aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJasper Hugunin2020-08-24 15:49:11 -0700
committerJasper Hugunin2020-08-25 13:53:31 -0700
commit774d72febd0ddacc57f7b6c60e004796c84ef38b (patch)
tree2edf4f612cbc619561590dfb5fa4b8d24544a1db
parent062853d9f20ea17eee618cd252f64b647ef6f604 (diff)
Modify Classes/Morphisms.v to compile with -mangle-names
-rw-r--r--theories/Classes/Morphisms.v36
1 files changed, 23 insertions, 13 deletions
diff --git a/theories/Classes/Morphisms.v b/theories/Classes/Morphisms.v
index 43adb0b69f..c70e3fe478 100644
--- a/theories/Classes/Morphisms.v
+++ b/theories/Classes/Morphisms.v
@@ -21,7 +21,7 @@ Require Import Coq.Relations.Relation_Definitions.
Require Export Coq.Classes.RelationClasses.
Generalizable Variables A eqA B C D R RA RB RC m f x y.
-Local Obligation Tactic := simpl_relation.
+Local Obligation Tactic := try solve [ simpl_relation ].
(** * Morphisms.
@@ -201,12 +201,12 @@ Section Relations.
Global Instance pointwise_subrelation `(sub : subrelation B R R') :
subrelation (pointwise_relation R) (pointwise_relation R') | 4.
- Proof. reduce. unfold pointwise_relation in *. apply sub. apply H. Qed.
+ Proof. intros x y H a. unfold pointwise_relation in *. apply sub. apply H. Qed.
(** For dependent function types. *)
Lemma forall_subrelation (R S : forall x : A, relation (P x)) :
(forall a, subrelation (R a) (S a)) -> subrelation (forall_relation R) (forall_relation S).
- Proof. reduce. apply H. apply H0. Qed.
+ Proof. intros H x y H0 a. apply H. apply H0. Qed.
End Relations.
Typeclasses Opaque respectful pointwise_relation forall_relation.
@@ -259,6 +259,7 @@ Section GenericInstances.
Next Obligation.
Proof with auto.
+ intros R H R' H0 x y z H1 H2 x0 y0 H3.
assert(R x0 x0).
- transitivity y0... symmetry...
- transitivity (y x0)...
@@ -272,6 +273,7 @@ Section GenericInstances.
Next Obligation.
Proof.
+ intros RA R mR x y H x0 y0 H0.
unfold complement.
pose (mR x y H x0 y0 H0).
intuition.
@@ -285,7 +287,7 @@ Section GenericInstances.
Next Obligation.
Proof.
- apply mor ; auto.
+ intros RA RB RC f mor x y H x0 y0 H0; apply mor ; auto.
Qed.
@@ -298,6 +300,7 @@ Section GenericInstances.
Next Obligation.
Proof with auto.
+ intros R H x y H0 x0 y0 H1 H2.
transitivity x...
transitivity x0...
Qed.
@@ -310,6 +313,7 @@ Section GenericInstances.
Next Obligation.
Proof with auto.
+ intros R H x x0 y H0 H1.
transitivity y...
Qed.
@@ -319,6 +323,7 @@ Section GenericInstances.
Next Obligation.
Proof with auto.
+ intros R H x x0 y H0 H1.
transitivity x0...
Qed.
@@ -328,6 +333,7 @@ Section GenericInstances.
Next Obligation.
Proof with auto.
+ intros R H x x0 y H0 H1.
transitivity y... symmetry...
Qed.
@@ -336,6 +342,7 @@ Section GenericInstances.
Next Obligation.
Proof with auto.
+ intros R H x x0 y H0 H1.
transitivity x0... symmetry...
Qed.
@@ -344,6 +351,7 @@ Section GenericInstances.
Next Obligation.
Proof with auto.
+ intros R H x x0 y H0.
split.
- intros ; transitivity x0...
- intros.
@@ -359,6 +367,7 @@ Section GenericInstances.
Next Obligation.
Proof with auto.
+ intros R H x y H0 y0 y1 e H2; destruct e.
transitivity y...
Qed.
@@ -369,6 +378,7 @@ Section GenericInstances.
Next Obligation.
Proof with auto.
+ intros R H x y H0 x0 y0 H1.
split ; intros.
- transitivity x0... transitivity x... symmetry...
@@ -383,7 +393,7 @@ Section GenericInstances.
Next Obligation.
Proof.
- simpl_relation.
+ intros RA RB RC x y H x0 y0 H0 x1 y1 H1.
unfold compose. apply H. apply H0. apply H1.
Qed.
@@ -400,9 +410,9 @@ Section GenericInstances.
Proper (relation_equivalence ++> relation_equivalence ++> relation_equivalence)
(@respectful A B).
Proof.
- reduce.
+ intros x y H x0 y0 H0 x1 x2.
unfold respectful, relation_equivalence, predicate_equivalence in * ; simpl in *.
- split ; intros.
+ split ; intros H1 x3 y1 H2.
- rewrite <- H0.
apply H1.
@@ -512,9 +522,9 @@ Ltac partial_application_tactic :=
Instance proper_proper : Proper (relation_equivalence ==> eq ==> iff) (@Proper A).
Proof.
- simpl_relation.
+ intros A x y H y0 y1 e; destruct e.
reduce in H.
- split ; red ; intros.
+ split ; red ; intros H0.
- setoid_rewrite <- H.
apply H0.
- setoid_rewrite H.
@@ -555,8 +565,7 @@ Section Normalize.
Lemma proper_normalizes_proper `(Normalizes R0 R1, Proper A R1 m) : Proper R0 m.
Proof.
- red in H, H0.
- rewrite H.
+ rewrite normalizes.
assumption.
Qed.
@@ -571,10 +580,11 @@ Lemma flip_arrow {A : Type} {B : Type}
`(NA : Normalizes A R (flip R'''), NB : Normalizes B R' (flip R'')) :
Normalizes (A -> B) (R ==> R') (flip (R''' ==> R'')%signature).
Proof.
- unfold Normalizes in *. intros.
+ unfold Normalizes in *.
unfold relation_equivalence in *.
unfold predicate_equivalence in *. simpl in *.
- unfold respectful. unfold flip in *. firstorder.
+ unfold respectful. unfold flip in *.
+ intros x x0; split; intros H x1 y H0.
- apply NB. apply H. apply NA. apply H0.
- apply NB. apply H. apply NA. apply H0.
Qed.