diff options
| author | letouzey | 2006-06-25 22:17:49 +0000 |
|---|---|---|
| committer | letouzey | 2006-06-25 22:17:49 +0000 |
| commit | 776c325e9599cfe88e498df444aabc9aef75d465 (patch) | |
| tree | 434988d935eaab866d15211ca5c529e4ffa21240 | |
| parent | 46ad1d27adae081e07b9d463fafd88c33dc01bb7 (diff) | |
nouvel algorithme pour Zgcd (plus rapide) + un Qcompare
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@8989 85f007b7-540e-0410-9357-904b9bb8a0f7
| -rw-r--r-- | .depend.coq | 53 | ||||
| -rw-r--r-- | Makefile | 2 | ||||
| -rw-r--r-- | theories/QArith/QArith_base.v | 60 | ||||
| -rw-r--r-- | theories/QArith/Qcanon.v | 526 | ||||
| -rw-r--r-- | theories/QArith/Qreduction.v | 109 | ||||
| -rw-r--r-- | theories/ZArith/Znumtheory.v | 879 |
6 files changed, 975 insertions, 654 deletions
diff --git a/.depend.coq b/.depend.coq index 949cc501cb..17de70f707 100644 --- a/.depend.coq +++ b/.depend.coq @@ -180,7 +180,7 @@ theories/ZArith/Zwf.vo: theories/ZArith/Zwf.v theories/ZArith/ZArith_base.vo the theories/ZArith/ZArith_base.vo: theories/ZArith/ZArith_base.v theories/NArith/BinPos.vo theories/NArith/BinNat.vo theories/ZArith/BinInt.vo theories/ZArith/Zcompare.vo theories/ZArith/Zorder.vo theories/ZArith/Zeven.vo theories/ZArith/Zmin.vo theories/ZArith/Zmax.vo theories/ZArith/Zminmax.vo theories/ZArith/Zabs.vo theories/ZArith/Znat.vo theories/ZArith/auxiliary.vo theories/ZArith/ZArith_dec.vo theories/ZArith/Zbool.vo theories/ZArith/Zmisc.vo theories/ZArith/Wf_Z.vo theories/ZArith/Zhints.vo theories/ZArith/Zbool.vo: theories/ZArith/Zbool.v theories/ZArith/BinInt.vo theories/ZArith/Zeven.vo theories/ZArith/Zorder.vo theories/ZArith/Zcompare.vo theories/ZArith/ZArith_dec.vo theories/Bool/Sumbool.vo theories/ZArith/Zbinary.vo: theories/ZArith/Zbinary.v theories/Bool/Bvector.vo theories/ZArith/ZArith.vo theories/ZArith/Zpower.vo contrib/omega/Omega.vo -theories/ZArith/Znumtheory.vo: theories/ZArith/Znumtheory.v theories/ZArith/ZArith_base.vo contrib/ring/ZArithRing.vo theories/ZArith/Zcomplements.vo theories/ZArith/Zdiv.vo +theories/ZArith/Znumtheory.vo: theories/ZArith/Znumtheory.v theories/ZArith/ZArith_base.vo contrib/ring/ZArithRing.vo theories/ZArith/Zcomplements.vo theories/ZArith/Zdiv.vo theories/NArith/Ndigits.vo theories/Arith/Wf_nat.vo theories/ZArith/Int.vo: theories/ZArith/Int.v theories/ZArith/ZArith.vo contrib/romega/ROmega.vo theories/Setoids/Setoid.vo: theories/Setoids/Setoid.v theories/Relations/Relation_Definitions.vo theories/Lists/MonoList.vo: theories/Lists/MonoList.v theories/Arith/Le.vo @@ -274,54 +274,6 @@ theories/Reals/Raxioms.vo: theories/Reals/Raxioms.v theories/ZArith/ZArith_base. theories/Reals/RIneq.vo: theories/Reals/RIneq.v theories/Reals/Raxioms.vo contrib/ring/ZArithRing.vo contrib/omega/Omega.vo contrib/field/Field.vo theories/Reals/DiscrR.vo: theories/Reals/DiscrR.v theories/Reals/RIneq.vo contrib/omega/Omega.vo theories/Reals/Rbase.vo: theories/Reals/Rbase.v theories/Reals/Rdefinitions.vo theories/Reals/Raxioms.vo theories/Reals/RIneq.vo theories/Reals/DiscrR.vo -theories/Reals/R_Ifp.vo: theories/Reals/R_Ifp.v theories/Reals/Rbase.vo contrib/omega/Omega.vo -theories/Reals/Rbasic_fun.vo: theories/Reals/Rbasic_fun.v theories/Reals/Rbase.vo theories/Reals/R_Ifp.vo contrib/fourier/Fourier.vo -theories/Reals/R_sqr.vo: theories/Reals/R_sqr.v theories/Reals/Rbase.vo theories/Reals/Rbasic_fun.vo -theories/Reals/SplitAbsolu.vo: theories/Reals/SplitAbsolu.v theories/Reals/Rbasic_fun.vo -theories/Reals/SplitRmult.vo: theories/Reals/SplitRmult.v theories/Reals/Rbase.vo -theories/Reals/ArithProp.vo: theories/Reals/ArithProp.v theories/Reals/Rbase.vo theories/Reals/Rbasic_fun.vo theories/Arith/Even.vo theories/Arith/Div2.vo -theories/Reals/Rfunctions.vo: theories/Reals/Rfunctions.v theories/Reals/Rbase.vo theories/Reals/R_Ifp.vo theories/Reals/Rbasic_fun.vo theories/Reals/R_sqr.vo theories/Reals/SplitAbsolu.vo theories/Reals/SplitRmult.vo theories/Reals/ArithProp.vo contrib/omega/Omega.vo theories/ZArith/Zpower.vo -theories/Reals/Rseries.vo: theories/Reals/Rseries.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Logic/Classical.vo theories/Arith/Compare.vo -theories/Reals/SeqProp.vo: theories/Reals/SeqProp.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Rseries.vo theories/Logic/Classical.vo theories/Arith/Max.vo -theories/Reals/Rcomplete.vo: theories/Reals/Rcomplete.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Rseries.vo theories/Reals/SeqProp.vo theories/Arith/Max.vo -theories/Reals/PartSum.vo: theories/Reals/PartSum.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Rseries.vo theories/Reals/Rcomplete.vo theories/Arith/Max.vo -theories/Reals/AltSeries.vo: theories/Reals/AltSeries.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Rseries.vo theories/Reals/SeqProp.vo theories/Reals/PartSum.vo theories/Arith/Max.vo -theories/Reals/Binomial.vo: theories/Reals/Binomial.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/PartSum.vo -theories/Reals/Rsigma.vo: theories/Reals/Rsigma.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Rseries.vo theories/Reals/PartSum.vo -theories/Reals/Rprod.vo: theories/Reals/Rprod.v theories/Arith/Compare.vo theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Rseries.vo theories/Reals/PartSum.vo theories/Reals/Binomial.vo -theories/Reals/Cauchy_prod.vo: theories/Reals/Cauchy_prod.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Rseries.vo theories/Reals/PartSum.vo -theories/Reals/Alembert.vo: theories/Reals/Alembert.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Rseries.vo theories/Reals/SeqProp.vo theories/Reals/PartSum.vo theories/Arith/Max.vo -theories/Reals/SeqSeries.vo: theories/Reals/SeqSeries.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Arith/Max.vo theories/Reals/Rseries.vo theories/Reals/SeqProp.vo theories/Reals/Rcomplete.vo theories/Reals/PartSum.vo theories/Reals/AltSeries.vo theories/Reals/Binomial.vo theories/Reals/Rsigma.vo theories/Reals/Rprod.vo theories/Reals/Cauchy_prod.vo theories/Reals/Alembert.vo -theories/Reals/Rtrigo_fun.vo: theories/Reals/Rtrigo_fun.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo -theories/Reals/Rtrigo_def.vo: theories/Reals/Rtrigo_def.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Rtrigo_fun.vo theories/Arith/Max.vo -theories/Reals/Rtrigo_alt.vo: theories/Reals/Rtrigo_alt.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Rtrigo_def.vo -theories/Reals/Cos_rel.vo: theories/Reals/Cos_rel.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Rtrigo_def.vo -theories/Reals/Cos_plus.vo: theories/Reals/Cos_plus.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Rtrigo_def.vo theories/Reals/Cos_rel.vo theories/Arith/Max.vo -theories/Reals/Rtrigo.vo: theories/Reals/Rtrigo.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Rtrigo_fun.vo theories/Reals/Rtrigo_def.vo theories/Reals/Rtrigo_alt.vo theories/Reals/Cos_rel.vo theories/Reals/Cos_plus.vo theories/ZArith/ZArith_base.vo theories/ZArith/Zcomplements.vo theories/Logic/Classical_Prop.vo -theories/Reals/Rlimit.vo: theories/Reals/Rlimit.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Logic/Classical_Prop.vo contrib/fourier/Fourier.vo -theories/Reals/Rderiv.vo: theories/Reals/Rderiv.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Rlimit.vo contrib/fourier/Fourier.vo theories/Logic/Classical_Prop.vo theories/Logic/Classical_Pred_Type.vo contrib/omega/Omega.vo -theories/Reals/RList.vo: theories/Reals/RList.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo -theories/Reals/Ranalysis1.vo: theories/Reals/Ranalysis1.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Rlimit.vo theories/Reals/Rderiv.vo -theories/Reals/Ranalysis2.vo: theories/Reals/Ranalysis2.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Ranalysis1.vo -theories/Reals/Ranalysis3.vo: theories/Reals/Ranalysis3.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Ranalysis1.vo theories/Reals/Ranalysis2.vo -theories/Reals/Rtopology.vo: theories/Reals/Rtopology.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Ranalysis1.vo theories/Reals/RList.vo theories/Logic/Classical_Prop.vo theories/Logic/Classical_Pred_Type.vo -theories/Reals/MVT.vo: theories/Reals/MVT.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Ranalysis1.vo theories/Reals/Rtopology.vo -theories/Reals/PSeries_reg.vo: theories/Reals/PSeries_reg.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Ranalysis1.vo theories/Arith/Max.vo theories/Arith/Even.vo -theories/Reals/Exp_prop.vo: theories/Reals/Exp_prop.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Rtrigo.vo theories/Reals/Ranalysis1.vo theories/Reals/PSeries_reg.vo theories/Arith/Div2.vo theories/Arith/Even.vo theories/Arith/Max.vo -theories/Reals/Rtrigo_reg.vo: theories/Reals/Rtrigo_reg.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Rtrigo.vo theories/Reals/Ranalysis1.vo theories/Reals/PSeries_reg.vo -theories/Reals/Rsqrt_def.vo: theories/Reals/Rsqrt_def.v theories/Bool/Sumbool.vo theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Ranalysis1.vo -theories/Reals/R_sqrt.vo: theories/Reals/R_sqrt.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Rsqrt_def.vo -theories/Reals/Rtrigo_calc.vo: theories/Reals/Rtrigo_calc.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Rtrigo.vo theories/Reals/R_sqrt.vo -theories/Reals/Rgeom.vo: theories/Reals/Rgeom.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Rtrigo.vo theories/Reals/R_sqrt.vo -theories/Reals/Sqrt_reg.vo: theories/Reals/Sqrt_reg.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Ranalysis1.vo theories/Reals/R_sqrt.vo -theories/Reals/Ranalysis4.vo: theories/Reals/Ranalysis4.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Rtrigo.vo theories/Reals/Ranalysis1.vo theories/Reals/Ranalysis3.vo theories/Reals/Exp_prop.vo -theories/Reals/Rpower.vo: theories/Reals/Rpower.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Rtrigo.vo theories/Reals/Ranalysis1.vo theories/Reals/Exp_prop.vo theories/Reals/Rsqrt_def.vo theories/Reals/R_sqrt.vo theories/Reals/MVT.vo theories/Reals/Ranalysis4.vo -theories/Reals/Ranalysis.vo: theories/Reals/Ranalysis.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Rtrigo.vo theories/Reals/SeqSeries.vo theories/Reals/Ranalysis1.vo theories/Reals/Ranalysis2.vo theories/Reals/Ranalysis3.vo theories/Reals/Rtopology.vo theories/Reals/MVT.vo theories/Reals/PSeries_reg.vo theories/Reals/Exp_prop.vo theories/Reals/Rtrigo_reg.vo theories/Reals/Rsqrt_def.vo theories/Reals/R_sqrt.vo theories/Reals/Rtrigo_calc.vo theories/Reals/Rgeom.vo theories/Reals/RList.vo theories/Reals/Sqrt_reg.vo theories/Reals/Ranalysis4.vo theories/Reals/Rpower.vo -theories/Reals/NewtonInt.vo: theories/Reals/NewtonInt.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Rtrigo.vo theories/Reals/Ranalysis.vo -theories/Reals/RiemannInt_SF.vo: theories/Reals/RiemannInt_SF.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/Ranalysis.vo theories/Logic/Classical_Prop.vo -theories/Reals/RiemannInt.vo: theories/Reals/RiemannInt.v theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Ranalysis.vo theories/Reals/Rbase.vo theories/Reals/RiemannInt_SF.vo theories/Logic/Classical_Prop.vo theories/Logic/Classical_Pred_Type.vo theories/Arith/Max.vo -theories/Reals/Integration.vo: theories/Reals/Integration.v theories/Reals/NewtonInt.vo theories/Reals/RiemannInt_SF.vo theories/Reals/RiemannInt.vo -theories/Reals/Reals.vo: theories/Reals/Reals.v theories/Reals/Rbase.vo theories/Reals/Rfunctions.vo theories/Reals/SeqSeries.vo theories/Reals/Rtrigo.vo theories/Reals/Ranalysis.vo theories/Reals/Integration.vo theories/Sorting/Heap.vo: theories/Sorting/Heap.v theories/Lists/List.vo theories/Sets/Multiset.vo theories/Sorting/Permutation.vo theories/Relations/Relations.vo theories/Sorting/Sorting.vo theories/Sorting/Permutation.vo: theories/Sorting/Permutation.v theories/Relations/Relations.vo theories/Lists/List.vo theories/Sets/Multiset.vo theories/Arith/Arith.vo theories/Sorting/Sorting.vo: theories/Sorting/Sorting.v theories/Lists/List.vo theories/Sets/Multiset.vo theories/Sorting/Permutation.vo theories/Relations/Relations.vo @@ -332,6 +284,7 @@ theories/QArith/Qreduction.vo: theories/QArith/Qreduction.v theories/QArith/QAri theories/QArith/Qring.vo: theories/QArith/Qring.v contrib/ring/Ring.vo contrib/ring/Setoid_ring.vo theories/QArith/QArith_base.vo theories/QArith/Qreals.vo: theories/QArith/Qreals.v theories/Reals/Rbase.vo theories/QArith/QArith_base.vo theories/QArith/QArith.vo: theories/QArith/QArith.v theories/QArith/QArith_base.vo theories/QArith/Qring.vo theories/QArith/Qreduction.vo +theories/QArith/Qcanon.vo: theories/QArith/Qcanon.v theories/QArith/QArith.vo theories/Logic/Eqdep_dec.vo contrib/field/Field.vo contrib/omega/OmegaLemmas.vo: contrib/omega/OmegaLemmas.v theories/ZArith/ZArith_base.vo contrib/omega/Omega.vo: contrib/omega/Omega.v theories/ZArith/ZArith_base.vo contrib/omega/OmegaLemmas.vo theories/ZArith/Zhints.vo contrib/romega/ReflOmegaCore.vo: contrib/romega/ReflOmegaCore.v theories/Arith/Arith.vo theories/Lists/List.vo theories/Bool/Bool.vo theories/ZArith/ZArith_base.vo contrib/omega/OmegaLemmas.vo theories/Logic/Decidable.vo @@ -353,7 +306,7 @@ contrib/field/Field_Tactic.vo: contrib/field/Field_Tactic.v theories/Lists/List. contrib/field/Field.vo: contrib/field/Field.v contrib/field/Field_Compl.vo contrib/field/Field_Theory.vo contrib/field/Field_Tactic.vo contrib/fourier/Fourier_util.vo: contrib/fourier/Fourier_util.v theories/Reals/Rbase.vo contrib/fourier/Fourier.vo: contrib/fourier/Fourier.v contrib/ring/quote.cmo contrib/ring/ring.cmo contrib/fourier/fourier.cmo contrib/fourier/fourierR.cmo contrib/field/field.cmo contrib/fourier/Fourier_util.vo contrib/field/Field.vo theories/Reals/DiscrR.vo -contrib/subtac/FixSub.vo: contrib/subtac/FixSub.v theories/Init/Wf.vo +contrib/subtac/FixSub.vo: contrib/subtac/FixSub.v theories/Init/Wf.vo theories/Arith/Wf_nat.vo theories/Arith/Lt.vo contrib/subtac/Utils.vo: contrib/subtac/Utils.v contrib/rtauto/Bintree.vo: contrib/rtauto/Bintree.v theories/Lists/List.vo theories/NArith/BinPos.vo contrib/rtauto/Rtauto.vo: contrib/rtauto/Rtauto.v theories/Lists/List.vo contrib/rtauto/Bintree.vo theories/Bool/Bool.vo theories/NArith/BinPos.vo @@ -874,7 +874,7 @@ ZARITHVO=\ QARITHVO=\ theories/QArith/QArith_base.vo theories/QArith/Qreduction.vo \ theories/QArith/Qring.vo theories/QArith/Qreals.vo \ - theories/QArith/QArith.vo + theories/QArith/QArith.vo theories/QArith/Qcanon.vo LISTSVO=\ theories/Lists/MonoList.vo \ diff --git a/theories/QArith/QArith_base.v b/theories/QArith/QArith_base.v index 3b01b83d97..4354b5f95c 100644 --- a/theories/QArith/QArith_base.v +++ b/theories/QArith/QArith_base.v @@ -43,12 +43,48 @@ Notation Qge := (fun x y : Q => Qle y x). Infix "==" := Qeq (at level 70, no associativity) : Q_scope. Infix "<" := Qlt : Q_scope. +Infix ">" := Qgt : Q_scope. Infix "<=" := Qle : Q_scope. -Infix ">" := Qgt : Q_scope. -Infix ">=" := Qge : Q_scope. +Infix ">=" := Qge : Q_scope. Notation "x <= y <= z" := (x<=y/\y<=z) : Q_scope. -Hint Unfold Qeq Qle Qlt: qarith. +(** Another approach : using Qcompare for defining order relations. *) + +Definition Qcompare (p q : Q) := (Qnum p * QDen q ?= Qnum q * QDen p)%Z. +Notation "p ?= q" := (Qcompare p q) : Q_scope. + +Lemma Qeq_alt : forall p q, (p == q) <-> (p ?= q) = Eq. +Proof. +unfold Qeq, Qcompare; intros; split; intros. +rewrite H; apply Zcompare_refl. +apply Zcompare_Eq_eq; auto. +Qed. + +Lemma Qlt_alt : forall p q, (p<q) <-> (p?=q = Lt). +Proof. +unfold Qlt, Qcompare, Zlt; split; auto. +Qed. + +Lemma Qgt_alt : forall p q, (p>q) <-> (p?=q = Gt). +Proof. +unfold Qlt, Qcompare, Zlt. +intros; rewrite Zcompare_Gt_Lt_antisym; split; auto. +Qed. + +Lemma Qle_alt : forall p q, (p<=q) <-> (p?=q <> Gt). +Proof. +unfold Qle, Qcompare, Zle; split; auto. +Qed. + +Lemma Qge_alt : forall p q, (p>=q) <-> (p?=q <> Lt). +Proof. +unfold Qle, Qcompare, Zle. +split; intros; swap H. +rewrite Zcompare_Gt_Lt_antisym; auto. +rewrite Zcompare_Gt_Lt_antisym in H0; auto. +Qed. + +Hint Unfold Qeq Qlt Qle: qarith. Hint Extern 5 (?X1 <> ?X2) => intro; discriminate: qarith. (** Properties of equality. *) @@ -236,6 +272,24 @@ apply Zmult_gt_0_lt_compat_l; auto with zarith. Open Scope Q_scope. Qed. + +Lemma Qcompare_egal_dec: forall n m p q : Q, + (n<m -> p<q) -> (n==m -> p==q) -> (n>m -> p>q) -> ((n?=m) = (p?=q)). +Proof. +intros. +do 2 rewrite Qeq_alt in H0. +unfold Qeq, Qlt, Qcompare in *. +apply Zcompare_egal_dec; auto. +omega. +Qed. + + +Add Morphism Qcompare : Qcompare_comp. +Proof. +intros; apply Qcompare_egal_dec; rewrite H; rewrite H0; auto. +Qed. + + (** [0] and [1] are apart *) Lemma Q_apart_0_1 : ~ 1 == 0. diff --git a/theories/QArith/Qcanon.v b/theories/QArith/Qcanon.v new file mode 100644 index 0000000000..bc87e05d3c --- /dev/null +++ b/theories/QArith/Qcanon.v @@ -0,0 +1,526 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id$ i*) + +Require Import QArith. +Require Import Eqdep_dec. + +(** [Qc] : A canonical representation of rational numbers. + based on the setoid representation [Q]. *) + +Record Qc : Set := Qcmake { this :> Q ; canon : Qred this = this }. + +Delimit Scope Qc_scope with Qc. +Bind Scope Qc_scope with Qc. +Arguments Scope Qcmake [Q_scope]. +Open Scope Qc_scope. + +Lemma Qred_identity : + forall q:Q, Zgcd (Qnum q) (QDen q) = 1%Z -> Qred q = q. +Proof. +unfold Qred; intros (a,b); simpl. +generalize (Zggcd_gcd a ('b)) (Zggcd_correct_divisors a ('b)). +intros. +rewrite H1 in H; clear H1. +destruct (Zggcd a ('b)) as (g,(aa,bb)); simpl in *; subst. +destruct H0. +rewrite Zmult_1_l in H, H0. +subst; simpl; auto. +Qed. + +Lemma Qred_identity2 : + forall q:Q, Qred q = q -> Zgcd (Qnum q) (QDen q) = 1%Z. +Proof. +unfold Qred; intros (a,b); simpl. +generalize (Zggcd_gcd a ('b)) (Zggcd_correct_divisors a ('b)) (Zgcd_is_pos a ('b)). +intros. +rewrite <- H; rewrite <- H in H1; clear H. +destruct (Zggcd a ('b)) as (g,(aa,bb)); simpl in *; subst. +injection H2; intros; clear H2. +destruct H0. +clear H0 H3. +destruct g as [|g|g]; destruct bb as [|bb|bb]; simpl in *; try discriminate. +f_equal. +apply Pmult_reg_r with bb. +injection H2; intros. +rewrite <- H0. +rewrite H; simpl; auto. +elim H1; auto. +Qed. + +Lemma Qred_iff : forall q:Q, Qred q = q <-> Zgcd (Qnum q) (QDen q) = 1%Z. +Proof. +split; intros. +apply Qred_identity2; auto. +apply Qred_identity; auto. +Qed. + + +Lemma Qred_involutive : forall q:Q, Qred (Qred q) = Qred q. +Proof. +intros; apply Qred_complete. +apply Qred_correct. +Qed. + +Definition Q2Qc (q:Q) : Qc := Qcmake (Qred q) (Qred_involutive q). +Arguments Scope Q2Qc [Q_scope]. +Notation " !! " := Q2Qc : Qc_scope. + +Lemma Qc_is_canon : forall q q' : Qc, q == q' -> q = q'. +Proof. +intros (q,proof_q) (q',proof_q'). +simpl. +intros H. +assert (H0:=Qred_complete _ _ H). +assert (q = q') by congruence. +subst q'. +assert (proof_q = proof_q'). + apply eq_proofs_unicity; auto; intros. + repeat decide equality. +congruence. +Qed. +Hint Resolve Qc_is_canon. + +Notation " 0 " := (!!0) : Qc_scope. +Notation " 1 " := (!!1) : Qc_scope. + +Definition Qcle (x y : Qc) := (x <= y)%Q. +Definition Qclt (x y : Qc) := (x < y)%Q. +Notation Qcgt := (fun x y : Qc => Qlt y x). +Notation Qcge := (fun x y : Qc => Qle y x). +Infix "<" := Qclt : Qc_scope. +Infix "<=" := Qcle : Qc_scope. +Infix ">" := Qcgt : Qc_scope. +Infix ">=" := Qcge : Qc_scope. +Notation "x <= y <= z" := (x<=y/\y<=z) : Qc_scope. + +Definition Qccompare (p q : Qc) := (Qcompare p q). +Notation "p ?= q" := (Qccompare p q) : Qc_scope. + +Lemma Qceq_alt : forall p q, (p = q) <-> (p ?= q) = Eq. +Proof. +unfold Qccompare. +intros; rewrite <- Qeq_alt. +split; auto. +intro H; rewrite H; auto with qarith. +Qed. + +Lemma Qclt_alt : forall p q, (p<q) <-> (p?=q = Lt). +Proof. +intros; exact (Qlt_alt p q). +Qed. + +Lemma Qcgt_alt : forall p q, (p>q) <-> (p?=q = Gt). +Proof. +intros; exact (Qgt_alt p q). +Qed. + +Lemma Qle_alt : forall p q, (p<=q) <-> (p?=q <> Gt). +Proof. +intros; exact (Qle_alt p q). +Qed. + +Lemma Qge_alt : forall p q, (p>=q) <-> (p?=q <> Lt). +Proof. +intros; exact (Qge_alt p q). +Qed. + +(** equality on [Qc] is decidable: *) + +Theorem Qc_eq_dec : forall x y:Qc, {x=y} + {x<>y}. +Proof. + intros. + destruct (Qeq_dec x y) as [H|H]; auto. + right; swap H; subst; auto with qarith. +Defined. + +(** The addition, multiplication and opposite are defined + in the straightforward way: *) + +Definition Qcplus (x y : Qc) := !!(x+y). +Infix "+" := Qcplus : Qc_scope. +Definition Qcmult (x y : Qc) := !!(x*y). +Infix "*" := Qcmult : Qc_scope. +Definition Qcopp (x : Qc) := !!(-x). +Notation "- x" := (Qcopp x) : Qc_scope. +Definition Qcminus (x y : Qc) := x+-y. +Infix "-" := Qcminus : Qc_scope. +Definition Qcinv (x : Qc) := !!(/x). +Notation "/ x" := (Qcinv x) : Qc_scope. +Definition Qcdiv (x y : Qc) := x*/y. +Infix "/" := Qcdiv : Qc_scope. + +(** [0] and [1] are apart *) + +Lemma Q_apart_0_1 : 1 <> 0. +Proof. + unfold Q2Qc. + intros H; discriminate H. +Qed. + +Ltac qc := match goal with + | q:Qc |- _ => destruct q; qc + | _ => apply Qc_is_canon; simpl; repeat rewrite Qred_correct +end. + +Opaque Qred. + +(** Addition is associative: *) + +Theorem Qcplus_assoc : forall x y z, x+(y+z)=(x+y)+z. +Proof. + intros; qc; apply Qplus_assoc. +Qed. + +(** [0] is a neutral element for addition: *) + +Lemma Qcplus_0_l : forall x, 0+x = x. +Proof. + intros; qc; apply Qplus_0_l. +Qed. + +Lemma Qcplus_0_r : forall x, x+0 = x. +Proof. + intros; qc; apply Qplus_0_r. +Qed. + +(** Commutativity of addition: *) + +Theorem Qcplus_comm : forall x y, x+y = y+x. +Proof. + intros; qc; apply Qplus_comm. +Qed. + +(** Properties of [Qopp] *) + +Lemma Qcopp_involutive : forall q, - -q = q. +Proof. + intros; qc; apply Qopp_involutive. +Qed. + +Theorem Qcplus_opp_r : forall q, q+(-q) = 0. +Proof. + intros; qc; apply Qplus_opp_r. +Qed. + +(** Multiplication is associative: *) + +Theorem Qcmult_assoc : forall n m p, n*(m*p)=(n*m)*p. +Proof. + intros; qc; apply Qmult_assoc. +Qed. + +(** [1] is a neutral element for multiplication: *) + +Lemma Qcmult_1_l : forall n, 1*n = n. +Proof. + intros; qc; apply Qmult_1_l. +Qed. + +Theorem Qcmult_1_r : forall n, n*1=n. +Proof. + intros; qc; apply Qmult_1_r. +Qed. + +(** Commutativity of multiplication *) + +Theorem Qcmult_comm : forall x y, x*y=y*x. +Proof. + intros; qc; apply Qmult_comm. +Qed. + +(** Distributivity *) + +Theorem Qcmult_plus_distr_r : forall x y z, x*(y+z)=(x*y)+(x*z). +Proof. + intros; qc; apply Qmult_plus_distr_r. +Qed. + +Theorem Qcmult_plus_distr_l : forall x y z, (x+y)*z=(x*z)+(y*z). +Proof. + intros; qc; apply Qmult_plus_distr_l. +Qed. + +(** Integrality *) + +Theorem Qcmult_integral : forall x y, x*y=0 -> x=0 \/ y=0. +Proof. + intros. + destruct (Qmult_integral x y); try qc; auto. + injection H; clear H; intros. + rewrite <- (Qred_correct (x*y)). + rewrite <- (Qred_correct 0). + rewrite H; auto with qarith. +Qed. + +Theorem Qcmult_integral_l : forall x y, ~ x = 0 -> x*y = 0 -> y = 0. +Proof. + intros; destruct (Qcmult_integral _ _ H0); tauto. +Qed. + +(** Inverse and division. *) + +Theorem Qcmult_inv_r : forall x, x<>0 -> x*(/x) = 1. +Proof. + intros; qc; apply Qmult_inv_r; auto. +Qed. + +Theorem Qcmult_inv_l : forall x, x<>0 -> (/x)*x = 1. +Proof. + intros. + rewrite Qcmult_comm. + apply Qcmult_inv_r; auto. +Qed. + +Lemma Qcinv_mult_distr : forall p q, / (p * q) = /p * /q. +Proof. + intros; qc; apply Qinv_mult_distr. +Qed. + +Theorem Qcdiv_mult_l : forall x y, y<>0 -> (x*y)/y = x. +Proof. + unfold Qcdiv. + intros. + rewrite <- Qcmult_assoc. + rewrite Qcmult_inv_r; auto. + apply Qcmult_1_r. +Qed. + +Theorem Qcmult_div_r : forall x y, ~ y = 0 -> y*(x/y) = x. +Proof. + unfold Qcdiv. + intros. + rewrite Qcmult_assoc. + rewrite Qcmult_comm. + rewrite Qcmult_assoc. + rewrite Qcmult_inv_l; auto. + apply Qcmult_1_l. +Qed. + +(** Properties of order upon Q. *) + +Lemma Qcle_refl : forall x, x<=x. +Proof. +unfold Qcle; intros; simpl; apply Qle_refl. +Qed. + +Lemma Qcle_antisym : forall x y, x<=y -> y<=x -> x=y. +Proof. +unfold Qcle; intros; simpl in *. +apply Qc_is_canon; apply Qle_antisym; auto. +Qed. + +Lemma Qcle_trans : forall x y z, x<=y -> y<=z -> x<=z. +Proof. +unfold Qcle; intros; eapply Qle_trans; eauto. +Qed. + +Lemma Qclt_not_eq : forall x y, x<y -> x<>y. +Proof. +unfold Qclt; intros; simpl in *. +intro; destruct (Qlt_not_eq _ _ H). +subst; auto with qarith. +Qed. + +(** Large = strict or equal *) + +Lemma Qclt_le_weak : forall x y, x<y -> x<=y. +Proof. +unfold Qcle, Qclt; intros; apply Qlt_le_weak; auto. +Qed. + +Lemma Qcle_lt_trans : forall x y z, x<=y -> y<z -> x<z. +Proof. +unfold Qcle, Qclt; intros; eapply Qle_lt_trans; eauto. +Qed. + +Lemma Qclt_le_trans : forall x y z, x<y -> y<=z -> x<z. +Proof. +unfold Qcle, Qclt; intros; eapply Qlt_le_trans; eauto. +Qed. + +Lemma Qlt_trans : forall x y z, x<y -> y<z -> x<z. +Proof. +unfold Qclt; intros; eapply Qlt_trans; eauto. +Qed. + +(** [x<y] iff [~(y<=x)] *) + +Lemma Qcnot_lt_le : forall x y, ~ x<y -> y<=x. +Proof. +unfold Qcle, Qclt; intros; apply Qnot_lt_le; auto. +Qed. + +Lemma Qcnot_le_lt : forall x y, ~ x<=y -> y<x. +Proof. +unfold Qcle, Qclt; intros; apply Qnot_le_lt; auto. +Qed. + +Lemma Qclt_not_le : forall x y, x<y -> ~ y<=x. +Proof. +unfold Qcle, Qclt; intros; apply Qlt_not_le; auto. +Qed. + +Lemma Qcle_not_lt : forall x y, x<=y -> ~ y<x. +Proof. +unfold Qcle, Qclt; intros; apply Qle_not_lt; auto. +Qed. + +Lemma Qcle_lt_or_eq : forall x y, x<=y -> x<y \/ x==y. +Proof. +unfold Qcle, Qclt; intros; apply Qle_lt_or_eq; auto. +Qed. + +(** Some decidability results about orders. *) + +Lemma Qc_dec : forall x y, {x<y} + {y<x} + {x=y}. +Proof. +unfold Qclt, Qcle; intros. +destruct (Q_dec x y) as [H|H]. +left; auto. +right; apply Qc_is_canon; auto. +Defined. + +Lemma Qclt_le_dec : forall x y, {x<y} + {y<=x}. +Proof. +unfold Qclt, Qcle; intros; apply Qlt_le_dec; auto. +Defined. + +(** Compatibility of operations with respect to order. *) + +Lemma Qcopp_le_compat : forall p q, p<=q -> -q <= -p. +Proof. +unfold Qcle, Qcopp; intros; simpl in *. +repeat rewrite Qred_correct. +apply Qopp_le_compat; auto. +Qed. + +Lemma Qcle_minus_iff : forall p q, p <= q <-> 0 <= q+-p. +Proof. +unfold Qcle, Qcminus; intros; simpl in *. +repeat rewrite Qred_correct. +apply Qle_minus_iff; auto. +Qed. + +Lemma Qclt_minus_iff : forall p q, p < q <-> 0 < q+-p. +Proof. +unfold Qclt, Qcplus, Qcopp; intros; simpl in *. +repeat rewrite Qred_correct. +apply Qlt_minus_iff; auto. +Qed. + +Lemma Qcplus_le_compat : + forall x y z t, x<=y -> z<=t -> x+z <= y+t. +Proof. +unfold Qcplus, Qcle; intros; simpl in *. +repeat rewrite Qred_correct. +apply Qplus_le_compat; auto. +Qed. + +Lemma Qcmult_le_compat_r : forall x y z, x <= y -> 0 <= z -> x*z <= y*z. +Proof. +unfold Qcmult, Qcle; intros; simpl in *. +repeat rewrite Qred_correct. +apply Qmult_le_compat_r; auto. +Qed. + +Lemma Qcmult_lt_0_le_reg_r : forall x y z, 0 < z -> x*z <= y*z -> x <= y. +Proof. +unfold Qcmult, Qcle, Qclt; intros; simpl in *. +repeat progress rewrite Qred_correct in * |-. +eapply Qmult_lt_0_le_reg_r; eauto. +Qed. + +Lemma Qcmult_lt_compat_r : forall x y z, 0 < z -> x < y -> x*z < y*z. +Proof. +unfold Qcmult, Qclt; intros; simpl in *. +repeat progress rewrite Qred_correct in *. +eapply Qmult_lt_compat_r; eauto. +Qed. + +(** Rational to the n-th power *) + +Fixpoint Qcpower (q:Qc)(n:nat) { struct n } : Qc := + match n with + | O => 1 + | S n => q * (Qcpower q n) + end. + +Notation " q ^ n " := (Qcpower q n) : Qc_scope. + +Lemma Qcpower_1 : forall n, 1^n = 1. +Proof. +induction n; simpl; auto with qarith. +rewrite IHn; auto with qarith. +Qed. + +Lemma Qcpower_0 : forall n, n<>O -> 0^n = 0. +Proof. +destruct n; simpl. +destruct 1; auto. +intros. +apply Qc_is_canon. +simpl. +compute; auto. +Qed. + +Lemma Qpower_pos : forall p n, 0 <= p -> 0 <= p^n. +Proof. +induction n; simpl; auto with qarith. +intros; compute; intro; discriminate. +intros. +apply Qcle_trans with (0*(p^n)). +compute; intro; discriminate. +apply Qcmult_le_compat_r; auto. +Qed. + +(** And now everything is easier concerning tactics: *) + +(** A ring tactic for rational numbers *) + +Definition Qc_eq_bool (x y : Qc) := + if Qc_eq_dec x y then true else false. + +Lemma Qc_eq_bool_correct : forall x y : Qc, Qc_eq_bool x y = true -> x=y. +intros x y; unfold Qc_eq_bool in |- *; case (Qc_eq_dec x y); simpl in |- *; auto. +intros _ H; inversion H. +Qed. + +Definition Qcrt : Ring_Theory Qcplus Qcmult 1 0 Qcopp Qc_eq_bool. +Proof. +constructor. +exact Qcplus_comm. +exact Qcplus_assoc. +exact Qcmult_comm. +exact Qcmult_assoc. +exact Qcplus_0_l. +exact Qcmult_1_l. +exact Qcplus_opp_r. +exact Qcmult_plus_distr_l. +unfold Is_true; intros x y; generalize (Qc_eq_bool_correct x y); + case (Qc_eq_bool x y); auto. +Qed. + +Add Ring Qc Qcplus Qcmult 1 0 Qcopp Qc_eq_bool Qcrt [ Qcmake ]. + +(** A field tactic for rational numbers *) + +Require Import Field. + +Add Field Qc Qcplus Qcmult 1 0 Qcopp Qc_eq_bool Qcinv Qcrt Qcmult_inv_l + with div:=Qcdiv. + +Example test_field : forall x y : Qc, y<>0 -> (x/y)*y = x. +intros. +field. +auto. +Qed. + + + diff --git a/theories/QArith/Qreduction.v b/theories/QArith/Qreduction.v index b818f744ff..41e0d9a456 100644 --- a/theories/QArith/Qreduction.v +++ b/theories/QArith/Qreduction.v @@ -32,65 +32,17 @@ Proof. simple destruct z; simpl in |- *; auto; intros; elim H; auto. Qed. -(** A simple cancelation by powers of two *) - -Fixpoint Pfactor_twos (p p':positive) {struct p} : (positive*positive) := - match p, p' with - | xO p, xO p' => Pfactor_twos p p' - | _, _ => (p,p') - end. - -Definition Qfactor_twos (q:Q) := - let (p,q) := q in - match p with - | Z0 => 0 - | Zpos p => let (p,q) := Pfactor_twos p q in (Zpos p)#q - | Zneg p => let (p,q) := Pfactor_twos p q in (Zneg p)#q - end. - -Lemma Pfactor_twos_correct : forall p p', - (p*(snd (Pfactor_twos p p')))%positive = - (p'*(fst (Pfactor_twos p p')))%positive. -Proof. -induction p; intros. -simpl snd; simpl fst; rewrite Pmult_comm; auto. -destruct p'. -simpl snd; simpl fst; rewrite Pmult_comm; auto. -simpl; f_equal; auto. -simpl snd; simpl fst; rewrite Pmult_comm; auto. -simpl snd; simpl fst; rewrite Pmult_comm; auto. -Qed. - -Lemma Qfactor_twos_correct : forall q, Qfactor_twos q == q. -Proof. -intros (p,q). -destruct p. -red; simpl; auto. -simpl. -generalize (Pfactor_twos_correct p q); destruct (Pfactor_twos p q). -red; simpl. -intros; f_equal. -rewrite H; apply Pmult_comm. -simpl. -generalize (Pfactor_twos_correct p q); destruct (Pfactor_twos p q). -red; simpl. -intros; f_equal. -rewrite H; apply Pmult_comm. -Qed. -Hint Resolve Qfactor_twos_correct. - (** Simplification of fractions using [Zgcd]. This version can compute within Coq. *) Definition Qred (q:Q) := - let (q1,q2) := Qfactor_twos q in - let (r1,r2) := snd (Zggcd q1 (Zpos q2)) in r1#(Z2P r2). + let (q1,q2) := q in + let (r1,r2) := snd (Zggcd q1 ('q2)) + in r1#(Z2P r2). Lemma Qred_correct : forall q, (Qred q) == q. Proof. -intros; apply Qeq_trans with (Qfactor_twos q); auto. -unfold Qred. -destruct (Qfactor_twos q) as (n,d); red; simpl. +unfold Qred, Qeq; intros (n,d); simpl. generalize (Zggcd_gcd n ('d)) (Zgcd_is_pos n ('d)) (Zgcd_is_gcd n ('d)) (Zggcd_correct_divisors n ('d)). destruct (Zggcd n (Zpos d)) as (g,(nn,dd)); simpl. @@ -112,16 +64,8 @@ Qed. Lemma Qred_complete : forall p q, p==q -> Qred p = Qred q. Proof. -intros. -assert (Qfactor_twos p == Qfactor_twos q). - apply Qeq_trans with p; auto. - apply Qeq_trans with q; auto. - symmetry; auto. -clear H. -unfold Qred. -destruct (Qfactor_twos p) as (a,b); -destruct (Qfactor_twos q) as (c,d); clear p q. -unfold Qeq in *; simpl in *. +intros (a,b) (c,d). +unfold Qred, Qeq in *; simpl in *. Open Scope Z_scope. generalize (Zggcd_gcd a ('b)) (Zgcd_is_gcd a ('b)) (Zgcd_is_pos a ('b)) (Zggcd_correct_divisors a ('b)). @@ -198,47 +142,6 @@ rewrite (Qred_correct q); auto. rewrite (Qred_correct q'); auto. Qed. -(** Another version, dedicated to extraction *) - -Definition Qred_extr (q : Q) := - let (q1, q2) := Qfactor_twos q in - let (p,_) := Zggcd_spec_pos (Zpos q2) (Zle_0_pos q2) q1 in - let (r2,r1) := snd p in r1#(Z2P r2). - -Lemma Qred_extr_Qred : forall q, Qred_extr q = Qred q. -Proof. -unfold Qred, Qred_extr. -intro q; destruct (Qfactor_twos q) as (n,p); clear q. -Open Scope Z_scope. -destruct (Zggcd_spec_pos (' p) (Zle_0_pos p) n) as ((g,(pp,nn)),H). -generalize (H (Zle_0_pos p)); clear H; intros (Hg1,(Hg2,(Hg4,Hg3))). -simpl. -generalize (Zggcd_gcd n ('p)) (Zgcd_is_gcd n ('p)) - (Zgcd_is_pos n ('p)) (Zggcd_correct_divisors n ('p)). -destruct (Zggcd n (Zpos p)) as (g',(nn',pp')); simpl. -intro H; rewrite <- H; clear H. -intros Hg'1 Hg'2 (Hg'3,Hg'4). -assert (g<>0). - intro; subst g; discriminate. -destruct (Zis_gcd_uniqueness_apart_sign n ('p) g g'); auto. -apply Zis_gcd_sym; auto. -subst g'. -f_equal. -apply Zmult_reg_l with g; auto; congruence. -f_equal. -apply Zmult_reg_l with g; auto; congruence. -elimtype False; omega. -Open Scope Q_scope. -Qed. - -Add Morphism Qred_extr : Qred_extr_comp. -Proof. -intros q q' H. -do 2 rewrite Qred_extr_Qred. -rewrite (Qred_correct q); auto. -rewrite (Qred_correct q'); auto. -Qed. - Definition Qplus' (p q : Q) := Qred (Qplus p q). Definition Qmult' (p q : Q) := Qred (Qmult p q). diff --git a/theories/ZArith/Znumtheory.v b/theories/ZArith/Znumtheory.v index 3a610226e2..d61cc84bcc 100644 --- a/theories/ZArith/Znumtheory.v +++ b/theories/ZArith/Znumtheory.v @@ -12,15 +12,17 @@ Require Import ZArith_base. Require Import ZArithRing. Require Import Zcomplements. Require Import Zdiv. +Require Import Ndigits. +Require Import Wf_nat. Open Local Scope Z_scope. (** This file contains some notions of number theory upon Z numbers: - a divisibility predicate [Zdivide] - a gcd predicate [gcd] - Euclid algorithm [euclid] - - an efficient [Zgcd] function - a relatively prime predicate [rel_prime] - a prime predicate [prime] + - an efficient [Zgcd] function *) (** * Divisibility *) @@ -215,6 +217,16 @@ Proof. constructor; auto with zarith. Qed. +Lemma Zis_gcd_1 : forall a, Zis_gcd a 1 1. +Proof. +constructor; auto with zarith. +Qed. + +Lemma Zis_gcd_refl : forall a, Zis_gcd a a a. +Proof. +constructor; auto with zarith. +Qed. + Lemma Zis_gcd_minus : forall a b d:Z, Zis_gcd a (- b) d -> Zis_gcd b a d. Proof. simple induction 1; constructor; intuition. @@ -225,6 +237,14 @@ Proof. simple induction 1; constructor; intuition. Qed. +Lemma Zis_gcd_0_abs : forall a:Z, Zis_gcd 0 a (Zabs a). +Proof. +intros a. +apply Zabs_ind. +intros; apply Zis_gcd_sym; apply Zis_gcd_0; auto. +intros; apply Zis_gcd_opp; apply Zis_gcd_0; auto. +Qed. + Hint Resolve Zis_gcd_sym Zis_gcd_0 Zis_gcd_minus Zis_gcd_opp: zarith. (** * Extended Euclid algorithm. *) @@ -366,478 +386,8 @@ replace (c * (u * a + v * b)) with (u * (c * a) + v * (c * b)). rewrite H6; rewrite H7; ring. ring. Qed. - -Lemma Zis_gcd_0_abs : forall b, - Zis_gcd 0 b (Zabs b) /\ Zabs b >= 0 /\ 0 = Zabs b * 0 /\ b = Zabs b * Zsgn b. -Proof. -intro b. -elim (Z_le_lt_eq_dec _ _ (Zabs_pos b)). -intros H0; split. -apply Zabs_ind. -intros; apply Zis_gcd_sym; apply Zis_gcd_0; auto. -intros; apply Zis_gcd_opp; apply Zis_gcd_0; auto. -repeat split; auto with zarith. -symmetry; apply Zabs_Zsgn. - -intros H0; rewrite <- H0. -rewrite <- (Zabs_Zsgn b); rewrite <- H0; simpl in |- *. -split; [ apply Zis_gcd_0 | idtac ]; auto with zarith. -Qed. -(** We could obtain a [Zgcd] function via [euclid]. But we propose - here a more direct version of a [Zgcd], that can compute within Coq. - For that, we use an explicit measure in [nat], and we proved later - that using [2(d+1)] is enough, where [d] is the number of binary digits - of the first argument. *) - -Fixpoint Zgcdn (n:nat) : Z -> Z -> Z := fun a b => - match n with - | O => 1 (* arbitrary, since n should be big enough *) - | S n => match a with - | Z0 => Zabs b - | Zpos _ => Zgcdn n (Zmod b a) a - | Zneg a => Zgcdn n (Zmod b (Zpos a)) (Zpos a) - end - end. - -(* For technical reason, we don't use [Ndigit.Psize] but this - ad-hoc version: [Psize p = S (Psiz p)]. *) - -Fixpoint Psiz (p:positive) : nat := - match p with - | xH => O - | xI p => S (Psiz p) - | xO p => S (Psiz p) - end. - -Definition Zgcd_bound (a:Z) := match a with - | Z0 => S O - | Zpos p => let n := Psiz p in S (S (n+n)) - | Zneg p => let n := Psiz p in S (S (n+n)) -end. - -Definition Zgcd a b := Zgcdn (Zgcd_bound a) a b. - -(** A first obvious fact : [Zgcd a b] is positive. *) - -Lemma Zgcdn_is_pos : forall n a b, - 0 <= Zgcdn n a b. -Proof. -induction n. -simpl; auto with zarith. -destruct a; simpl; intros; auto with zarith; auto. -Qed. - -Lemma Zgcd_is_pos : forall a b, 0 <= Zgcd a b. -Proof. -intros; unfold Zgcd; apply Zgcdn_is_pos; auto. -Qed. - -(** We now prove that Zgcd is indeed a gcd. *) - -(** 1) We prove a weaker & easier bound. *) - -Lemma Zgcdn_linear_bound : forall n a b, - Zabs a < Z_of_nat n -> Zis_gcd a b (Zgcdn n a b). -Proof. -induction n. -simpl; intros. -elimtype False; generalize (Zabs_pos a); omega. -destruct a; intros; simpl; - [ generalize (Zis_gcd_0_abs b); intuition | | ]; - unfold Zmod; - generalize (Z_div_mod b (Zpos p) (refl_equal Gt)); - destruct (Zdiv_eucl b (Zpos p)) as (q,r); - intros (H0,H1); - rewrite inj_S in H; simpl Zabs in H; - assert (H2: Zabs r < Z_of_nat n) by (rewrite Zabs_eq; auto with zarith); - assert (IH:=IHn r (Zpos p) H2); clear IHn; - simpl in IH |- *; - rewrite H0. - apply Zis_gcd_for_euclid2; auto. - apply Zis_gcd_minus; apply Zis_gcd_sym. - apply Zis_gcd_for_euclid2; auto. -Qed. - -(** 2) For Euclid's algorithm, the worst-case situation corresponds - to Fibonacci numbers. Let's define them: *) - -Fixpoint fibonacci (n:nat) : Z := - match n with - | O => 1 - | S O => 1 - | S (S n as p) => fibonacci p + fibonacci n - end. - -Lemma fibonacci_pos : forall n, 0 <= fibonacci n. -Proof. -cut (forall N n, (n<N)%nat -> 0<=fibonacci n). -eauto. -induction N. -inversion 1. -intros. -destruct n. -simpl; auto with zarith. -destruct n. -simpl; auto with zarith. -change (0 <= fibonacci (S n) + fibonacci n). -generalize (IHN n) (IHN (S n)); omega. -Qed. - -Lemma fibonacci_incr : - forall n m, (n<=m)%nat -> fibonacci n <= fibonacci m. -Proof. -induction 1. -auto with zarith. -apply Zle_trans with (fibonacci m); auto. -clear. -destruct m. -simpl; auto with zarith. -change (fibonacci (S m) <= fibonacci (S m)+fibonacci m). -generalize (fibonacci_pos m); omega. -Qed. - -(** 3) We prove that fibonacci numbers are indeed worst-case: - for a given number [n], if we reach a conclusion about [gcd(a,b)] in - exactly [n+1] loops, then [fibonacci (n+1)<=a /\ fibonacci(n+2)<=b] *) - -Lemma Zgcdn_worst_is_fibonacci : forall n a b, - 0 < a < b -> - Zis_gcd a b (Zgcdn (S n) a b) -> - Zgcdn n a b <> Zgcdn (S n) a b -> - fibonacci (S n) <= a /\ - fibonacci (S (S n)) <= b. -Proof. -induction n. -simpl; intros. -destruct a; omega. -intros. -destruct a; [simpl in *; omega| | destruct H; discriminate]. -revert H1; revert H0. -set (m:=S n) in *; (assert (m=S n) by auto); clearbody m. -pattern m at 2; rewrite H0. -simpl Zgcdn. -unfold Zmod; generalize (Z_div_mod b (Zpos p) (refl_equal Gt)). -destruct (Zdiv_eucl b (Zpos p)) as (q,r). -intros (H1,H2). -destruct H2. -destruct (Zle_lt_or_eq _ _ H2). -generalize (IHn _ _ (conj H4 H3)). -intros H5 H6 H7. -replace (fibonacci (S (S m))) with (fibonacci (S m) + fibonacci m) by auto. -assert (r = Zpos p * (-q) + b) by (rewrite H1; ring). -destruct H5; auto. -pattern r at 1; rewrite H8. -apply Zis_gcd_sym. -apply Zis_gcd_for_euclid2; auto. -apply Zis_gcd_sym; auto. -split; auto. -rewrite H1. -apply Zplus_le_compat; auto. -apply Zle_trans with (Zpos p * 1); auto. -ring (Zpos p * 1); auto. -apply Zmult_le_compat_l. -destruct q. -omega. -assert (0 < Zpos p0) by (compute; auto). -omega. -assert (Zpos p * Zneg p0 < 0) by (compute; auto). -omega. -compute; intros; discriminate. -(* r=0 *) -subst r. -simpl; rewrite H0. -intros. -simpl in H4. -simpl in H5. -destruct n. -simpl in H5. -simpl. -omega. -simpl in H5. -elim H5; auto. -Qed. - -(** 3b) We reformulate the previous result in a more positive way. *) - -Lemma Zgcdn_ok_before_fibonacci : forall n a b, - 0 < a < b -> a < fibonacci (S n) -> - Zis_gcd a b (Zgcdn n a b). -Proof. -destruct a; [ destruct 1; elimtype False; omega | | destruct 1; discriminate]. -cut (forall k n b, - k = (S (nat_of_P p) - n)%nat -> - 0 < Zpos p < b -> Zpos p < fibonacci (S n) -> - Zis_gcd (Zpos p) b (Zgcdn n (Zpos p) b)). -destruct 2; eauto. -clear n; induction k. -intros. -assert (nat_of_P p < n)%nat by omega. -apply Zgcdn_linear_bound. -simpl. -generalize (inj_le _ _ H2). -rewrite inj_S. -rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto. -omega. -intros. -generalize (Zgcdn_worst_is_fibonacci n (Zpos p) b H0); intros. -assert (Zis_gcd (Zpos p) b (Zgcdn (S n) (Zpos p) b)). - apply IHk; auto. - omega. - replace (fibonacci (S (S n))) with (fibonacci (S n)+fibonacci n) by auto. - generalize (fibonacci_pos n); omega. -replace (Zgcdn n (Zpos p) b) with (Zgcdn (S n) (Zpos p) b); auto. -generalize (H2 H3); clear H2 H3; omega. -Qed. - -(** 4) The proposed bound leads to a fibonacci number that is big enough. *) - -Lemma Zgcd_bound_fibonacci : - forall a, 0 < a -> a < fibonacci (Zgcd_bound a). -Proof. -destruct a; [omega| | intro H; discriminate]. -intros _. -induction p. -simpl Zgcd_bound in *. -rewrite Zpos_xI. -rewrite plus_comm; simpl plus. -set (n:=S (Psiz p+Psiz p)) in *. -change (2*Zpos p+1 < - fibonacci (S n) + fibonacci n + fibonacci (S n)). -generalize (fibonacci_pos n). -omega. -simpl Zgcd_bound in *. -rewrite Zpos_xO. -rewrite plus_comm; simpl plus. -set (n:= S (Psiz p +Psiz p)) in *. -change (2*Zpos p < - fibonacci (S n) + fibonacci n + fibonacci (S n)). -generalize (fibonacci_pos n). -omega. -simpl; auto with zarith. -Qed. - -(* 5) the end: we glue everything together and take care of - situations not corresponding to [0<a<b]. *) - -Lemma Zgcd_is_gcd : - forall a b, Zis_gcd a b (Zgcd a b). -Proof. -unfold Zgcd; destruct a; intros. -simpl; generalize (Zis_gcd_0_abs b); intuition. -(*Zpos*) -generalize (Zgcd_bound_fibonacci (Zpos p)). -simpl Zgcd_bound. -set (n:=S (Psiz p+Psiz p)); (assert (n=S (Psiz p+Psiz p)) by auto); clearbody n. -simpl Zgcdn. -unfold Zmod. -generalize (Z_div_mod b (Zpos p) (refl_equal Gt)). -destruct (Zdiv_eucl b (Zpos p)) as (q,r). -intros (H1,H2) H3. -rewrite H1. -apply Zis_gcd_for_euclid2. -destruct H2. -destruct (Zle_lt_or_eq _ _ H0). -apply Zgcdn_ok_before_fibonacci; auto; omega. -subst r n; simpl. -apply Zis_gcd_sym; apply Zis_gcd_0. -(*Zneg*) -generalize (Zgcd_bound_fibonacci (Zpos p)). -simpl Zgcd_bound. -set (n:=S (Psiz p+Psiz p)); (assert (n=S (Psiz p+Psiz p)) by auto); clearbody n. -simpl Zgcdn. -unfold Zmod. -generalize (Z_div_mod b (Zpos p) (refl_equal Gt)). -destruct (Zdiv_eucl b (Zpos p)) as (q,r). -intros (H1,H2) H3. -rewrite H1. -apply Zis_gcd_minus. -apply Zis_gcd_sym. -apply Zis_gcd_for_euclid2. -destruct H2. -destruct (Zle_lt_or_eq _ _ H0). -apply Zgcdn_ok_before_fibonacci; auto; omega. -subst r n; simpl. -apply Zis_gcd_sym; apply Zis_gcd_0. -Qed. - -(** A generalized gcd: it additionnally keeps track of the divisors. *) - -Fixpoint Zggcdn (n:nat) : Z -> Z -> (Z*(Z*Z)) := fun a b => - match n with - | O => (1,(a,b)) (*(Zabs b,(0,Zsgn b))*) - | S n => match a with - | Z0 => (Zabs b,(0,Zsgn b)) - | Zpos _ => - let (q,r) := Zdiv_eucl b a in (* b = q*a+r *) - let (g,p) := Zggcdn n r a in - let (rr,aa) := p in (* r = g *rr /\ a = g * aa *) - (g,(aa,q*aa+rr)) - | Zneg a => - let (q,r) := Zdiv_eucl b (Zpos a) in (* b = q*(-a)+r *) - let (g,p) := Zggcdn n r (Zpos a) in - let (rr,aa) := p in (* r = g*rr /\ (-a) = g * aa *) - (g,(-aa,q*aa+rr)) - end - end. - -Definition Zggcd a b : Z * (Z * Z) := Zggcdn (Zgcd_bound a) a b. - -(** The first component of [Zggcd] is [Zgcd] *) - -Lemma Zggcdn_gcdn : forall n a b, - fst (Zggcdn n a b) = Zgcdn n a b. -Proof. -induction n; simpl; auto. -destruct a; unfold Zmod; simpl; intros; auto; - destruct (Zdiv_eucl b (Zpos p)) as (q,r); - rewrite <- IHn; - destruct (Zggcdn n r (Zpos p)) as (g,(rr,aa)); simpl; auto. -Qed. - -Lemma Zggcd_gcd : forall a b, fst (Zggcd a b) = Zgcd a b. -Proof. -intros; unfold Zggcd, Zgcd; apply Zggcdn_gcdn; auto. -Qed. - -(** [Zggcd] always returns divisors that are coherent with its - first output. *) - -Lemma Zggcdn_correct_divisors : forall n a b, - let (g,p) := Zggcdn n a b in - let (aa,bb):=p in - a=g*aa /\ b=g*bb. -Proof. -induction n. -simpl. -split; [destruct a|destruct b]; auto. -intros. -simpl. -destruct a. -rewrite Zmult_comm; simpl. -split; auto. -symmetry; apply Zabs_Zsgn. -generalize (Z_div_mod b (Zpos p)); -destruct (Zdiv_eucl b (Zpos p)) as (q,r). -generalize (IHn r (Zpos p)); -destruct (Zggcdn n r (Zpos p)) as (g,(rr,aa)). -intuition. -destruct H0. -compute; auto. -rewrite H; rewrite H1; rewrite H2; ring. -generalize (Z_div_mod b (Zpos p)); -destruct (Zdiv_eucl b (Zpos p)) as (q,r). -destruct 1. -compute; auto. -generalize (IHn r (Zpos p)); -destruct (Zggcdn n r (Zpos p)) as (g,(rr,aa)). -intuition. -destruct H0. -replace (Zneg p) with (-Zpos p) by compute; auto. -rewrite H4; ring. -rewrite H; rewrite H4; rewrite H0; ring. -Qed. - -Lemma Zggcd_correct_divisors : forall a b, - let (g,p) := Zggcd a b in - let (aa,bb):=p in - a=g*aa /\ b=g*bb. -Proof. -unfold Zggcd; intros; apply Zggcdn_correct_divisors; auto. -Qed. - -(** Due to the use of an explicit measure, the extraction of [Zgcd] - isn't optimal. We propose here another version [Zgcd_spec] that - doesn't suffer from this problem (but doesn't compute in Coq). *) - -Definition Zgcd_spec_pos : - forall a:Z, - 0 <= a -> forall b:Z, {g : Z | 0 <= a -> Zis_gcd a b g /\ g >= 0}. -Proof. -intros a Ha. -apply - (Zlt_0_rec - (fun a:Z => forall b:Z, {g : Z | 0 <= a -> Zis_gcd a b g /\ g >= 0})); - try assumption. -intro x; case x. -intros _ _ b; exists (Zabs b). -generalize (Zis_gcd_0_abs b); intuition. - -intros p Hrec _ b. -generalize (Z_div_mod b (Zpos p)). -case (Zdiv_eucl b (Zpos p)); intros q r Hqr. -elim Hqr; clear Hqr; intros; auto with zarith. -elim (Hrec r H0 (Zpos p)); intros g Hgkl. -inversion_clear H0. -elim (Hgkl H1); clear Hgkl; intros H3 H4. -exists g; intros. -split; auto. -rewrite H. -apply Zis_gcd_for_euclid2; auto. - -intros p _ H b. -elim H; auto. -Defined. - -Definition Zgcd_spec : forall a b:Z, {g : Z | Zis_gcd a b g /\ g >= 0}. -Proof. -intros a; case (Z_gt_le_dec 0 a). -intros; assert (0 <= - a). -omega. -elim (Zgcd_spec_pos (- a) H b); intros g Hgkl. -exists g. -intuition. -intros Ha b; elim (Zgcd_spec_pos a Ha b); intros g; exists g; intuition. -Defined. - -(** A last version aimed at extraction that also returns the divisors. *) - -Definition Zggcd_spec_pos : - forall a:Z, - 0 <= a -> forall b:Z, {p : Z*(Z*Z) | let (g,p):=p in let (aa,bb):=p in - 0 <= a -> Zis_gcd a b g /\ g >= 0 /\ a=g*aa /\ b=g*bb}. -Proof. -intros a Ha. -pattern a; apply Zlt_0_rec; try assumption. -intro x; case x. -intros _ _ b; exists (Zabs b,(0,Zsgn b)). -intros _; apply Zis_gcd_0_abs. - -intros p Hrec _ b. -generalize (Z_div_mod b (Zpos p)). -case (Zdiv_eucl b (Zpos p)); intros q r Hqr. -elim Hqr; clear Hqr; intros; auto with zarith. -destruct (Hrec r H0 (Zpos p)) as ((g,(rr,pp)),Hgkl). -destruct H0. -destruct (Hgkl H0) as (H3,(H4,(H5,H6))). -exists (g,(pp,pp*q+rr)); intros. -split; auto. -rewrite H. -apply Zis_gcd_for_euclid2; auto. -repeat split; auto. -rewrite H; rewrite H6; rewrite H5; ring. - -intros p _ H b. -elim H; auto. -Defined. - -Definition Zggcd_spec : - forall a b:Z, {p : Z*(Z*Z) | let (g,p):=p in let (aa,bb):=p in - Zis_gcd a b g /\ g >= 0 /\ a=g*aa /\ b=g*bb}. -Proof. -intros a; case (Z_gt_le_dec 0 a). -intros; assert (0 <= - a). -omega. -destruct (Zggcd_spec_pos (- a) H b) as ((g,(aa,bb)),Hgkl). -exists (g,(-aa,bb)). -intuition. -rewrite <- Zopp_mult_distr_r. -rewrite <- H2; auto with zarith. -intros Ha b; elim (Zggcd_spec_pos a Ha b); intros p; exists p. - repeat destruct p; intuition. -Defined. - (** * Relative primality *) Definition rel_prime (a b:Z) : Prop := Zis_gcd a b 1. @@ -920,32 +470,25 @@ assert (g <> 0). elim H4; intros. rewrite H2 in H6; subst b; omega. unfold rel_prime in |- *. -elim (Zgcd_spec (a / g) (b / g)); intros g' [H3 H4]. -assert (H5 := Zis_gcd_mult _ _ g _ H3). -rewrite <- Z_div_exact_2 in H5; auto with zarith. -rewrite <- Z_div_exact_2 in H5; auto with zarith. -elim (Zis_gcd_uniqueness_apart_sign _ _ _ _ H1 H5). -intros; rewrite (Zmult_reg_l 1 g' g); auto with zarith. -intros; rewrite (Zmult_reg_l 1 (- g') g); auto with zarith. -pattern g at 1 in |- *; rewrite H6; ring. - -elim H1; intros. -elim H7; intros. -rewrite H9. -replace (q * g) with (0 + q * g). -rewrite Z_mod_plus. -compute in |- *; auto. -omega. -ring. - -elim H1; intros. -elim H6; intros. -rewrite H9. -replace (q * g) with (0 + q * g). -rewrite Z_mod_plus. -compute in |- *; auto. -omega. -ring. +destruct H1. +destruct H1 as (a',H1). +destruct H3 as (b',H3). +replace (a/g) with a'; + [|rewrite H1; rewrite Z_div_mult; auto with zarith]. +replace (b/g) with b'; + [|rewrite H3; rewrite Z_div_mult; auto with zarith]. +constructor. +exists a'; auto with zarith. +exists b'; auto with zarith. +intros x (xa,H5) (xb,H6). +destruct (H4 (x*g)). +exists xa; rewrite Zmult_assoc; rewrite <- H5; auto. +exists xb; rewrite Zmult_assoc; rewrite <- H6; auto. +replace g with (1*g) in H7; auto with zarith. +do 2 rewrite Zmult_assoc in H7. +generalize (Zmult_reg_r _ _ _ H2 H7); clear H7; intros. +rewrite Zmult_1_r in H7. +exists q; auto with zarith. Qed. (** * Primality *) @@ -1045,3 +588,345 @@ case (Zdivide_dec p a); intuition. right; apply Gauss with a; auto with zarith. Qed. + +(** We could obtain a [Zgcd] function via Euclid algorithm. But we propose + here a binary version of [Zgcd], faster and executable within Coq. + + Algorithm: + + gcd 0 b = b + gcd a 0 = a + gcd (2a) (2b) = 2(gcd a b) + gcd (2a+1) (2b) = gcd (2a+1) b + gcd (2a) (2b+1) = gcd a (2b+1) + gcd (2a+1) (2b+1) = gcd (b-a) (2*a+1) + or gcd (a-b) (2*b+1), depending on whether a<b +*) + +Open Scope positive_scope. + +Fixpoint Pgcdn (n: nat) (a b : positive) { struct n } : positive := + match n with + | O => 1 + | S n => + match a,b with + | xH, _ => 1 + | _, xH => 1 + | xO a, xO b => xO (Pgcdn n a b) + | a, xO b => Pgcdn n a b + | xO a, b => Pgcdn n a b + | xI a', xI b' => match Pcompare a' b' Eq with + | Eq => a + | Lt => Pgcdn n (b'-a') a + | Gt => Pgcdn n (a'-b') b + end + end + end. + +Fixpoint Pggcdn (n: nat) (a b : positive) { struct n } : (positive*(positive*positive)) := + match n with + | O => (1,(a,b)) + | S n => + match a,b with + | xH, b => (1,(1,b)) + | a, xH => (1,(a,1)) + | xO a, xO b => + let (g,p) := Pggcdn n a b in + (xO g,p) + | a, xO b => + let (g,p) := Pggcdn n a b in + let (aa,bb) := p in + (g,(aa, xO bb)) + | xO a, b => + let (g,p) := Pggcdn n a b in + let (aa,bb) := p in + (g,(xO aa, bb)) + | xI a', xI b' => match Pcompare a' b' Eq with + | Eq => (a,(1,1)) + | Lt => + let (g,p) := Pggcdn n (b'-a') a in + let (ba,aa) := p in + (g,(aa, aa + xO ba)) + | Gt => + let (g,p) := Pggcdn n (a'-b') b in + let (ab,bb) := p in + (g,(bb+xO ab, bb)) + end + end + end. + +Definition Pgcd (a b: positive) := Pgcdn (Psize a + Psize b)%nat a b. +Definition Pggcd (a b: positive) := Pggcdn (Psize a + Psize b)%nat a b. + +Open Scope Z_scope. + +Definition Zgcd (a b : Z) : Z := match a,b with + | Z0, _ => Zabs b + | _, Z0 => Zabs a + | Zpos a, Zpos b => Zpos (Pgcd a b) + | Zpos a, Zneg b => Zpos (Pgcd a b) + | Zneg a, Zpos b => Zpos (Pgcd a b) + | Zneg a, Zneg b => Zpos (Pgcd a b) +end. + +Definition Zggcd (a b : Z) : Z*(Z*Z) := match a,b with + | Z0, _ => (Zabs b,(0, Zsgn b)) + | _, Z0 => (Zabs a,(Zsgn a, 0)) + | Zpos a, Zpos b => + let (g,p) := Pggcd a b in + let (aa,bb) := p in + (Zpos g, (Zpos aa, Zpos bb)) + | Zpos a, Zneg b => + let (g,p) := Pggcd a b in + let (aa,bb) := p in + (Zpos g, (Zpos aa, Zneg bb)) + | Zneg a, Zpos b => + let (g,p) := Pggcd a b in + let (aa,bb) := p in + (Zpos g, (Zneg aa, Zpos bb)) + | Zneg a, Zneg b => + let (g,p) := Pggcd a b in + let (aa,bb) := p in + (Zpos g, (Zneg aa, Zneg bb)) +end. + +Lemma Zgcd_is_pos : forall a b, 0 <= Zgcd a b. +Proof. +unfold Zgcd; destruct a; destruct b; auto with zarith. +Qed. + +Lemma Psize_monotone : forall p q, Pcompare p q Eq = Lt -> (Psize p <= Psize q)%nat. +Proof. +induction p; destruct q; simpl; auto with arith; intros; try discriminate. +intros; generalize (Pcompare_Gt_Lt _ _ H); auto with arith. +intros; destruct (Pcompare_Lt_Lt _ _ H); auto with arith; subst; auto. +Qed. + +Lemma Pminus_Zminus : forall a b, Pcompare a b Eq = Lt -> + Zpos (b-a) = Zpos b - Zpos a. +Proof. +intros. +repeat rewrite Zpos_eq_Z_of_nat_o_nat_of_P. +rewrite nat_of_P_minus_morphism. +apply inj_minus1. +apply lt_le_weak. +apply nat_of_P_lt_Lt_compare_morphism; auto. +rewrite ZC4; rewrite H; auto. +Qed. + +Lemma Zis_gcd_even_odd : forall a b g, Zis_gcd (Zpos a) (Zpos (xI b)) g -> + Zis_gcd (Zpos (xO a)) (Zpos (xI b)) g. +Proof. +intros. +destruct H. +constructor; auto. +destruct H as (e,H2); exists (2*e); auto with zarith. +rewrite Zpos_xO; rewrite H2; ring. +intros. +apply H1; auto. +rewrite Zpos_xO in H2. +rewrite Zpos_xI in H3. +apply Gauss with 2; auto. +apply bezout_rel_prime. +destruct H3 as (bb, H3). +apply Bezout_intro with bb (-Zpos b). +omega. +Qed. + +Lemma Pgcdn_correct : forall n a b, (Psize a + Psize b<=n)%nat -> + Zis_gcd (Zpos a) (Zpos b) (Zpos (Pgcdn n a b)). +Proof. +intro n; pattern n; apply lt_wf_ind; clear n; intros. +destruct n. +simpl. +destruct a; simpl in *; try inversion H0. +destruct a. +destruct b; simpl. +case_eq (Pcompare a b Eq); intros. +(* a = xI, b = xI, compare = Eq *) +rewrite (Pcompare_Eq_eq _ _ H1); apply Zis_gcd_refl. +(* a = xI, b = xI, compare = Lt *) +apply Zis_gcd_sym. +apply Zis_gcd_for_euclid with 1. +apply Zis_gcd_sym. +replace (Zpos (xI b) - 1 * Zpos (xI a)) with (Zpos(xO (b - a))). +apply Zis_gcd_even_odd. +apply H; auto. +simpl in *. +assert (Psize (b-a) <= Psize b)%nat. + apply Psize_monotone. + change (Zpos (b-a) < Zpos b). + rewrite (Pminus_Zminus _ _ H1). + assert (0 < Zpos a) by (compute; auto). + omega. +omega. +rewrite Zpos_xO; do 2 rewrite Zpos_xI. +rewrite Pminus_Zminus; auto. +omega. +(* a = xI, b = xI, compare = Gt *) +apply Zis_gcd_for_euclid with 1. +replace (Zpos (xI a) - 1 * Zpos (xI b)) with (Zpos(xO (a - b))). +apply Zis_gcd_sym. +apply Zis_gcd_even_odd. +apply H; auto. +simpl in *. +assert (Psize (a-b) <= Psize a)%nat. + apply Psize_monotone. + change (Zpos (a-b) < Zpos a). + rewrite (Pminus_Zminus b a). + assert (0 < Zpos b) by (compute; auto). + omega. + rewrite ZC4; rewrite H1; auto. +omega. +rewrite Zpos_xO; do 2 rewrite Zpos_xI. +rewrite Pminus_Zminus; auto. +omega. +rewrite ZC4; rewrite H1; auto. +(* a = xI, b = xO *) +apply Zis_gcd_sym. +apply Zis_gcd_even_odd. +apply Zis_gcd_sym. +apply H; auto. +simpl in *; omega. +(* a = xI, b = xH *) +apply Zis_gcd_1. +destruct b; simpl. +(* a = xO, b = xI *) +apply Zis_gcd_even_odd. +apply H; auto. +simpl in *; omega. +(* a = xO, b = xO *) +rewrite (Zpos_xO a); rewrite (Zpos_xO b); rewrite (Zpos_xO (Pgcdn n a b)). +apply Zis_gcd_mult. +apply H; auto. +simpl in *; omega. +(* a = xO, b = xH *) +apply Zis_gcd_1. +(* a = xH *) +simpl; apply Zis_gcd_sym; apply Zis_gcd_1. +Qed. + +Lemma Pgcd_correct : forall a b, Zis_gcd (Zpos a) (Zpos b) (Zpos (Pgcd a b)). +Proof. +unfold Pgcd; intros. +apply Pgcdn_correct; auto. +Qed. + +Lemma Zgcd_is_gcd : forall a b, Zis_gcd a b (Zgcd a b). +Proof. +destruct a. +intros. +simpl. +apply Zis_gcd_0_abs. +destruct b; simpl. +apply Zis_gcd_0. +apply Pgcd_correct. +apply Zis_gcd_sym. +apply Zis_gcd_minus; simpl. +apply Pgcd_correct. +destruct b; simpl. +apply Zis_gcd_minus; simpl. +apply Zis_gcd_sym. +apply Zis_gcd_0. +apply Zis_gcd_minus; simpl. +apply Zis_gcd_sym. +apply Pgcd_correct. +apply Zis_gcd_sym. +apply Zis_gcd_minus; simpl. +apply Zis_gcd_minus; simpl. +apply Zis_gcd_sym. +apply Pgcd_correct. +Qed. + + +Lemma Pggcdn_gcdn : forall n a b, + fst (Pggcdn n a b) = Pgcdn n a b. +Proof. +induction n. +simpl; auto. +destruct a; destruct b; simpl; auto. +destruct (Pcompare a b Eq); simpl; auto. +rewrite <- IHn; destruct (Pggcdn n (b-a) (xI a)) as (g,(aa,bb)); simpl; auto. +rewrite <- IHn; destruct (Pggcdn n (a-b) (xI b)) as (g,(aa,bb)); simpl; auto. +rewrite <- IHn; destruct (Pggcdn n (xI a) b) as (g,(aa,bb)); simpl; auto. +rewrite <- IHn; destruct (Pggcdn n a (xI b)) as (g,(aa,bb)); simpl; auto. +rewrite <- IHn; destruct (Pggcdn n a b) as (g,(aa,bb)); simpl; auto. +Qed. + +Lemma Pggcd_gcd : forall a b, fst (Pggcd a b) = Pgcd a b. +Proof. +intros; exact (Pggcdn_gcdn (Psize a+Psize b)%nat a b). +Qed. + +Lemma Zggcd_gcd : forall a b, fst (Zggcd a b) = Zgcd a b. +Proof. +destruct a; destruct b; simpl; auto; rewrite <- Pggcd_gcd; +destruct (Pggcd p p0) as (g,(aa,bb)); simpl; auto. +Qed. + +Open Scope positive_scope. + +Lemma Pggcdn_correct_divisors : forall n a b, + let (g,p) := Pggcdn n a b in + let (aa,bb):=p in + (a=g*aa) /\ (b=g*bb). +Proof. +induction n. +simpl; auto. +destruct a; destruct b; simpl; auto. +case_eq (Pcompare a b Eq); intros. +(* Eq *) +rewrite Pmult_comm; simpl; auto. +rewrite (Pcompare_Eq_eq _ _ H); auto. +(* Lt *) +generalize (IHn (b-a) (xI a)); destruct (Pggcdn n (b-a) (xI a)) as (g,(ba,aa)); simpl. +intros (H0,H1); split; auto. +rewrite Pmult_plus_distr_l. +rewrite Pmult_xO_permute_r. +rewrite <- H1; rewrite <- H0. +simpl; f_equal; symmetry. +apply Pplus_minus; auto. +rewrite ZC4; rewrite H; auto. +(* Gt *) +generalize (IHn (a-b) (xI b)); destruct (Pggcdn n (a-b) (xI b)) as (g,(ab,bb)); simpl. +intros (H0,H1); split; auto. +rewrite Pmult_plus_distr_l. +rewrite Pmult_xO_permute_r. +rewrite <- H1; rewrite <- H0. +simpl; f_equal; symmetry. +apply Pplus_minus; auto. +(* Then... *) +generalize (IHn (xI a) b); destruct (Pggcdn n (xI a) b) as (g,(ab,bb)); simpl. +intros (H0,H1); split; auto. +rewrite Pmult_xO_permute_r; rewrite H1; auto. +generalize (IHn a (xI b)); destruct (Pggcdn n a (xI b)) as (g,(ab,bb)); simpl. +intros (H0,H1); split; auto. +rewrite Pmult_xO_permute_r; rewrite H0; auto. +generalize (IHn a b); destruct (Pggcdn n a b) as (g,(ab,bb)); simpl. +intros (H0,H1); split; subst; auto. +Qed. + +Lemma Pggcd_correct_divisors : forall a b, + let (g,p) := Pggcd a b in + let (aa,bb):=p in + (a=g*aa) /\ (b=g*bb). +Proof. +intros a b; exact (Pggcdn_correct_divisors (Psize a + Psize b)%nat a b). +Qed. + +Open Scope Z_scope. + +Lemma Zggcd_correct_divisors : forall a b, + let (g,p) := Zggcd a b in + let (aa,bb):=p in + (a=g*aa) /\ (b=g*bb). +Proof. +destruct a; destruct b; simpl; auto; try solve [rewrite Pmult_comm; simpl; auto]; +generalize (Pggcd_correct_divisors p p0); destruct (Pggcd p p0) as (g,(aa,bb)); +destruct 1; subst; auto. +Qed. + +(** A version of [Zgcd] that doesn't use an explicit measure can be found + in users's contribution [Orsay/QArith]. It is slightly more efficient after + extraction, but cannot be used to compute within Coq. *) + |
