aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorherbelin2002-05-29 10:59:30 +0000
committerherbelin2002-05-29 10:59:30 +0000
commit7a05a712afb145bd8c41ad88dcabffbbd4fe0cf1 (patch)
tree96da6366bba630dd2c2d76d7d17cb3c4dca94b57
parent0e32f3e1b0e8d5ea00d0495df691797eb7379a4e (diff)
Double Induction prend maintenant des noms d'hyppthèses
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@2729 85f007b7-540e-0410-9357-904b9bb8a0f7
-rwxr-xr-xtheories/Arith/EqNat.v2
-rw-r--r--theories/Reals/Rbase.v5
-rw-r--r--theories/Reals/Rfunctions.v2
-rw-r--r--theories/Reals/Rseries.v2
-rw-r--r--theories/Reals/Rsyntax.v2
5 files changed, 7 insertions, 6 deletions
diff --git a/theories/Arith/EqNat.v b/theories/Arith/EqNat.v
index 587351c375..b4a232e204 100755
--- a/theories/Arith/EqNat.v
+++ b/theories/Arith/EqNat.v
@@ -64,7 +64,7 @@ Qed.
Definition beq_nat_eq : (x,y:nat)true=(beq_nat x y)->x=y.
Proof.
- Double Induction 1 2; Simpl.
+ Double Induction x y; Simpl.
Reflexivity.
Intros; Discriminate H0.
Intros; Discriminate H0.
diff --git a/theories/Reals/Rbase.v b/theories/Reals/Rbase.v
index fd243969bc..d21fde297f 100644
--- a/theories/Reals/Rbase.v
+++ b/theories/Reals/Rbase.v
@@ -1211,7 +1211,7 @@ Qed.
Hints Resolve pos_INR: real.
Lemma INR_lt:(n,m:nat)``(INR n) < (INR m)``->(lt n m).
-Double Induction 1 2;Intros.
+Double Induction n m;Intros.
Simpl;ElimType False;Apply (Rlt_antirefl R0);Auto.
Auto with arith.
Generalize (pos_INR (S n0));Intro;Cut (INR O)==R0;
@@ -1584,4 +1584,5 @@ Qed.
Lemma add_auto : (p,q:nat) ``(INR2 (S p))+(INR2 q)==(INR2 p)+(INR2 (S q))``.
Intros; Repeat Rewrite <- INR_eq_INR2; Repeat Rewrite S_INR; Ring.
-Qed. \ No newline at end of file
+Qed.
+
diff --git a/theories/Reals/Rfunctions.v b/theories/Reals/Rfunctions.v
index 7bb1236adb..e0e04d8224 100644
--- a/theories/Reals/Rfunctions.v
+++ b/theories/Reals/Rfunctions.v
@@ -40,7 +40,7 @@ Cut ~(plus n0 (1))=O.
Intro;Apply H;Assumption.
Replace (plus n0 (1)) with (S n0);[Auto|Ring].
Intros;Ring.
-Double Induction 1 2;Simpl;Auto.
+Double Induction n m;Simpl;Auto.
Qed.
(*********)
diff --git a/theories/Reals/Rseries.v b/theories/Reals/Rseries.v
index c88cdfaf20..68e77d5289 100644
--- a/theories/Reals/Rseries.v
+++ b/theories/Reals/Rseries.v
@@ -64,7 +64,7 @@ Qed.
(*********)
Lemma growing_prop:(n,m:nat)Un_growing->(ge n m)->(Rge (Un n) (Un m)).
-Double Induction 1 2;Intros.
+Double Induction n m;Intros.
Unfold Rge;Right;Trivial.
ElimType False;Unfold ge in H1;Generalize (le_Sn_O n0);Intro;Auto.
Cut (ge n0 (0)).
diff --git a/theories/Reals/Rsyntax.v b/theories/Reals/Rsyntax.v
index dcd8f941ce..4f0dc8c73c 100644
--- a/theories/Reals/Rsyntax.v
+++ b/theories/Reals/Rsyntax.v
@@ -61,7 +61,7 @@ with rexpr0 : constr :=
with meta : ast :=
| rimpl [ "?" ] -> [ (ISEVAR) ]
-| rmeta [ "?" prim:number($n) ] -> [ (META $n) ]
+| rmeta [ "?" prim:numarg($n) ] -> [ (META $n) ]
with rapplication : constr :=
apply [ rapplication($p) rexpr($c1) ] -> [ ($p $c1) ]