aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorVincent Laporte2019-02-11 09:01:40 +0000
committerVincent Laporte2019-02-14 06:56:46 +0000
commit7476e080d3b90c8af5e2d59c4c5164401423bb1b (patch)
tree0edb9220953e4d7573f577ab9632932466434dd6
parent0e36b06e8426d2fcd18fafed187a676ceb6592ae (diff)
[Manual] Clean examples about `inversion` tactic
-rw-r--r--doc/sphinx/proof-engine/tactics.rst62
1 files changed, 33 insertions, 29 deletions
diff --git a/doc/sphinx/proof-engine/tactics.rst b/doc/sphinx/proof-engine/tactics.rst
index 0bcfce2322..e5f56407c8 100644
--- a/doc/sphinx/proof-engine/tactics.rst
+++ b/doc/sphinx/proof-engine/tactics.rst
@@ -2332,6 +2332,7 @@ and an explanation of the underlying technique.
where :n:`@ident` is the identifier for the last introduced hypothesis.
.. tacv:: inversion_clear @ident
+ :name: inversion_clear
This behaves as :n:`inversion` and then erases :n:`@ident` from the context.
@@ -2490,47 +2491,54 @@ and an explanation of the underlying technique.
*Non-dependent inversion*.
- Let us consider the relation Le over natural numbers and the following
- variables:
+ Let us consider the relation :g:`Le` over natural numbers:
- .. coqtop:: all reset
+ .. coqtop:: reset in
Inductive Le : nat -> nat -> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le n m -> Le (S n) (S m).
- Variable P : nat -> nat -> Prop.
- Variable Q : forall n m:nat, Le n m -> Prop.
+
Let us consider the following goal:
.. coqtop:: none
+ Section Section.
+ Variable P : nat -> nat -> Prop.
+ Variable Q : forall n m:nat, Le n m -> Prop.
Goal forall n m, Le (S n) m -> P n m.
intros.
- .. coqtop:: all
+ .. coqtop:: out
Show.
- To prove the goal, we may need to reason by cases on H and to derive
- that m is necessarily of the form (S m 0 ) for certain m 0 and that
- (Le n m 0 ). Deriving these conditions corresponds to proving that the
- only possible constructor of (Le (S n) m) isLeS and that we can invert
- the-> in the type of LeS. This inversion is possible because Le is the
- smallest set closed by the constructors LeO and LeS.
+ To prove the goal, we may need to reason by cases on :g:`H` and to derive
+ that :g:`m` is necessarily of the form :g:`(S m0)` for certain :g:`m0` and that
+ :g:`(Le n m0)`. Deriving these conditions corresponds to proving that the only
+ possible constructor of :g:`(Le (S n) m)` is :g:`LeS` and that we can invert
+ the arrow in the type of :g:`LeS`. This inversion is possible because :g:`Le`
+ is the smallest set closed by the constructors :g:`LeO` and :g:`LeS`.
- .. coqtop:: undo all
+ .. coqtop:: all
inversion_clear H.
- Note that m has been substituted in the goal for (S m0) and that the
- hypothesis (Le n m0) has been added to the context.
+ Note that :g:`m` has been substituted in the goal for :g:`(S m0)` and that the
+ hypothesis :g:`(Le n m0)` has been added to the context.
- Sometimes it is interesting to have the equality m=(S m0) in the
- context to use it after. In that case we can use inversion that does
+ Sometimes it is interesting to have the equality :g:`m = (S m0)` in the
+ context to use it after. In that case we can use :tacn:`inversion` that does
not clear the equalities:
- .. coqtop:: undo all
+ .. coqtop:: none
+
+ Abort.
+ Goal forall n m, Le (S n) m -> P n m.
+ intros.
+
+ .. coqtop:: all
inversion H.
@@ -2540,31 +2548,27 @@ and an explanation of the underlying technique.
Let us consider the following goal:
- .. coqtop:: reset none
+ .. coqtop:: none
- Inductive Le : nat -> nat -> Set :=
- | LeO : forall n:nat, Le 0 n
- | LeS : forall n m:nat, Le n m -> Le (S n) (S m).
- Variable P : nat -> nat -> Prop.
- Variable Q : forall n m:nat, Le n m -> Prop.
+ Abort.
Goal forall n m (H:Le (S n) m), Q (S n) m H.
intros.
- .. coqtop:: all
+ .. coqtop:: out
Show.
- As H occurs in the goal, we may want to reason by cases on its
- structure and so, we would like inversion tactics to substitute H by
+ As :g:`H` occurs in the goal, we may want to reason by cases on its
+ structure and so, we would like inversion tactics to substitute :g:`H` by
the corresponding @term in constructor form. Neither :tacn:`inversion` nor
- :n:`inversion_clear` do such a substitution. To have such a behavior we
+ :tacn:`inversion_clear` do such a substitution. To have such a behavior we
use the dependent inversion tactics:
.. coqtop:: all
dependent inversion_clear H.
- Note that H has been substituted by (LeS n m0 l) andm by (S m0).
+ Note that :g:`H` has been substituted by :g:`(LeS n m0 l)` and :g:`m` by :g:`(S m0)`.
.. example::