diff options
| author | letouzey | 2011-06-20 17:18:56 +0000 |
|---|---|---|
| committer | letouzey | 2011-06-20 17:18:56 +0000 |
| commit | 580539fce36067d7c6ee89cbcb8707fd29ebc117 (patch) | |
| tree | ac6a0c7d0a42643858e56598b5d0c690e9c88729 | |
| parent | c251e659c18859d0d8522781ff9d95723b253c11 (diff) | |
Some migration of results from BinInt to Numbers
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14230 85f007b7-540e-0410-9357-904b9bb8a0f7
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZMul.v | 5 | ||||
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZMulOrder.v | 4 | ||||
| -rw-r--r-- | theories/Numbers/NatInt/NZAdd.v | 10 | ||||
| -rw-r--r-- | theories/Numbers/NatInt/NZMul.v | 5 | ||||
| -rw-r--r-- | theories/Numbers/NatInt/NZMulOrder.v | 6 | ||||
| -rw-r--r-- | theories/Numbers/Natural/Abstract/NMulOrder.v | 4 | ||||
| -rw-r--r-- | theories/ZArith/BinInt.v | 34 |
7 files changed, 37 insertions, 31 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZMul.v b/theories/Numbers/Integer/Abstract/ZMul.v index 618722aa81..36f9c3d527 100644 --- a/theories/Numbers/Integer/Abstract/ZMul.v +++ b/theories/Numbers/Integer/Abstract/ZMul.v @@ -53,6 +53,11 @@ Proof. intros n m; now rewrite mul_opp_l, mul_opp_r, opp_involutive. Qed. +Theorem mul_opp_comm : forall n m, (- n) * m == n * (- m). +Proof. +intros n m. now rewrite mul_opp_l, <- mul_opp_r. +Qed. + Theorem mul_sub_distr_l : forall n m p, n * (m - p) == n * m - n * p. Proof. intros n m p. do 2 rewrite <- add_opp_r. rewrite mul_add_distr_l. diff --git a/theories/Numbers/Integer/Abstract/ZMulOrder.v b/theories/Numbers/Integer/Abstract/ZMulOrder.v index c7795ab90b..d0d64faa60 100644 --- a/theories/Numbers/Integer/Abstract/ZMulOrder.v +++ b/theories/Numbers/Integer/Abstract/ZMulOrder.v @@ -208,5 +208,9 @@ apply mul_lt_mono_nonneg. now apply lt_le_incl. assumption. apply le_0_1. assumption. Qed. +(** Alternative name : *) + +Definition mul_eq_1 := eq_mul_1. + End ZMulOrderProp. diff --git a/theories/Numbers/NatInt/NZAdd.v b/theories/Numbers/NatInt/NZAdd.v index 202875b8ac..8bed3027f6 100644 --- a/theories/Numbers/NatInt/NZAdd.v +++ b/theories/Numbers/NatInt/NZAdd.v @@ -30,6 +30,11 @@ intros n m; nzinduct n. now nzsimpl. intro. nzsimpl. now rewrite succ_inj_wd. Qed. +Theorem add_succ_comm : forall n m, S n + m == n + S m. +Proof. +intros n m. now rewrite add_succ_r, add_succ_l. +Qed. + Hint Rewrite add_0_r add_succ_r : nz. Theorem add_comm : forall n m, n + m == m + n. @@ -82,6 +87,11 @@ Proof. intros n m p q. rewrite (add_comm p). apply add_shuffle1. Qed. +Theorem add_shuffle3 : forall n m p, n + (m + p) == m + (n + p). +Proof. +intros n m p. now rewrite add_comm, <- add_assoc, (add_comm p). +Qed. + Theorem sub_1_r : forall n, n - 1 == P n. Proof. intro n; now nzsimpl'. diff --git a/theories/Numbers/NatInt/NZMul.v b/theories/Numbers/NatInt/NZMul.v index 33c50b24eb..2b5a1cf338 100644 --- a/theories/Numbers/NatInt/NZMul.v +++ b/theories/Numbers/NatInt/NZMul.v @@ -81,4 +81,9 @@ Proof. intros n m p q. rewrite (mul_comm p). apply mul_shuffle1. Qed. +Theorem mul_shuffle3 : forall n m p, n * (m * p) == m * (n * p). +Proof. +intros n m p. now rewrite mul_assoc, (mul_comm n), mul_assoc. +Qed. + End NZMulProp. diff --git a/theories/Numbers/NatInt/NZMulOrder.v b/theories/Numbers/NatInt/NZMulOrder.v index 7061dddcdd..30a475aeab 100644 --- a/theories/Numbers/NatInt/NZMulOrder.v +++ b/theories/Numbers/NatInt/NZMulOrder.v @@ -241,6 +241,12 @@ intros n m H1 H2; apply eq_mul_0 in H1. destruct H1 as [H1 | H1]. false_hyp H1 H2. assumption. Qed. +(** Some alternative names: *) + +Definition mul_eq_0 := eq_mul_0. +Definition mul_eq_0_l := eq_mul_0_l. +Definition mul_eq_0_r := eq_mul_0_r. + Theorem lt_0_mul : forall n m, 0 < n * m <-> (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0). Proof. intros n m; split; [intro H | intros [[H1 H2] | [H1 H2]]]. diff --git a/theories/Numbers/Natural/Abstract/NMulOrder.v b/theories/Numbers/Natural/Abstract/NMulOrder.v index 804d1ccc0c..1d6e8ba0a3 100644 --- a/theories/Numbers/Natural/Abstract/NMulOrder.v +++ b/theories/Numbers/Natural/Abstract/NMulOrder.v @@ -74,5 +74,9 @@ assert (H3 : 1 < n * m) by now apply (lt_1_l m). rewrite H in H3; false_hyp H3 lt_irrefl. Qed. +(** Alternative name : *) + +Definition mul_eq_1 := eq_mul_1. + End NMulOrderProp. diff --git a/theories/ZArith/BinInt.v b/theories/ZArith/BinInt.v index eaf30e6d0e..d07fe5174b 100644 --- a/theories/ZArith/BinInt.v +++ b/theories/ZArith/BinInt.v @@ -1295,17 +1295,7 @@ Proof. rewrite geb_leb. apply leb_spec. Qed. -(** TODO : to add in Numbers *) - -Lemma add_shuffle3 n m p : n + (m + p) = m + (n + p). -Proof. - now rewrite add_comm, <- add_assoc, (add_comm p). -Qed. - -Lemma mul_shuffle3 n m p : n * (m * p) = m * (n * p). -Proof. - now rewrite mul_assoc, (mul_comm n), mul_assoc. -Qed. +(** TODO : to add in Numbers ? *) Lemma add_reg_l n m p : n + m = n + p -> m = p. Proof. @@ -1322,25 +1312,6 @@ Proof. exact (fun Hp => proj1 (mul_cancel_r n m p Hp)). Qed. -Lemma add_succ_comm n m : succ n + m = n + succ m. -Proof. - now rewrite add_succ_r, add_succ_l. -Qed. - -Lemma mul_opp_comm n m : - n * m = n * - m. -Proof. - now destruct n, m. -Qed. - -Notation mul_eq_0 := eq_mul_0. - -Lemma mul_eq_0_l n m : n <> 0 -> m * n = 0 -> m = 0. -Proof. - intros Hn H. apply eq_mul_0 in H. now destruct H. -Qed. - -Notation mul_eq_1 := eq_mul_1. - Lemma opp_eq_mul_m1 n : - n = n * -1. Proof. rewrite mul_comm. now destruct n. @@ -1466,7 +1437,6 @@ Notation Zmult_1_r := Z.mul_1_r (only parsing). Notation Zmult_comm := Z.mul_comm (only parsing). Notation Zmult_assoc := Z.mul_assoc (only parsing). Notation Zmult_permute := Z.mul_shuffle3 (only parsing). -Notation Zmult_integral_l := Z.mul_eq_0_l (only parsing). Notation Zmult_1_inversion_l := Z.mul_eq_1 (only parsing). Notation Zdouble_mult := Z.double_spec (only parsing). Notation Zdouble_plus_one_mult := Z.succ_double_spec (only parsing). @@ -1550,6 +1520,8 @@ Lemma Zmult_assoc_reverse : forall n m p, n * m * p = n * (m * p). Proof (SYM3 Z.mul_assoc). Lemma Zmult_integral : forall n m, n * m = 0 -> n = 0 \/ m = 0. Proof (fun n m => proj1 (Z.mul_eq_0 n m)). +Lemma Zmult_integral_l : forall n m, n <> 0 -> m * n = 0 -> m = 0. +Proof (fun n m H H' => Z.mul_eq_0_l m n H' H). Lemma Zopp_mult_distr_l : forall n m, - (n * m) = - n * m. Proof (SYM2 Z.mul_opp_l). Lemma Zopp_mult_distr_r : forall n m, - (n * m) = n * - m. |
