aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorOlivier Laurent2019-10-30 19:40:41 +0100
committerOlivier Laurent2019-12-06 14:34:30 +0100
commit791c9b2ca37c8086028ee2ffce645497fea024e8 (patch)
treee58ed2050788b0376263c0d647993db08e3fd4d4
parent235ea69cefe18c4aeffa8443b55208662dbe38d3 (diff)
integration of statements for seq
-rw-r--r--theories/Lists/List.v13
1 files changed, 13 insertions, 0 deletions
diff --git a/theories/Lists/List.v b/theories/Lists/List.v
index fae766d6b9..3e681b7d05 100644
--- a/theories/Lists/List.v
+++ b/theories/Lists/List.v
@@ -2286,6 +2286,11 @@ Section NatSeq.
| S len => start :: seq (S start) len
end.
+ Lemma cons_seq : forall len start, start :: seq (S start) len = seq start (S len).
+ Proof.
+ reflexivity.
+ Qed.
+
Lemma seq_length : forall len start, length (seq start len) = len.
Proof.
induction len; simpl; auto.
@@ -2336,6 +2341,14 @@ Section NatSeq.
- now rewrite Nat.add_succ_r, IHlen.
Qed.
+ Lemma seq_S : forall len start, seq start (S len) = seq start len ++ [start + len].
+ Proof.
+ intros len start.
+ change [start + len] with (seq (start + len) 1).
+ rewrite <- seq_app.
+ rewrite <- plus_n_Sm, <- plus_n_O; reflexivity.
+ Qed.
+
End NatSeq.
Section Exists_Forall.