diff options
| author | herbelin | 2002-05-29 10:59:30 +0000 |
|---|---|---|
| committer | herbelin | 2002-05-29 10:59:30 +0000 |
| commit | 7a05a712afb145bd8c41ad88dcabffbbd4fe0cf1 (patch) | |
| tree | 96da6366bba630dd2c2d76d7d17cb3c4dca94b57 | |
| parent | 0e32f3e1b0e8d5ea00d0495df691797eb7379a4e (diff) | |
Double Induction prend maintenant des noms d'hyppthèses
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@2729 85f007b7-540e-0410-9357-904b9bb8a0f7
| -rwxr-xr-x | theories/Arith/EqNat.v | 2 | ||||
| -rw-r--r-- | theories/Reals/Rbase.v | 5 | ||||
| -rw-r--r-- | theories/Reals/Rfunctions.v | 2 | ||||
| -rw-r--r-- | theories/Reals/Rseries.v | 2 | ||||
| -rw-r--r-- | theories/Reals/Rsyntax.v | 2 |
5 files changed, 7 insertions, 6 deletions
diff --git a/theories/Arith/EqNat.v b/theories/Arith/EqNat.v index 587351c375..b4a232e204 100755 --- a/theories/Arith/EqNat.v +++ b/theories/Arith/EqNat.v @@ -64,7 +64,7 @@ Qed. Definition beq_nat_eq : (x,y:nat)true=(beq_nat x y)->x=y. Proof. - Double Induction 1 2; Simpl. + Double Induction x y; Simpl. Reflexivity. Intros; Discriminate H0. Intros; Discriminate H0. diff --git a/theories/Reals/Rbase.v b/theories/Reals/Rbase.v index fd243969bc..d21fde297f 100644 --- a/theories/Reals/Rbase.v +++ b/theories/Reals/Rbase.v @@ -1211,7 +1211,7 @@ Qed. Hints Resolve pos_INR: real. Lemma INR_lt:(n,m:nat)``(INR n) < (INR m)``->(lt n m). -Double Induction 1 2;Intros. +Double Induction n m;Intros. Simpl;ElimType False;Apply (Rlt_antirefl R0);Auto. Auto with arith. Generalize (pos_INR (S n0));Intro;Cut (INR O)==R0; @@ -1584,4 +1584,5 @@ Qed. Lemma add_auto : (p,q:nat) ``(INR2 (S p))+(INR2 q)==(INR2 p)+(INR2 (S q))``. Intros; Repeat Rewrite <- INR_eq_INR2; Repeat Rewrite S_INR; Ring. -Qed.
\ No newline at end of file +Qed. + diff --git a/theories/Reals/Rfunctions.v b/theories/Reals/Rfunctions.v index 7bb1236adb..e0e04d8224 100644 --- a/theories/Reals/Rfunctions.v +++ b/theories/Reals/Rfunctions.v @@ -40,7 +40,7 @@ Cut ~(plus n0 (1))=O. Intro;Apply H;Assumption. Replace (plus n0 (1)) with (S n0);[Auto|Ring]. Intros;Ring. -Double Induction 1 2;Simpl;Auto. +Double Induction n m;Simpl;Auto. Qed. (*********) diff --git a/theories/Reals/Rseries.v b/theories/Reals/Rseries.v index c88cdfaf20..68e77d5289 100644 --- a/theories/Reals/Rseries.v +++ b/theories/Reals/Rseries.v @@ -64,7 +64,7 @@ Qed. (*********) Lemma growing_prop:(n,m:nat)Un_growing->(ge n m)->(Rge (Un n) (Un m)). -Double Induction 1 2;Intros. +Double Induction n m;Intros. Unfold Rge;Right;Trivial. ElimType False;Unfold ge in H1;Generalize (le_Sn_O n0);Intro;Auto. Cut (ge n0 (0)). diff --git a/theories/Reals/Rsyntax.v b/theories/Reals/Rsyntax.v index dcd8f941ce..4f0dc8c73c 100644 --- a/theories/Reals/Rsyntax.v +++ b/theories/Reals/Rsyntax.v @@ -61,7 +61,7 @@ with rexpr0 : constr := with meta : ast := | rimpl [ "?" ] -> [ (ISEVAR) ] -| rmeta [ "?" prim:number($n) ] -> [ (META $n) ] +| rmeta [ "?" prim:numarg($n) ] -> [ (META $n) ] with rapplication : constr := apply [ rapplication($p) rexpr($c1) ] -> [ ($p $c1) ] |
