diff options
| author | Jasper Hugunin | 2020-10-09 15:48:01 -0700 |
|---|---|---|
| committer | Jasper Hugunin | 2020-10-11 19:05:14 -0700 |
| commit | 6b04433e6828112bfbd7914ca941912427f0e4ff (patch) | |
| tree | 4d40267d10616843ccd5649e8f5910073aa6dca2 | |
| parent | 8773467e19b40d3b8e21a3690bfba38638df302b (diff) | |
Modify setoid_ring/InitialRing.v to compile with -mangle-names
| -rw-r--r-- | theories/setoid_ring/InitialRing.v | 43 |
1 files changed, 22 insertions, 21 deletions
diff --git a/theories/setoid_ring/InitialRing.v b/theories/setoid_ring/InitialRing.v index bb98a447dc..c33beaf8cd 100644 --- a/theories/setoid_ring/InitialRing.v +++ b/theories/setoid_ring/InitialRing.v @@ -104,7 +104,7 @@ Section ZMORPHISM. Lemma get_signZ_th : sign_theory Z.opp Zeq_bool get_signZ. Proof. constructor. - destruct c;intros;try discriminate. + intros c;destruct c;intros ? H;try discriminate. injection H as [= <-]. simpl. unfold Zeq_bool. rewrite Z.compare_refl. trivial. Qed. @@ -119,7 +119,7 @@ Section ZMORPHISM. Lemma same_gen : forall x, gen_phiPOS1 x == gen_phiPOS x. Proof. - induction x;simpl. + intros x;induction x as [x IHx|x IHx|];simpl. rewrite IHx;destruct x;simpl;norm. rewrite IHx;destruct x;simpl;norm. rrefl. @@ -128,7 +128,7 @@ Section ZMORPHISM. Lemma ARgen_phiPOS_Psucc : forall x, gen_phiPOS1 (Pos.succ x) == 1 + (gen_phiPOS1 x). Proof. - induction x;simpl;norm. + intros x;induction x as [x IHx|x IHx|];simpl;norm. rewrite IHx;norm. add_push 1;rrefl. Qed. @@ -136,7 +136,8 @@ Section ZMORPHISM. Lemma ARgen_phiPOS_add : forall x y, gen_phiPOS1 (x + y) == (gen_phiPOS1 x) + (gen_phiPOS1 y). Proof. - induction x;destruct y;simpl;norm. + intros x;induction x as [x IHx|x IHx|]; + intros y;destruct y as [y|y|];simpl;norm. rewrite Pos.add_carry_spec. rewrite ARgen_phiPOS_Psucc. rewrite IHx;norm. @@ -152,7 +153,7 @@ Section ZMORPHISM. Lemma ARgen_phiPOS_mult : forall x y, gen_phiPOS1 (x * y) == gen_phiPOS1 x * gen_phiPOS1 y. Proof. - induction x;intros;simpl;norm. + intros x;induction x as [x IHx|x IHx|];intros;simpl;norm. rewrite ARgen_phiPOS_add;simpl;rewrite IHx;norm. rewrite IHx;rrefl. Qed. @@ -169,7 +170,7 @@ Section ZMORPHISM. (*morphisms are extensionally equal*) Lemma same_genZ : forall x, [x] == gen_phiZ1 x. Proof. - destruct x;simpl; try rewrite (same_gen ARth);rrefl. + intros x;destruct x;simpl; try rewrite (same_gen ARth);rrefl. Qed. Lemma gen_Zeqb_ok : forall x y, @@ -198,7 +199,7 @@ Section ZMORPHISM. Lemma gen_phiZ_add : forall x y, [x + y] == [x] + [y]. Proof. intros x y; repeat rewrite same_genZ; generalize x y;clear x y. - destruct x, y; simpl; norm. + intros x y;destruct x, y; simpl; norm. apply (ARgen_phiPOS_add ARth). apply gen_phiZ1_pos_sub. rewrite gen_phiZ1_pos_sub. apply (Radd_comm Rth). @@ -301,7 +302,7 @@ Section NMORPHISM. Lemma same_genN : forall x, [x] == gen_phiN1 x. Proof. - destruct x;simpl. reflexivity. + intros x;destruct x;simpl. reflexivity. now rewrite (same_gen Rsth Reqe ARth). Qed. @@ -421,7 +422,7 @@ Section NWORDMORPHISM. Lemma gen_phiNword0_ok : forall w, Nw_is0 w = true -> gen_phiNword w == 0. Proof. -induction w; simpl; intros; auto. +intros w; induction w as [|a w IHw]; simpl; intros; auto. reflexivity. destruct a. @@ -436,17 +437,17 @@ Qed. Lemma gen_phiNword_cons : forall w n, gen_phiNword (n::w) == gen_phiN rO rI radd rmul n - gen_phiNword w. -induction w. - destruct n; simpl; norm. +intros w; induction w. + intros n; destruct n; simpl; norm. - intros. + intros n. destruct n; norm. Qed. Lemma gen_phiNword_Nwcons : forall w n, gen_phiNword (Nwcons n w) == gen_phiN rO rI radd rmul n - gen_phiNword w. -destruct w; intros. - destruct n; norm. +intros w; destruct w; intros n0. + destruct n0; norm. unfold Nwcons. rewrite gen_phiNword_cons. @@ -455,13 +456,13 @@ Qed. Lemma gen_phiNword_ok : forall w1 w2, Nweq_bool w1 w2 = true -> gen_phiNword w1 == gen_phiNword w2. -induction w1; intros. +intros w1; induction w1 as [|a w1 IHw1]; intros w2 H. simpl. rewrite (gen_phiNword0_ok _ H). reflexivity. rewrite gen_phiNword_cons. - destruct w2. + destruct w2 as [|n w2]. simpl in H. destruct a; try discriminate. rewrite (gen_phiNword0_ok _ H). @@ -481,7 +482,7 @@ Qed. Lemma Nwadd_ok : forall x y, gen_phiNword (Nwadd x y) == gen_phiNword x + gen_phiNword y. -induction x; intros. +intros x; induction x as [|n x IHx]; intros y. simpl. norm. @@ -507,7 +508,7 @@ Qed. Lemma Nwscal_ok : forall n x, gen_phiNword (Nwscal n x) == gen_phiN rO rI radd rmul n * gen_phiNword x. -induction x; intros. +intros n x; induction x as [|a x IHx]; intros. norm. simpl Nwscal. @@ -521,7 +522,7 @@ Qed. Lemma Nwmul_ok : forall x y, gen_phiNword (Nwmul x y) == gen_phiNword x * gen_phiNword y. -induction x; intros. +intros x; induction x as [|a x IHx]; intros. norm. destruct a. @@ -626,7 +627,7 @@ Qed. Lemma Ztriv_div_th : div_theory req Z.add Z.mul zphi Z.quotrem. Proof. constructor. - intros; generalize (Z.quotrem_eq a b); case Z.quotrem; intros; subst. + intros a b; generalize (Z.quotrem_eq a b); case Z.quotrem; intros; subst. rewrite Z.mul_comm; rsimpl. Qed. @@ -634,7 +635,7 @@ Qed. Lemma Ntriv_div_th : div_theory req N.add N.mul nphi N.div_eucl. constructor. - intros; generalize (N.div_eucl_spec a b); case N.div_eucl; intros; subst. + intros a b; generalize (N.div_eucl_spec a b); case N.div_eucl; intros; subst. rewrite N.mul_comm; rsimpl. Qed. |
