 H12); elim H14; clear H14; intros x0 H14;
exists (pos_Rl lg0 x0); unfold constant_D_eq, open_interval;
- intros; assert (H16 := H4 x0); assert (H17 : (x0 < pred (Rlength lg))%nat).
+ intros; assert (H16 := H4 x0); assert (H17 : (x0 < pred (length lg))%nat).
elim H14; clear H14; intros; unfold I in H14; elim H14; clear H14; intros;
- apply lt_S_n; replace (S (pred (Rlength lg))) with (Rlength lg).
+ apply lt_S_n; replace (S (pred (length lg))) with (length lg).
inversion H18.
2: apply lt_n_S; assumption.
- cut (x0 = pred (Rlength lg)).
+ cut (x0 = pred (length lg)).
intro; rewrite H19 in H14; rewrite H0 in H14;
cut (pos_Rl (cons_ORlist lf lg) i < b).
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H14 H21)).
@@ -1427,7 +1433,7 @@ Proof.
elim H10; intros; apply Rlt_trans with x; assumption.
rewrite <- H0;
apply Rle_trans with
- (pos_Rl (cons_ORlist lf lg) (pred (Rlength (cons_ORlist lf lg)))).
+ (pos_Rl (cons_ORlist lf lg) (pred (length (cons_ORlist lf lg)))).
elim (RList_P6 (cons_ORlist lf lg)); intros; apply H21.
apply RList_P2; assumption.
apply lt_n_Sm_le; apply lt_n_S; assumption.
@@ -1445,8 +1451,8 @@ Proof.
elim H14; clear H14; intros; split.
apply Rle_lt_trans with (pos_Rl (cons_ORlist lf lg) i); assumption.
apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)); try assumption.
- assert (H22 : (S x0 < Rlength lg)%nat).
- replace (Rlength lg) with (S (pred (Rlength lg))).
+ assert (H22 : (S x0 < length lg)%nat).
+ replace (length lg) with (S (pred (length lg))).
apply lt_n_S; assumption.
symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red;
intro; rewrite <- H22 in H21; elim (lt_n_O _ H21).
@@ -1463,7 +1469,7 @@ Proof.
Qed.
Lemma StepFun_P25 :
- forall (a b:R) (f g:R -> R) (lf lg:Rlist),
+ forall (a b:R) (f g:R -> R) (lf lg:list R),
is_subdivision f a b lf ->
is_subdivision g a b lg -> is_subdivision g a b (cons_ORlist lf lg).
Proof.
@@ -1476,7 +1482,7 @@ Proof.
Qed.
Lemma StepFun_P26 :
- forall (a b l:R) (f g:R -> R) (l1:Rlist),
+ forall (a b l:R) (f g:R -> R) (l1:list R),
is_subdivision f a b l1 ->
is_subdivision g a b l1 ->
is_subdivision (fun x:R => f x + l * g x) a b l1.
@@ -1494,7 +1500,7 @@ Proof.
change
(pos_Rl x0 i + l * pos_Rl x i =
pos_Rl
- (app_Rlist (mid_Rlist (cons r r0) r) (fun x2:R => f x2 + l * g x2))
+ (map (fun x2:R => f x2 + l * g x2) (mid_Rlist (cons r r0) r))
(S i)); rewrite RList_P12.
rewrite RList_P13.
rewrite <- H12; rewrite (H9 _ H8); try rewrite (H4 _ H8);
@@ -1521,7 +1527,7 @@ Proof.
Qed.
Lemma StepFun_P27 :
- forall (a b l:R) (f g:R -> R) (lf lg:Rlist),
+ forall (a b l:R) (f g:R -> R) (lf lg:list R),
is_subdivision f a b lf ->
is_subdivision g a b lg ->
is_subdivision (fun x:R => f x + l * g x) a b (cons_ORlist lf lg).
@@ -1586,9 +1592,9 @@ Proof.
Qed.
Lemma StepFun_P31 :
- forall (a b:R) (f:R -> R) (l lf:Rlist),
+ forall (a b:R) (f:R -> R) (l lf:list R),
adapted_couple f a b l lf ->
- adapted_couple (fun x:R => Rabs (f x)) a b l (app_Rlist lf Rabs).
+ adapted_couple (fun x:R => Rabs (f x)) a b l (map Rabs lf).
Proof.
unfold adapted_couple; intros; decompose [and] H; clear H;
repeat split; try assumption.
@@ -1604,15 +1610,15 @@ Lemma StepFun_P32 :
Proof.
intros a b f; unfold IsStepFun; apply existT with (subdivision f);
unfold is_subdivision;
- apply existT with (app_Rlist (subdivision_val f) Rabs);
+ apply existT with (map Rabs (subdivision_val f));
apply StepFun_P31; apply StepFun_P1.
Qed.
Lemma StepFun_P33 :
- forall l2 l1:Rlist,
- ordered_Rlist l1 -> Rabs (Int_SF l2 l1) <= Int_SF (app_Rlist l2 Rabs) l1.
+ forall l2 l1:list R,
+ ordered_Rlist l1 -> Rabs (Int_SF l2 l1) <= Int_SF (map Rabs l2) l1.
Proof.
- simple induction l2; intros.
+ induction l2 as [ | r r0 H]; intros.
simpl; rewrite Rabs_R0; right; reflexivity.
simpl; induction l1 as [| r1 l1 Hrecl1].
rewrite Rabs_R0; right; reflexivity.
@@ -1635,7 +1641,7 @@ Proof.
replace
(Int_SF (subdivision_val (mkStepFun (StepFun_P32 f)))
(subdivision (mkStepFun (StepFun_P32 f)))) with
- (Int_SF (app_Rlist (subdivision_val f) Rabs) (subdivision f)).
+ (Int_SF (map Rabs (subdivision_val f)) (subdivision f)).
apply StepFun_P33; assert (H0 := StepFun_P29 f); unfold is_subdivision in H0;
elim H0; intros; unfold adapted_couple in p; decompose [and] p;
assumption.
@@ -1645,14 +1651,14 @@ Proof.
Qed.
Lemma StepFun_P35 :
- forall (l:Rlist) (a b:R) (f g:R -> R),
+ forall (l:list R) (a b:R) (f g:R -> R),
ordered_Rlist l ->
pos_Rl l 0 = a ->
- pos_Rl l (pred (Rlength l)) = b ->
+ pos_Rl l (pred (length l)) = b ->
(forall x:R, a < x < b -> f x <= g x) ->
Int_SF (FF l f) l <= Int_SF (FF l g) l.
Proof.
- simple induction l; intros.
+ induction l as [ | r r0 H]; intros.
right; reflexivity.
simpl; induction r0 as [| r0 r1 Hrecr0].
right; reflexivity.
@@ -1682,7 +1688,7 @@ Proof.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; rewrite double; assert (H5 : r0 <= b).
replace b with
- (pos_Rl (cons r (cons r0 r1)) (pred (Rlength (cons r (cons r0 r1))))).
+ (pos_Rl (cons r (cons r0 r1)) (pred (length (cons r (cons r0 r1))))).
replace r0 with (pos_Rl (cons r (cons r0 r1)) 1).
elim (RList_P6 (cons r (cons r0 r1))); intros; apply H5.
assumption.
@@ -1712,7 +1718,7 @@ Proof.
Qed.
Lemma StepFun_P36 :
- forall (a b:R) (f g:StepFun a b) (l:Rlist),
+ forall (a b:R) (f g:StepFun a b) (l:list R),
a <= b ->
is_subdivision f a b l ->
is_subdivision g a b l ->
@@ -1748,18 +1754,18 @@ Proof.
Qed.
Lemma StepFun_P38 :
- forall (l:Rlist) (a b:R) (f:R -> R),
+ forall (l:list R) (a b:R) (f:R -> R),
ordered_Rlist l ->
pos_Rl l 0 = a ->
- pos_Rl l (pred (Rlength l)) = b ->
+ pos_Rl l (pred (length l)) = b ->
{ g:StepFun a b |
g b = f b /\
(forall i:nat,
- (i < pred (Rlength l))%nat ->
+ (i < pred (length l))%nat ->
constant_D_eq g (co_interval (pos_Rl l i) (pos_Rl l (S i)))
(f (pos_Rl l i))) }.
Proof.
- intros l a b f; generalize a; clear a; induction l.
+ intros l a b f; generalize a; clear a; induction l as [|r l IHl].
intros a H H0 H1; simpl in H0; simpl in H1;
exists (mkStepFun (StepFun_P4 a b (f b))); split.
reflexivity.
@@ -1772,7 +1778,7 @@ Proof.
apply RList_P4 with r; assumption.
assert (H3 : pos_Rl (cons r1 l) 0 = r1).
reflexivity.
- assert (H4 : pos_Rl (cons r1 l) (pred (Rlength (cons r1 l))) = b).
+ assert (H4 : pos_Rl (cons r1 l) (pred (length (cons r1 l))) = b).
rewrite <- H1; reflexivity.
elim (IHl r1 H2 H3 H4); intros g [H5 H6].
set
@@ -1796,7 +1802,7 @@ Proof.
simpl in H0; rewrite <- H0; apply (H 0%nat); simpl; apply lt_O_Sn.
unfold Rmin; decide (Rle_dec r1 b) with H7; reflexivity.
apply (H10 i); apply lt_S_n.
- replace (S (pred (Rlength lg))) with (Rlength lg).
+ replace (S (pred (length lg))) with (length lg).
apply H9.
apply S_pred with 0%nat; apply neq_O_lt; intro; rewrite <- H14 in H9;
elim (lt_n_O _ H9).
@@ -1825,9 +1831,9 @@ Proof.
change
(constant_D_eq g' (open_interval (pos_Rl lg i) (pos_Rl lg (S i)))
(pos_Rl lg2 i)); clear Hreci; assert (H16 := H15 i);
- assert (H17 : (i < pred (Rlength lg))%nat).
+ assert (H17 : (i < pred (length lg))%nat).
apply lt_S_n.
- replace (S (pred (Rlength lg))) with (Rlength lg).
+ replace (S (pred (length lg))) with (length lg).
assumption.
apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H14 in H9; elim (lt_n_O _ H9).
@@ -1843,7 +1849,7 @@ Proof.
assumption.
elim (RList_P3 lg (pos_Rl lg i)); intros; apply H21; exists i; split.
reflexivity.
- apply lt_trans with (pred (Rlength lg)); try assumption.
+ apply lt_trans with (pred (length lg)); try assumption.
apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H22 in H17;
elim (lt_n_O _ H17).
unfold Rmin; decide (Rle_dec r1 b) with H7; reflexivity.
@@ -1860,7 +1866,7 @@ Proof.
(constant_D_eq (mkStepFun H8)
(co_interval (pos_Rl (cons r1 l) i) (pos_Rl (cons r1 l) (S i)))
(f (pos_Rl (cons r1 l) i))); assert (H10 := H6 i);
- assert (H11 : (i < pred (Rlength (cons r1 l)))%nat).
+ assert (H11 : (i < pred (length (cons r1 l)))%nat).
simpl; apply lt_S_n; assumption.
assert (H12 := H10 H11); unfold constant_D_eq, co_interval in H12;
unfold constant_D_eq, co_interval; intros;
@@ -1873,7 +1879,7 @@ Proof.
elim (RList_P6 (cons r1 l)); intros; apply H15;
[ assumption
| apply le_O_n
- | simpl; apply lt_trans with (Rlength l);
+ | simpl; apply lt_trans with (length l);
[ apply lt_S_n; assumption | apply lt_n_Sn ] ].
Qed.
@@ -1912,12 +1918,12 @@ Proof.
Qed.
Lemma StepFun_P40 :
- forall (f:R -> R) (a b c:R) (l1 l2 lf1 lf2:Rlist),
+ forall (f:R -> R) (a b c:R) (l1 l2 lf1 lf2:list R),
a < b ->
b < c ->
adapted_couple f a b l1 lf1 ->
adapted_couple f b c l2 lf2 ->
- adapted_couple f a c (cons_Rlist l1 l2) (FF (cons_Rlist l1 l2) f).
+ adapted_couple f a c (app l1 l2) (FF (app l1 l2) f).
Proof.
intros f a b c l1 l2 lf1 lf2 H H0 H1 H2; unfold adapted_couple in H1, H2;
unfold adapted_couple; decompose [and] H1;
@@ -1941,28 +1947,28 @@ Proof.
| left; assumption ].
red; intro; rewrite H1 in H11; discriminate.
apply StepFun_P20.
- rewrite RList_P23; apply neq_O_lt; red; intro.
- assert (H2 : (Rlength l1 + Rlength l2)%nat = 0%nat).
+ rewrite app_length; apply neq_O_lt; red; intro.
+ assert (H2 : (length l1 + length l2)%nat = 0%nat).
symmetry ; apply H1.
elim (plus_is_O _ _ H2); intros; rewrite H12 in H6; discriminate.
unfold constant_D_eq, open_interval; intros;
- elim (le_or_lt (S (S i)) (Rlength l1)); intro.
- assert (H14 : pos_Rl (cons_Rlist l1 l2) i = pos_Rl l1 i).
+ elim (le_or_lt (S (S i)) (length l1)); intro.
+ assert (H14 : pos_Rl (app l1 l2) i = pos_Rl l1 i).
apply RList_P26; apply lt_S_n; apply le_lt_n_Sm; apply le_S_n;
- apply le_trans with (Rlength l1); [ assumption | apply le_n_Sn ].
- assert (H15 : pos_Rl (cons_Rlist l1 l2) (S i) = pos_Rl l1 (S i)).
+ apply le_trans with (length l1); [ assumption | apply le_n_Sn ].
+ assert (H15 : pos_Rl (app l1 l2) (S i) = pos_Rl l1 (S i)).
apply RList_P26; apply lt_S_n; apply le_lt_n_Sm; assumption.
- rewrite H14 in H2; rewrite H15 in H2; assert (H16 : (2 <= Rlength l1)%nat).
+ rewrite H14 in H2; rewrite H15 in H2; assert (H16 : (2 <= length l1)%nat).
apply le_trans with (S (S i));
[ repeat apply le_n_S; apply le_O_n | assumption ].
elim (RList_P20 _ H16); intros r1 [r2 [r3 H17]]; rewrite H17;
change
- (f x = pos_Rl (app_Rlist (mid_Rlist (cons_Rlist (cons r2 r3) l2) r1) f) i)
+ (f x = pos_Rl (map f (mid_Rlist (app (cons r2 r3) l2) r1)) i)
; rewrite RList_P12.
induction i as [| i Hreci].
simpl; assert (H18 := H8 0%nat);
unfold constant_D_eq, open_interval in H18;
- assert (H19 : (0 < pred (Rlength l1))%nat).
+ assert (H19 : (0 < pred (length l1))%nat).
rewrite H17; simpl; apply lt_O_Sn.
assert (H20 := H18 H19); repeat rewrite H20.
reflexivity.
@@ -1991,14 +1997,14 @@ Proof.
clear Hreci; rewrite RList_P13.
rewrite H17 in H14; rewrite H17 in H15;
change
- (pos_Rl (cons_Rlist (cons r2 r3) l2) i =
+ (pos_Rl (app (cons r2 r3) l2) i =
pos_Rl (cons r1 (cons r2 r3)) (S i)) in H14; rewrite H14;
change
- (pos_Rl (cons_Rlist (cons r2 r3) l2) (S i) =
+ (pos_Rl (app (cons r2 r3) l2) (S i) =
pos_Rl (cons r1 (cons r2 r3)) (S (S i))) in H15;
rewrite H15; assert (H18 := H8 (S i));
unfold constant_D_eq, open_interval in H18;
- assert (H19 : (S i < pred (Rlength l1))%nat).
+ assert (H19 : (S i < pred (length l1))%nat).
apply lt_pred; apply lt_S_n; apply le_lt_n_Sm; assumption.
assert (H20 := H18 H19); repeat rewrite H20.
reflexivity.
@@ -2025,7 +2031,7 @@ Proof.
simpl; rewrite H17 in H1; simpl in H1; apply lt_S_n; assumption.
rewrite RList_P14; rewrite H17 in H1; simpl in H1; apply H1.
inversion H12.
- assert (H16 : pos_Rl (cons_Rlist l1 l2) (S i) = b).
+ assert (H16 : pos_Rl (app l1 l2) (S i) = b).
rewrite RList_P29.
rewrite H15; rewrite <- minus_n_n; rewrite H10; unfold Rmin;
case (Rle_dec b c) as [|[]]; [ reflexivity | left; assumption ].
@@ -2033,30 +2039,30 @@ Proof.
induction l1 as [| r l1 Hrecl1].
simpl in H15; discriminate.
clear Hrecl1; simpl in H1; simpl; apply lt_n_S; assumption.
- assert (H17 : pos_Rl (cons_Rlist l1 l2) i = b).
+ assert (H17 : pos_Rl (app l1 l2) i = b).
rewrite RList_P26.
- replace i with (pred (Rlength l1));
+ replace i with (pred (length l1));
[ rewrite H4; unfold Rmax; case (Rle_dec a b) as [|[]];
[ reflexivity | left; assumption ]
| rewrite H15; reflexivity ].
rewrite H15; apply lt_n_Sn.
rewrite H16 in H2; rewrite H17 in H2; elim H2; intros;
elim (Rlt_irrefl _ (Rlt_trans _ _ _ H14 H18)).
- assert (H16 : pos_Rl (cons_Rlist l1 l2) i = pos_Rl l2 (i - Rlength l1)).
+ assert (H16 : pos_Rl (app l1 l2) i = pos_Rl l2 (i - length l1)).
apply RList_P29.
apply le_S_n; assumption.
- apply lt_le_trans with (pred (Rlength (cons_Rlist l1 l2)));
+ apply lt_le_trans with (pred (length (app l1 l2)));
[ assumption | apply le_pred_n ].
assert
- (H17 : pos_Rl (cons_Rlist l1 l2) (S i) = pos_Rl l2 (S (i - Rlength l1))).
- replace (S (i - Rlength l1)) with (S i - Rlength l1)%nat.
+ (H17 : pos_Rl (app l1 l2) (S i) = pos_Rl l2 (S (i - length l1))).
+ replace (S (i - length l1)) with (S i - length l1)%nat.
apply RList_P29.
apply le_S_n; apply le_trans with (S i); [ assumption | apply le_n_Sn ].
induction l1 as [| r l1 Hrecl1].
simpl in H6; discriminate.
clear Hrecl1; simpl in H1; simpl; apply lt_n_S; assumption.
symmetry ; apply minus_Sn_m; apply le_S_n; assumption.
- assert (H18 : (2 <= Rlength l1)%nat).
+ assert (H18 : (2 <= length l1)%nat).
clear f c l2 lf2 H0 H3 H8 H7 H10 H9 H11 H13 i H1 x H2 H12 m H14 H15 H16 H17;
induction l1 as [| r l1 Hrecl1].
discriminate.
@@ -2068,7 +2074,7 @@ Proof.
clear Hrecl1; simpl; repeat apply le_n_S; apply le_O_n.
elim (RList_P20 _ H18); intros r1 [r2 [r3 H19]]; rewrite H19;
change
- (f x = pos_Rl (app_Rlist (mid_Rlist (cons_Rlist (cons r2 r3) l2) r1) f) i)
+ (f x = pos_Rl (map f (mid_Rlist (app (cons r2 r3) l2) r1)) i)
; rewrite RList_P12.
induction i as [| i Hreci].
assert (H20 := le_S_n _ _ H15); assert (H21 := le_trans _ _ _ H18 H20);
@@ -2076,31 +2082,31 @@ Proof.
clear Hreci; rewrite RList_P13.
rewrite H19 in H16; rewrite H19 in H17;
change
- (pos_Rl (cons_Rlist (cons r2 r3) l2) i =
- pos_Rl l2 (S i - Rlength (cons r1 (cons r2 r3))))
+ (pos_Rl (app (cons r2 r3) l2) i =
+ pos_Rl l2 (S i - length (cons r1 (cons r2 r3))))
in H16; rewrite H16;
change
- (pos_Rl (cons_Rlist (cons r2 r3) l2) (S i) =
- pos_Rl l2 (S (S i - Rlength (cons r1 (cons r2 r3)))))
- in H17; rewrite H17; assert (H20 := H13 (S i - Rlength l1)%nat);
+ (pos_Rl (app (cons r2 r3) l2) (S i) =
+ pos_Rl l2 (S (S i - length (cons r1 (cons r2 r3)))))
+ in H17; rewrite H17; assert (H20 := H13 (S i - length l1)%nat);
unfold constant_D_eq, open_interval in H20;
- assert (H21 : (S i - Rlength l1 < pred (Rlength l2))%nat).
+ assert (H21 : (S i - length l1 < pred (length l2))%nat).
apply lt_pred; rewrite minus_Sn_m.
- apply plus_lt_reg_l with (Rlength l1); rewrite <- le_plus_minus.
+ apply plus_lt_reg_l with (length l1); rewrite <- le_plus_minus.
rewrite H19 in H1; simpl in H1; rewrite H19; simpl;
- rewrite RList_P23 in H1; apply lt_n_S; assumption.
+ rewrite app_length in H1; apply lt_n_S; assumption.
apply le_trans with (S i); [ apply le_S_n; assumption | apply le_n_Sn ].
apply le_S_n; assumption.
assert (H22 := H20 H21); repeat rewrite H22.
reflexivity.
rewrite <- H19;
assert
- (H23 : pos_Rl l2 (S i - Rlength l1) <= pos_Rl l2 (S (S i - Rlength l1))).
+ (H23 : pos_Rl l2 (S i - length l1) <= pos_Rl l2 (S (S i - length l1))).
apply H7; apply lt_pred.
rewrite minus_Sn_m.
- apply plus_lt_reg_l with (Rlength l1); rewrite <- le_plus_minus.
+ apply plus_lt_reg_l with (length l1); rewrite <- le_plus_minus.
rewrite H19 in H1; simpl in H1; rewrite H19; simpl;
- rewrite RList_P23 in H1; apply lt_n_S; assumption.
+ rewrite app_length in H1; apply lt_n_S; assumption.
apply le_trans with (S i); [ apply le_S_n; assumption | apply le_n_Sn ].
apply le_S_n; assumption.
elim H23; intro.
@@ -2115,7 +2121,7 @@ Proof.
[ prove_sup0
| unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
- [ rewrite Rmult_1_l; rewrite (Rplus_comm (pos_Rl l2 (S i - Rlength l1)));
+ [ rewrite Rmult_1_l; rewrite (Rplus_comm (pos_Rl l2 (S i - length l1)));
rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
rewrite <- H19 in H16; rewrite <- H19 in H17; elim H2; intros;
@@ -2123,11 +2129,11 @@ Proof.
simpl in H16; rewrite H16 in H25; simpl in H26; simpl in H17;
rewrite H17 in H26; simpl in H24; rewrite H24 in H25;
elim (Rlt_irrefl _ (Rlt_trans _ _ _ H25 H26)).
- assert (H23 : pos_Rl (cons_Rlist l1 l2) (S i) = pos_Rl l2 (S i - Rlength l1)).
+ assert (H23 : pos_Rl (app l1 l2) (S i) = pos_Rl l2 (S i - length l1)).
rewrite H19; simpl; simpl in H16; apply H16.
assert
(H24 :
- pos_Rl (cons_Rlist l1 l2) (S (S i)) = pos_Rl l2 (S (S i - Rlength l1))).
+ pos_Rl (app l1 l2) (S (S i)) = pos_Rl l2 (S (S i - length l1))).
rewrite H19; simpl; simpl in H17; apply H17.
rewrite <- H23; rewrite <- H24; assumption.
simpl; rewrite H19 in H1; simpl in H1; apply lt_S_n; assumption.
@@ -2141,7 +2147,7 @@ Proof.
intros f a b c H H0 (l1,(lf1,H1)) (l2,(lf2,H2));
destruct (total_order_T a b) as [[Hltab|Hab]|Hgtab].
destruct (total_order_T b c) as [[Hltbc|Hbc]|Hgtbc].
- exists (cons_Rlist l1 l2); exists (FF (cons_Rlist l1 l2) f);
+ exists (app l1 l2); exists (FF (app l1 l2) f);
apply StepFun_P40 with b lf1 lf2; assumption.
exists l1; exists lf1; rewrite Hbc in H1; assumption.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 Hgtbc)).
@@ -2150,9 +2156,9 @@ Proof.
Qed.
Lemma StepFun_P42 :
- forall (l1 l2:Rlist) (f:R -> R),
- pos_Rl l1 (pred (Rlength l1)) = pos_Rl l2 0 ->
- Int_SF (FF (cons_Rlist l1 l2) f) (cons_Rlist l1 l2) =
+ forall (l1 l2:list R) (f:R -> R),
+ pos_Rl l1 (pred (length l1)) = pos_Rl l2 0 ->
+ Int_SF (FF (app l1 l2) f) (app l1 l2) =
Int_SF (FF l1 f) l1 + Int_SF (FF l2 f) l2.
Proof.
intros l1 l2 f; induction l1 as [| r l1 IHl1]; intros H;
@@ -2193,7 +2199,7 @@ Proof.
elim Hle; intro.
elim Hle'; intro.
replace (Int_SF lf3 l3) with
- (Int_SF (FF (cons_Rlist l1 l2) f) (cons_Rlist l1 l2)).
+ (Int_SF (FF (app l1 l2) f) (app l1 l2)).
replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
symmetry ; apply StepFun_P42.
@@ -2225,7 +2231,7 @@ Proof.
elim Hle''; intro.
rewrite Rplus_comm;
replace (Int_SF lf1 l1) with
- (Int_SF (FF (cons_Rlist l3 l2) f) (cons_Rlist l3 l2)).
+ (Int_SF (FF (app l3 l2) f) (app l3 l2)).
replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
apply StepFun_P42.
@@ -2249,7 +2255,7 @@ Proof.
ring.
elim Hle; intro.
replace (Int_SF lf2 l2) with
- (Int_SF (FF (cons_Rlist l3 l1) f) (cons_Rlist l3 l1)).
+ (Int_SF (FF (app l3 l1) f) (app l3 l1)).
replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
symmetry ; apply StepFun_P42.
@@ -2277,7 +2283,7 @@ Proof.
ring.
rewrite Rplus_comm; elim Hle''; intro.
replace (Int_SF lf2 l2) with
- (Int_SF (FF (cons_Rlist l1 l3) f) (cons_Rlist l1 l3)).
+ (Int_SF (FF (app l1 l3) f) (app l1 l3)).
replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
symmetry ; apply StepFun_P42.
@@ -2304,7 +2310,7 @@ Proof.
ring.
elim Hle'; intro.
replace (Int_SF lf1 l1) with
- (Int_SF (FF (cons_Rlist l2 l3) f) (cons_Rlist l2 l3)).
+ (Int_SF (FF (app l2 l3) f) (app l2 l3)).
replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
symmetry ; apply StepFun_P42.
@@ -2334,7 +2340,7 @@ Proof.
replace (Int_SF lf3 l3) with (Int_SF lf2 l2 + Int_SF lf1 l1).
ring.
replace (Int_SF lf3 l3) with
- (Int_SF (FF (cons_Rlist l2 l1) f) (cons_Rlist l2 l1)).
+ (Int_SF (FF (app l2 l1) f) (app l2 l1)).
replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
symmetry ; apply StepFun_P42.
@@ -2395,17 +2401,17 @@ Proof.
elim H; clear H; intros; unfold IsStepFun in X; unfold is_subdivision in X;
elim X; clear X; intros l1 [lf1 H2];
cut
- (forall (l1 lf1:Rlist) (a b c:R) (f:R -> R),
+ (forall (l1 lf1:list R) (a b c:R) (f:R -> R),
adapted_couple f a b l1 lf1 ->
a <= c <= b ->
- { l:Rlist & { l0:Rlist & adapted_couple f a c l l0 } }).
+ { l:list R & { l0:list R & adapted_couple f a c l l0 } }).
intro X; unfold IsStepFun; unfold is_subdivision; eapply X.
apply H2.
split; assumption.
clear f a b c H0 H H1 H2 l1 lf1; simple induction l1.
intros; unfold adapted_couple in H; decompose [and] H; clear H; simpl in H4;
discriminate.
- simple induction r0.
+ intros r r0; elim r0.
intros X lf1 a b c f H H0; assert (H1 : a = b).
unfold adapted_couple in H; decompose [and] H; clear H; simpl in H3;
simpl in H2; assert (H7 : a <= b).
@@ -2438,7 +2444,7 @@ Proof.
unfold constant_D_eq, open_interval; intros; simpl in H8;
inversion H8.
simpl; assert (H10 := H7 0%nat);
- assert (H12 : (0 < pred (Rlength (cons r (cons r1 r2))))%nat).
+ assert (H12 : (0 < pred (length (cons r (cons r1 r2))))%nat).
simpl; apply lt_O_Sn.
apply (H10 H12); unfold open_interval; simpl;
rewrite H11 in H9; simpl in H9; elim H9; clear H9;
@@ -2479,7 +2485,7 @@ Proof.
intros; simpl in H; unfold constant_D_eq, open_interval; intros;
induction i as [| i Hreci].
simpl; assert (H17 := H10 0%nat);
- assert (H18 : (0 < pred (Rlength (cons r (cons r1 r2))))%nat).
+ assert (H18 : (0 < pred (length (cons r (cons r1 r2))))%nat).
simpl; apply lt_O_Sn.
apply (H17 H18); unfold open_interval; simpl; simpl in H4;
elim H4; clear H4; intros; split; try assumption;
@@ -2507,16 +2513,16 @@ Proof.
elim H; clear H; intros; unfold IsStepFun in X; unfold is_subdivision in X;
elim X; clear X; intros l1 [lf1 H2];
cut
- (forall (l1 lf1:Rlist) (a b c:R) (f:R -> R),
+ (forall (l1 lf1:list R) (a b c:R) (f:R -> R),
adapted_couple f a b l1 lf1 ->
a <= c <= b ->
- { l:Rlist & { l0:Rlist & adapted_couple f c b l l0 } }).
+ { l:list R & { l0:list R & adapted_couple f c b l l0 } }).
intro X; unfold IsStepFun; unfold is_subdivision; eapply X;
[ apply H2 | split; assumption ].
clear f a b c H0 H H1 H2 l1 lf1; simple induction l1.
intros; unfold adapted_couple in H; decompose [and] H; clear H; simpl in H4;
discriminate.
- simple induction r0.
+ intros r r0; elim r0.
intros X lf1 a b c f H H0; assert (H1 : a = b).
unfold adapted_couple in H; decompose [and] H; clear H; simpl in H3;
simpl in H2; assert (H7 : a <= b).
diff --git a/theories/Reals/Rtopology.v b/theories/Reals/Rtopology.v
index d21042884e..fa5442e86f 100644
--- a/theories/Reals/Rtopology.v
+++ b/theories/Reals/Rtopology.v
@@ -12,6 +12,7 @@ Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis1.
Require Import RList.
+Require Import List.
Require Import Classical_Prop.
Require Import Classical_Pred_Type.
Local Open Scope R_scope.
@@ -388,7 +389,7 @@ Record family : Type := mkfamily
Definition family_open_set (f:family) : Prop := forall x:R, open_set (f x).
Definition domain_finite (D:R -> Prop) : Prop :=
- exists l : Rlist, (forall x:R, D x <-> In x l).
+ exists l : list R, (forall x:R, D x <-> In x l).
Definition family_finite (f:family) : Prop := domain_finite (ind f).
@@ -669,7 +670,7 @@ Proof.
intro H14; simpl in H14; unfold intersection_domain in H14;
specialize H13 with x0; destruct H13 as (H13,H15);
destruct (Req_dec x0 y0) as [H16|H16].
- simpl; left; apply H16.
+ simpl; left. symmetry; apply H16.
simpl; right; apply H13.
simpl; unfold intersection_domain; unfold Db in H14;
decompose [and or] H14.
@@ -678,8 +679,8 @@ Proof.
intro H14; simpl in H14; destruct H14 as [H15|H15]; simpl;
unfold intersection_domain.
split.
- apply (cond_fam f0); rewrite H15; exists b; apply H6.
- unfold Db; right; assumption.
+ apply (cond_fam f0); rewrite <- H15; exists b; apply H6.
+ unfold Db; right; symmetry; assumption.
simpl; unfold intersection_domain; elim (H13 x0).
intros _ H16; assert (H17 := H16 H15); simpl in H17;
unfold intersection_domain in H17; split.
@@ -750,15 +751,15 @@ Proof.
intro H14; simpl in H14; unfold intersection_domain in H14;
specialize (H13 x0); destruct H13 as (H13,H15);
destruct (Req_dec x0 y0) as [Heq|Hneq].
- simpl; left; apply Heq.
+ simpl; left; symmetry; apply Heq.
simpl; right; apply H13; simpl;
unfold intersection_domain; unfold Db in H14;
decompose [and or] H14.
split; assumption.
elim Hneq; assumption.
intros [H15|H15]. split.
- apply (cond_fam f0); rewrite H15; exists m; apply H6.
- unfold Db; right; assumption.
+ apply (cond_fam f0); rewrite <- H15; exists m; apply H6.
+ unfold Db; right; symmetry; assumption.
elim (H13 x0); intros _ H16.
assert (H17 := H16 H15).
simpl in H17.
@@ -810,9 +811,10 @@ Proof.
unfold family_finite; unfold domain_finite;
exists (cons y0 nil); intro; split.
simpl; unfold intersection_domain; intros (H3,H4).
- unfold D' in H4; left; apply H4.
+ unfold D' in H4; left; symmetry; apply H4.
simpl; unfold intersection_domain; intros [H4|[]].
- split; [ rewrite H4; apply (cond_fam f0); exists a; apply H2 | apply H4 ].
+ split; [ rewrite <- H4; apply (cond_fam f0); exists a; apply H2 |
+ symmetry; apply H4 ].
split; [ right; reflexivity | apply Hle ].
apply compact_eqDom with (fun c:R => False).
apply compact_EMP.