aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorcoqbot-app[bot]2020-12-24 08:03:24 +0000
committerGitHub2020-12-24 08:03:24 +0000
commit532cbed036c48ed2c77528b79fc947c4bc7e1c10 (patch)
tree9c45388cf947c32e889a62f5163bab08f62aba20
parent7b8f73e509438af79f51aefb80e6128aaf0f73a7 (diff)
parentef7dbd83b583abf08f162e343250507ad74744a1 (diff)
Merge PR #13649: Lint stdlib with -mangle-names #5
Reviewed-by: anton-trunov
-rw-r--r--theories/Bool/BoolEq.v2
-rw-r--r--theories/Bool/DecBool.v4
-rw-r--r--theories/Bool/IfProp.v6
-rw-r--r--theories/Bool/Zerob.v8
-rw-r--r--theories/Classes/CEquivalence.v4
-rw-r--r--theories/Classes/CMorphisms.v4
-rw-r--r--theories/Classes/CRelationClasses.v6
-rw-r--r--theories/Classes/DecidableClass.v2
-rw-r--r--theories/Classes/Equivalence.v4
-rw-r--r--theories/Logic/FunctionalExtensionality.v4
-rw-r--r--theories/Logic/JMeq.v6
-rw-r--r--theories/Numbers/Cyclic/Int63/Int63.v34
-rw-r--r--theories/Program/Wf.v24
-rw-r--r--theories/QArith/QArith_base.v28
-rw-r--r--theories/QArith/Qreduction.v6
-rw-r--r--theories/ZArith/Zgcd_alt.v40
-rw-r--r--theories/ZArith/Zpow_facts.v12
-rw-r--r--theories/ZArith/Zpower.v10
-rw-r--r--theories/micromega/Tauto.v4
-rw-r--r--theories/micromega/ZMicromega.v344
-rw-r--r--theories/setoid_ring/Field_theory.v85
21 files changed, 324 insertions, 313 deletions
diff --git a/theories/Bool/BoolEq.v b/theories/Bool/BoolEq.v
index f002ee427c..dd10c758a5 100644
--- a/theories/Bool/BoolEq.v
+++ b/theories/Bool/BoolEq.v
@@ -46,7 +46,7 @@ Section Bool_eq_dec.
Definition exists_beq_eq : forall x y:A, {b : bool | b = beq x y}.
Proof.
- intros.
+ intros x y.
exists (beq x y).
constructor.
Defined.
diff --git a/theories/Bool/DecBool.v b/theories/Bool/DecBool.v
index ef78121d63..5eb2a99739 100644
--- a/theories/Bool/DecBool.v
+++ b/theories/Bool/DecBool.v
@@ -18,7 +18,7 @@ Theorem ifdec_left :
forall (A B:Prop) (C:Set) (H:{A} + {B}),
~ B -> forall x y:C, ifdec H x y = x.
Proof.
- intros; case H; auto.
+ intros A B C H **; case H; auto.
intro; absurd B; trivial.
Qed.
@@ -26,7 +26,7 @@ Theorem ifdec_right :
forall (A B:Prop) (C:Set) (H:{A} + {B}),
~ A -> forall x y:C, ifdec H x y = y.
Proof.
- intros; case H; auto.
+ intros A B C H **; case H; auto.
intro; absurd A; trivial.
Qed.
diff --git a/theories/Bool/IfProp.v b/theories/Bool/IfProp.v
index 7e9087c377..8366e8257e 100644
--- a/theories/Bool/IfProp.v
+++ b/theories/Bool/IfProp.v
@@ -29,13 +29,13 @@ case diff_true_false; trivial with bool.
Qed.
Lemma IfProp_true : forall A B:Prop, IfProp A B true -> A.
-intros.
+intros A B H.
inversion H.
assumption.
Qed.
Lemma IfProp_false : forall A B:Prop, IfProp A B false -> B.
-intros.
+intros A B H.
inversion H.
assumption.
Qed.
@@ -45,7 +45,7 @@ destruct 1; auto with bool.
Qed.
Lemma IfProp_sum : forall (A B:Prop) (b:bool), IfProp A B b -> {A} + {B}.
-destruct b; intro H.
+intros A B b; destruct b; intro H.
- left; inversion H; auto with bool.
- right; inversion H; auto with bool.
Qed.
diff --git a/theories/Bool/Zerob.v b/theories/Bool/Zerob.v
index aff5008410..418fc88489 100644
--- a/theories/Bool/Zerob.v
+++ b/theories/Bool/Zerob.v
@@ -19,26 +19,26 @@ Definition zerob (n:nat) : bool :=
| S _ => false
end.
-Lemma zerob_true_intro : forall n:nat, n = 0 -> zerob n = true.
+Lemma zerob_true_intro (n : nat) : n = 0 -> zerob n = true.
Proof.
destruct n; [ trivial with bool | inversion 1 ].
Qed.
#[global]
Hint Resolve zerob_true_intro: bool.
-Lemma zerob_true_elim : forall n:nat, zerob n = true -> n = 0.
+Lemma zerob_true_elim (n : nat) : zerob n = true -> n = 0.
Proof.
destruct n; [ trivial with bool | inversion 1 ].
Qed.
-Lemma zerob_false_intro : forall n:nat, n <> 0 -> zerob n = false.
+Lemma zerob_false_intro (n : nat) : n <> 0 -> zerob n = false.
Proof.
destruct n; [ destruct 1; auto with bool | trivial with bool ].
Qed.
#[global]
Hint Resolve zerob_false_intro: bool.
-Lemma zerob_false_elim : forall n:nat, zerob n = false -> n <> 0.
+Lemma zerob_false_elim (n : nat) : zerob n = false -> n <> 0.
Proof.
destruct n; [ inversion 1 | auto with bool ].
Qed.
diff --git a/theories/Classes/CEquivalence.v b/theories/Classes/CEquivalence.v
index f23cf158ac..82a76e8afd 100644
--- a/theories/Classes/CEquivalence.v
+++ b/theories/Classes/CEquivalence.v
@@ -64,8 +64,8 @@ Program Instance equiv_transitive `(sa : Equivalence A) : Transitive equiv.
now transitivity y.
Qed.
-Arguments equiv_symmetric {A R} sa x y.
-Arguments equiv_transitive {A R} sa x y z.
+Arguments equiv_symmetric {A R} sa x y : rename.
+Arguments equiv_transitive {A R} sa x y z : rename.
(** Use the [substitute] command which substitutes an equivalence in every hypothesis. *)
diff --git a/theories/Classes/CMorphisms.v b/theories/Classes/CMorphisms.v
index 9ff18ebe2c..d6a0ae5411 100644
--- a/theories/Classes/CMorphisms.v
+++ b/theories/Classes/CMorphisms.v
@@ -567,9 +567,7 @@ Section Normalize.
Lemma proper_normalizes_proper `(Normalizes R0 R1, Proper A R1 m) : Proper R0 m.
Proof.
- red in H, H0. red in H.
- apply (snd (H _ _)).
- assumption.
+ apply (_ : Normalizes R0 R1). assumption.
Qed.
Lemma flip_atom R : Normalizes R (flip (flip R)).
diff --git a/theories/Classes/CRelationClasses.v b/theories/Classes/CRelationClasses.v
index c489d82d0b..561822ef0c 100644
--- a/theories/Classes/CRelationClasses.v
+++ b/theories/Classes/CRelationClasses.v
@@ -352,14 +352,12 @@ Section Binary.
Global Instance partial_order_antisym `(PartialOrder eqA R) : Antisymmetric eqA R.
Proof with auto.
reduce_goal.
- apply H. firstorder.
+ firstorder.
Qed.
Lemma PartialOrder_inverse `(PartialOrder eqA R) : PartialOrder eqA (flip R).
Proof.
- unfold flip; constructor; unfold flip.
- - intros X. apply H. apply symmetry. apply X.
- - unfold relation_conjunction. intros [H1 H2]. apply H. constructor; assumption.
+ firstorder.
Qed.
End Binary.
diff --git a/theories/Classes/DecidableClass.v b/theories/Classes/DecidableClass.v
index 7169aa673d..cd6765bab9 100644
--- a/theories/Classes/DecidableClass.v
+++ b/theories/Classes/DecidableClass.v
@@ -46,7 +46,7 @@ Qed.
(** The generic function that should be used to program, together with some
useful tactics. *)
-Definition decide P {H : Decidable P} := Decidable_witness (Decidable:=H).
+Definition decide P {H : Decidable P} := @Decidable_witness _ H.
Ltac _decide_ P H :=
let b := fresh "b" in
diff --git a/theories/Classes/Equivalence.v b/theories/Classes/Equivalence.v
index d96bd72561..4d9069b4d0 100644
--- a/theories/Classes/Equivalence.v
+++ b/theories/Classes/Equivalence.v
@@ -64,8 +64,8 @@ Program Instance equiv_transitive `(sa : Equivalence A) : Transitive equiv | 1.
now transitivity y.
Qed.
-Arguments equiv_symmetric {A R} sa x y.
-Arguments equiv_transitive {A R} sa x y z.
+Arguments equiv_symmetric {A R} sa x y : rename.
+Arguments equiv_transitive {A R} sa x y z : rename.
(** Use the [substitute] command which substitutes an equivalence in every hypothesis. *)
diff --git a/theories/Logic/FunctionalExtensionality.v b/theories/Logic/FunctionalExtensionality.v
index e9d434b488..ae1d978bfb 100644
--- a/theories/Logic/FunctionalExtensionality.v
+++ b/theories/Logic/FunctionalExtensionality.v
@@ -16,7 +16,7 @@
Lemma equal_f : forall {A B : Type} {f g : A -> B},
f = g -> forall x, f x = g x.
Proof.
- intros.
+ intros A B f g H x.
rewrite H.
auto.
Qed.
@@ -118,7 +118,7 @@ Definition f_equal__functional_extensionality_dep_good
{A B f g} H a
: f_equal (fun h => h a) (@functional_extensionality_dep_good A B f g H) = H a.
Proof.
- apply forall_eq_rect with (H := H); clear H g.
+ apply (fun P k => forall_eq_rect _ P k _ H); clear H g.
change (eq_refl (f a)) with (f_equal (fun h => h a) (eq_refl f)).
apply f_equal, functional_extensionality_dep_good_refl.
Defined.
diff --git a/theories/Logic/JMeq.v b/theories/Logic/JMeq.v
index 7ee3a99d60..21eed3a696 100644
--- a/theories/Logic/JMeq.v
+++ b/theories/Logic/JMeq.v
@@ -39,8 +39,8 @@ Definition JMeq_hom {A : Type} (x y : A) := JMeq x y.
Register JMeq_hom as core.JMeq.hom.
Lemma JMeq_sym : forall (A B:Type) (x:A) (y:B), JMeq x y -> JMeq y x.
-Proof.
-intros; destruct H; trivial.
+Proof.
+intros A B x y H; destruct H; trivial.
Qed.
#[global]
@@ -150,7 +150,7 @@ Lemma JMeq_eq_dep :
forall U (P:U->Type) p q (x:P p) (y:P q),
p = q -> JMeq x y -> eq_dep U P p x q y.
Proof.
-intros.
+intros U P p q x y H H0.
destruct H.
apply JMeq_eq in H0 as ->.
reflexivity.
diff --git a/theories/Numbers/Cyclic/Int63/Int63.v b/theories/Numbers/Cyclic/Int63/Int63.v
index c469a49903..f324bbf52b 100644
--- a/theories/Numbers/Cyclic/Int63/Int63.v
+++ b/theories/Numbers/Cyclic/Int63/Int63.v
@@ -226,7 +226,7 @@ Proof.
apply Z.lt_le_trans with (1:= H5); auto with zarith.
apply Zpower_le_monotone; auto with zarith.
rewrite Zplus_mod; auto with zarith.
- rewrite -> Zmod_small with (a := t); auto with zarith.
+ rewrite -> (Zmod_small t); auto with zarith.
apply Zmod_small; auto with zarith.
split; auto with zarith.
assert (0 <= 2 ^a * r); auto with zarith.
@@ -489,15 +489,15 @@ Definition cast i j :=
Lemma cast_refl : forall i, cast i i = Some (fun P H => H).
Proof.
- unfold cast;intros.
+ unfold cast;intros i.
generalize (eqb_correct i i).
- rewrite eqb_refl;intros.
+ rewrite eqb_refl;intros e.
rewrite (Eqdep_dec.eq_proofs_unicity eq_dec (e (eq_refl true)) (eq_refl i));trivial.
Qed.
Lemma cast_diff : forall i j, i =? j = false -> cast i j = None.
Proof.
- intros;unfold cast;intros; generalize (eqb_correct i j).
+ intros i j H;unfold cast;intros; generalize (eqb_correct i j).
rewrite H;trivial.
Qed.
@@ -509,15 +509,15 @@ Definition eqo i j :=
Lemma eqo_refl : forall i, eqo i i = Some (eq_refl i).
Proof.
- unfold eqo;intros.
+ unfold eqo;intros i.
generalize (eqb_correct i i).
- rewrite eqb_refl;intros.
+ rewrite eqb_refl;intros e.
rewrite (Eqdep_dec.eq_proofs_unicity eq_dec (e (eq_refl true)) (eq_refl i));trivial.
Qed.
Lemma eqo_diff : forall i j, i =? j = false -> eqo i j = None.
Proof.
- unfold eqo;intros; generalize (eqb_correct i j).
+ unfold eqo;intros i j H; generalize (eqb_correct i j).
rewrite H;trivial.
Qed.
@@ -651,7 +651,7 @@ Proof.
apply Zgcdn_is_gcd.
unfold Zgcd_bound.
generalize (to_Z_bounded b).
- destruct φ b.
+ destruct φ b as [|p|p].
unfold size; auto with zarith.
intros (_,H).
cut (Psize p <= size)%nat; [ lia | rewrite <- Zpower2_Psize; auto].
@@ -727,7 +727,7 @@ Proof.
replace ((φ m + φ n) mod wB)%Z with ((((φ m + φ n) - wB) + wB) mod wB)%Z.
rewrite -> Zplus_mod, Z_mod_same_full, Zplus_0_r, !Zmod_small; auto with zarith.
rewrite !Zmod_small; auto with zarith.
- apply f_equal2 with (f := Zmod); auto with zarith.
+ apply (f_equal2 Zmod); auto with zarith.
case_eq (n <=? m + n)%int63; auto.
rewrite leb_spec, H1; auto with zarith.
assert (H1: (φ (m + n) = φ m + φ n)%Z).
@@ -805,7 +805,7 @@ Lemma lsl_add_distr x y n: (x + y) << n = ((x << n) + (y << n))%int63.
Proof.
apply to_Z_inj; rewrite -> !lsl_spec, !add_spec, Zmult_mod_idemp_l.
rewrite -> !lsl_spec, <-Zplus_mod.
- apply f_equal2 with (f := Zmod); auto with zarith.
+ apply (f_equal2 Zmod); auto with zarith.
Qed.
Lemma lsr_M_r x i (H: (digits <=? i = true)%int63) : x >> i = 0%int63.
@@ -973,14 +973,14 @@ Proof.
case H2; intros _ H3; case (Zle_or_lt φ i φ j); intros F2.
2: generalize (H3 F2); discriminate.
clear H2 H3.
- apply f_equal with (f := negb).
- apply f_equal with (f := is_zero).
+ apply (f_equal negb).
+ apply (f_equal is_zero).
apply to_Z_inj.
rewrite -> !lsl_spec, !lsr_spec, !lsl_spec.
pattern wB at 2 3; replace wB with (2^(1+ φ (digits - 1))); auto.
rewrite -> Zpower_exp, Z.pow_1_r; auto with zarith.
rewrite !Zmult_mod_distr_r.
- apply f_equal2 with (f := Zmult); auto.
+ apply (f_equal2 Zmult); auto.
replace wB with (2^ d); auto with zarith.
replace d with ((d - φ i) + φ i)%Z by ring.
case (to_Z_bounded i); intros H1i H2i.
@@ -1078,8 +1078,8 @@ Proof.
2: generalize (Hn 0%int63); do 2 case bit; auto; intros [ ]; auto.
rewrite lsl_add_distr.
rewrite (bit_split x) at 1; rewrite (bit_split y) at 1.
- rewrite <-!add_assoc; apply f_equal2 with (f := add); auto.
- rewrite add_comm, <-!add_assoc; apply f_equal2 with (f := add); auto.
+ rewrite <-!add_assoc; apply (f_equal2 add); auto.
+ rewrite add_comm, <-!add_assoc; apply (f_equal2 add); auto.
rewrite add_comm; auto.
intros Heq.
generalize (add_le_r x y); rewrite Heq, lor_le; intro Hb.
@@ -1360,7 +1360,7 @@ Lemma sqrt2_step_def rec ih il j:
else j
else j.
Proof.
- unfold sqrt2_step; case diveucl_21; intros;simpl.
+ unfold sqrt2_step; case diveucl_21; intros i j';simpl.
case (j +c i);trivial.
Qed.
@@ -1390,7 +1390,7 @@ Proof.
assert (W1:= to_Z_bounded a1).
assert (W2:= to_Z_bounded a2).
assert (Wb:= to_Z_bounded b).
- assert (φ b>0) by (auto with zarith).
+ assert (φ b>0) as H by (auto with zarith).
generalize (Z_div_mod (φ a1*wB+φ a2) φ b H).
revert W.
destruct (diveucl_21 a1 a2 b); destruct (Z.div_eucl (φ a1*wB+φ a2) φ b).
diff --git a/theories/Program/Wf.v b/theories/Program/Wf.v
index d1be8812e9..69873d0321 100644
--- a/theories/Program/Wf.v
+++ b/theories/Program/Wf.v
@@ -43,7 +43,7 @@ Section Well_founded.
forall (x:A) (r:Acc R x),
F_sub x (fun y:{y:A | R y x} => Fix_F_sub (`y) (Acc_inv r (proj2_sig y))) = Fix_F_sub x r.
Proof.
- destruct r using Acc_inv_dep; auto.
+ intros x r; destruct r using Acc_inv_dep; auto.
Qed.
Lemma Fix_F_inv : forall (x:A) (r s:Acc R x), Fix_F_sub x r = Fix_F_sub x s.
@@ -95,12 +95,12 @@ Section Measure_well_founded.
Proof with auto.
unfold well_founded.
cut (forall (a: M) (a0: T), m a0 = a -> Acc MR a0).
- + intros.
+ + intros H a.
apply (H (m a))...
+ apply (@well_founded_ind M R wf (fun mm => forall a, m a = mm -> Acc MR a)).
- intros.
+ intros ? H ? H0.
apply Acc_intro.
- intros.
+ intros y H1.
unfold MR in H1.
rewrite H0 in H1.
apply (H (m y))...
@@ -174,7 +174,7 @@ Section Fix_rects.
revert a'.
pattern x, (Fix_F_sub A R P f x a).
apply Fix_F_sub_rect.
- intros.
+ intros ? H **.
rewrite F_unfold.
apply equiv_lowers.
intros.
@@ -197,11 +197,11 @@ Section Fix_rects.
: forall x, Q _ (Fix_sub A R Rwf P f x).
Proof with auto.
unfold Fix_sub.
- intros.
+ intros x.
apply Fix_F_sub_rect.
- intros.
- assert (forall y: A, R y x0 -> Q y (Fix_F_sub A R P f y (Rwf y)))...
- set (inv x0 X0 a). clearbody q.
+ intros x0 H a.
+ assert (forall y: A, R y x0 -> Q y (Fix_F_sub A R P f y (Rwf y))) as X0...
+ set (q := inv x0 X0 a). clearbody q.
rewrite <- (equiv_lowers (fun y: {y: A | R y x0} =>
Fix_F_sub A R P f (proj1_sig y) (Rwf (proj1_sig y)))
(fun y: {y: A | R y x0} => Fix_F_sub A R P f (proj1_sig y) (Acc_inv a (proj2_sig y))))...
@@ -242,9 +242,9 @@ Module WfExtensionality.
Fix_sub A R Rwf P F_sub x =
F_sub x (fun y:{y : A | R y x} => Fix_sub A R Rwf P F_sub (` y)).
Proof.
- intros ; apply Fix_eq ; auto.
- intros.
- assert(f = g).
+ intros A R Rwf P F_sub x; apply Fix_eq ; auto.
+ intros ? f g H.
+ assert(f = g) as H0.
- extensionality y ; apply H.
- rewrite H0 ; auto.
Qed.
diff --git a/theories/QArith/QArith_base.v b/theories/QArith/QArith_base.v
index b008c6c2aa..4e596a165c 100644
--- a/theories/QArith/QArith_base.v
+++ b/theories/QArith/QArith_base.v
@@ -637,13 +637,13 @@ Qed.
Lemma Qmult_1_l : forall n, 1*n == n.
Proof.
- intro; red; simpl; destruct (Qnum n); auto.
+ intro n; red; simpl; destruct (Qnum n); auto.
Qed.
Theorem Qmult_1_r : forall n, n*1==n.
Proof.
- intro; red; simpl.
- rewrite Z.mul_1_r with (n := Qnum n).
+ intro n; red; simpl.
+ rewrite (Z.mul_1_r (Qnum n)).
rewrite Pos.mul_comm; simpl; trivial.
Qed.
@@ -709,7 +709,7 @@ Qed.
Theorem Qmult_inv_r : forall x, ~ x == 0 -> x*(/x) == 1.
Proof.
intros (x1, x2); unfold Qeq, Qdiv, Qmult; case x1; simpl;
- intros; simpl_mult; try ring.
+ intros H **; simpl_mult; try ring.
elim H; auto.
Qed.
@@ -722,7 +722,7 @@ Qed.
Theorem Qdiv_mult_l : forall x y, ~ y == 0 -> (x*y)/y == x.
Proof.
- intros; unfold Qdiv.
+ intros x y H; unfold Qdiv.
rewrite <- (Qmult_assoc x y (Qinv y)).
rewrite (Qmult_inv_r y H).
apply Qmult_1_r.
@@ -730,7 +730,7 @@ Qed.
Theorem Qmult_div_r : forall x y, ~ y == 0 -> y*(x/y) == x.
Proof.
- intros; unfold Qdiv.
+ intros x y ?; unfold Qdiv.
rewrite (Qmult_assoc y x (Qinv y)).
rewrite (Qmult_comm y x).
fold (Qdiv (Qmult x y) y).
@@ -845,7 +845,7 @@ Qed.
Lemma Qlt_trans : forall x y z, x<y -> y<z -> x<z.
Proof.
- intros.
+ intros x y z ? ?.
apply Qle_lt_trans with y; auto.
apply Qlt_le_weak; auto.
Qed.
@@ -877,19 +877,19 @@ Hint Resolve Qle_not_lt Qlt_not_le Qnot_le_lt Qnot_lt_le
Lemma Q_dec : forall x y, {x<y} + {y<x} + {x==y}.
Proof.
- unfold Qlt, Qle, Qeq; intros.
+ unfold Qlt, Qle, Qeq; intros x y.
exact (Z_dec' (Qnum x * QDen y) (Qnum y * QDen x)).
Defined.
Lemma Qlt_le_dec : forall x y, {x<y} + {y<=x}.
Proof.
- unfold Qlt, Qle; intros.
+ unfold Qlt, Qle; intros x y.
exact (Z_lt_le_dec (Qnum x * QDen y) (Qnum y * QDen x)).
Defined.
Lemma Qarchimedean : forall q : Q, { p : positive | q < Z.pos p # 1 }.
Proof.
- intros. destruct q as [a b]. destruct a.
+ intros q. destruct q as [a b]. destruct a as [|p|p].
- exists xH. reflexivity.
- exists (p+1)%positive. apply (Z.lt_le_trans _ (Z.pos (p+1))).
simpl. rewrite Pos.mul_1_r.
@@ -1169,12 +1169,12 @@ Qed.
Lemma Qinv_lt_contravar : forall a b : Q,
0 < a -> 0 < b -> (a < b <-> /b < /a).
Proof.
- intros. split.
- - intro. rewrite <- Qmult_1_l. apply Qlt_shift_div_r. apply H0.
+ intros a b H H0. split.
+ - intro H1. rewrite <- Qmult_1_l. apply Qlt_shift_div_r. apply H0.
rewrite <- (Qmult_inv_r a). rewrite Qmult_comm.
apply Qmult_lt_l. apply Qinv_lt_0_compat. apply H.
apply H1. intro abs. rewrite abs in H. apply (Qlt_irrefl 0 H).
- - intro. rewrite <- (Qinv_involutive b). rewrite <- (Qmult_1_l (// b)).
+ - intro H1. rewrite <- (Qinv_involutive b). rewrite <- (Qmult_1_l (// b)).
apply Qlt_shift_div_l. apply Qinv_lt_0_compat. apply H0.
rewrite <- (Qmult_inv_r a). apply Qmult_lt_l. apply H.
apply H1. intro abs. rewrite abs in H. apply (Qlt_irrefl 0 H).
@@ -1190,7 +1190,7 @@ Instance Qpower_positive_comp : Proper (Qeq==>eq==>Qeq) Qpower_positive.
Proof.
intros x x' Hx y y' Hy. rewrite <-Hy; clear y' Hy.
unfold Qpower_positive.
-induction y; simpl;
+induction y as [y IHy|y IHy|]; simpl;
try rewrite IHy;
try rewrite Hx;
reflexivity.
diff --git a/theories/QArith/Qreduction.v b/theories/QArith/Qreduction.v
index 533c675415..e94ae1e789 100644
--- a/theories/QArith/Qreduction.v
+++ b/theories/QArith/Qreduction.v
@@ -129,19 +129,19 @@ Qed.
Add Morphism Qplus' with signature (Qeq ==> Qeq ==> Qeq) as Qplus'_comp.
Proof.
- intros; unfold Qplus'.
+ intros ? ? H ? ? H0; unfold Qplus'.
rewrite H, H0; auto with qarith.
Qed.
Add Morphism Qmult' with signature (Qeq ==> Qeq ==> Qeq) as Qmult'_comp.
Proof.
- intros; unfold Qmult'.
+ intros ? ? H ? ? H0; unfold Qmult'.
rewrite H, H0; auto with qarith.
Qed.
Add Morphism Qminus' with signature (Qeq ==> Qeq ==> Qeq) as Qminus'_comp.
Proof.
- intros; unfold Qminus'.
+ intros ? ? H ? ? H0; unfold Qminus'.
rewrite H, H0; auto with qarith.
Qed.
diff --git a/theories/ZArith/Zgcd_alt.v b/theories/ZArith/Zgcd_alt.v
index 9a1bbca99f..c11077607e 100644
--- a/theories/ZArith/Zgcd_alt.v
+++ b/theories/ZArith/Zgcd_alt.v
@@ -58,9 +58,9 @@ Open Scope Z_scope.
Lemma Zgcdn_pos : forall n a b,
0 <= Zgcdn n a b.
Proof.
- induction n.
+ intros n; induction n.
simpl; auto with zarith.
- destruct a; simpl; intros; auto with zarith; auto.
+ intros a; destruct a; simpl; intros; auto with zarith; auto.
Qed.
Lemma Zgcd_alt_pos : forall a b, 0 <= Zgcd_alt a b.
@@ -75,9 +75,9 @@ Open Scope Z_scope.
Lemma Zgcdn_linear_bound : forall n a b,
Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b).
Proof.
- induction n.
+ intros n; induction n as [|n IHn].
intros; lia.
- destruct a; intros; simpl;
+ intros a; destruct a as [|p|p]; intros b H; simpl;
[ generalize (Zis_gcd_0_abs b); intuition | | ];
unfold Z.modulo;
generalize (Z_div_mod b (Zpos p) (eq_refl Gt));
@@ -106,7 +106,7 @@ Open Scope Z_scope.
Lemma fibonacci_pos : forall n, 0 <= fibonacci n.
Proof.
enough (forall N n, (n<N)%nat -> 0<=fibonacci n) by eauto.
- induction N. intros; lia.
+ intros N; induction N as [|N IHN]. intros; lia.
intros [ | [ | n ] ]. 1-2: simpl; lia.
intros.
change (0 <= fibonacci (S n) + fibonacci n).
@@ -116,11 +116,11 @@ Open Scope Z_scope.
Lemma fibonacci_incr :
forall n m, (n<=m)%nat -> fibonacci n <= fibonacci m.
Proof.
- induction 1.
+ induction 1 as [|m H IH].
auto with zarith.
apply Z.le_trans with (fibonacci m); auto.
clear.
- destruct m.
+ destruct m as [|m].
simpl; auto with zarith.
change (fibonacci (S m) <= fibonacci (S m)+fibonacci m).
generalize (fibonacci_pos m); lia.
@@ -137,10 +137,10 @@ Open Scope Z_scope.
fibonacci (S n) <= a /\
fibonacci (S (S n)) <= b.
Proof.
- induction n.
+ intros n; induction n as [|n IHn].
intros [|a|a]; intros; simpl; lia.
intros [|a|a] b (Ha,Ha'); [simpl; lia | | easy ].
- remember (S n) as m.
+ remember (S n) as m eqn:Heqm.
rewrite Heqm at 2. simpl Zgcdn.
unfold Z.modulo; generalize (Z_div_mod b (Zpos a) eq_refl).
destruct (Z.div_eucl b (Zpos a)) as (q,r).
@@ -171,19 +171,19 @@ Open Scope Z_scope.
0 < a < b -> a < fibonacci (S n) ->
Zis_gcd a b (Zgcdn n a b).
Proof.
- destruct a. 1,3 : intros; lia.
+ intros n a; destruct a as [|p|p]. 1,3 : intros; lia.
cut (forall k n b,
k = (S (Pos.to_nat p) - n)%nat ->
0 < Zpos p < b -> Zpos p < fibonacci (S n) ->
Zis_gcd (Zpos p) b (Zgcdn n (Zpos p) b)).
destruct 2; eauto.
- clear n; induction k.
+ clear n; intros k; induction k as [|k IHk].
intros.
apply Zgcdn_linear_bound.
lia.
- intros.
- generalize (Zgcdn_worst_is_fibonacci n (Zpos p) b H0); intros.
- assert (Zis_gcd (Zpos p) b (Zgcdn (S n) (Zpos p) b)).
+ intros n b H H0 H1.
+ generalize (Zgcdn_worst_is_fibonacci n (Zpos p) b H0); intros H2.
+ assert (Zis_gcd (Zpos p) b (Zgcdn (S n) (Zpos p) b)) as H3.
apply IHk; auto.
lia.
replace (fibonacci (S (S n))) with (fibonacci (S n)+fibonacci n) by auto.
@@ -197,13 +197,13 @@ Open Scope Z_scope.
Lemma Zgcd_bound_fibonacci :
forall a, 0 < a -> a < fibonacci (Zgcd_bound a).
Proof.
- destruct a; [lia| | intro H; discriminate].
+ intros a; destruct a as [|p|p]; [lia| | intro H; discriminate].
intros _.
- induction p; [ | | compute; auto ];
+ induction p as [p IHp|p IHp|]; [ | | compute; auto ];
simpl Zgcd_bound in *;
rewrite plus_comm; simpl plus;
set (n:= (Pos.size_nat p+Pos.size_nat p)%nat) in *; simpl;
- assert (n <> O) by (unfold n; destruct p; simpl; auto).
+ assert (n <> O) as H by (unfold n; destruct p; simpl; auto).
destruct n as [ |m]; [elim H; auto| ].
generalize (fibonacci_pos m); rewrite Pos2Z.inj_xI; lia.
@@ -229,11 +229,11 @@ Open Scope Z_scope.
Lemma Zgcdn_is_gcd_pos n a b : (Zgcd_bound (Zpos a) <= n)%nat ->
Zis_gcd (Zpos a) b (Zgcdn n (Zpos a) b).
Proof.
- intros.
+ intros H.
generalize (Zgcd_bound_fibonacci (Zpos a)).
simpl Zgcd_bound in *.
- remember (Pos.size_nat a+Pos.size_nat a)%nat as m.
- assert (1 < m)%nat.
+ remember (Pos.size_nat a+Pos.size_nat a)%nat as m eqn:Heqm.
+ assert (1 < m)%nat as H0.
{ rewrite Heqm; destruct a; simpl; rewrite 1?plus_comm;
auto with arith. }
destruct m as [ |m]; [inversion H0; auto| ].
diff --git a/theories/ZArith/Zpow_facts.v b/theories/ZArith/Zpow_facts.v
index b69af424b1..bc3f5706c9 100644
--- a/theories/ZArith/Zpow_facts.v
+++ b/theories/ZArith/Zpow_facts.v
@@ -83,10 +83,10 @@ Proof. intros. apply Z.lt_le_incl. now apply Z.pow_gt_lin_r. Qed.
Lemma Zpower2_Psize n p :
Zpos p < 2^(Z.of_nat n) <-> (Pos.size_nat p <= n)%nat.
Proof.
- revert p; induction n.
- destruct p; now split.
+ revert p; induction n as [|n IHn].
+ intros p; destruct p; now split.
assert (Hn := Nat2Z.is_nonneg n).
- destruct p; simpl Pos.size_nat.
+ intros p; destruct p as [p|p|]; simpl Pos.size_nat.
- specialize IHn with p.
rewrite Nat2Z.inj_succ, Z.pow_succ_r; lia.
- specialize IHn with p.
@@ -138,7 +138,7 @@ Definition Zpow_mod a m n :=
Theorem Zpow_mod_pos_correct a m n :
n <> 0 -> Zpow_mod_pos a m n = (Z.pow_pos a m) mod n.
Proof.
- intros Hn. induction m.
+ intros Hn. induction m as [m IHm|m IHm|].
- rewrite Pos.xI_succ_xO at 2. rewrite <- Pos.add_1_r, <- Pos.add_diag.
rewrite 2 Zpower_pos_is_exp, Zpower_pos_1_r.
rewrite Z.mul_mod, (Z.mul_mod (Z.pow_pos a m)) by trivial.
@@ -193,7 +193,7 @@ Proof.
assert (p<=1) by (apply Z.divide_pos_le; auto with zarith).
lia.
- intros n Hn Rec.
- rewrite Z.pow_succ_r by trivial. intros.
+ rewrite Z.pow_succ_r by trivial. intros H.
assert (2<=p) by (apply prime_ge_2; auto).
assert (2<=q) by (apply prime_ge_2; auto).
destruct prime_mult with (2 := H); auto.
@@ -229,7 +229,7 @@ Proof.
(* x = 1 *)
exists 0; rewrite Z.pow_0_r; auto.
(* x = 0 *)
- exists n; destruct H; rewrite Z.mul_0_r in H; auto.
+ exists n; destruct H as [? H]; rewrite Z.mul_0_r in H; auto.
Qed.
(** * Z.square: a direct definition of [z^2] *)
diff --git a/theories/ZArith/Zpower.v b/theories/ZArith/Zpower.v
index 6f464d89bb..6b01d798e4 100644
--- a/theories/ZArith/Zpower.v
+++ b/theories/ZArith/Zpower.v
@@ -42,7 +42,7 @@ Lemma Zpower_nat_is_exp :
forall (n m:nat) (z:Z),
Zpower_nat z (n + m) = Zpower_nat z n * Zpower_nat z m.
Proof.
- induction n.
+ intros n; induction n as [|n IHn].
- intros. now rewrite Zpower_nat_0_r, Z.mul_1_l.
- intros. simpl. now rewrite IHn, Z.mul_assoc.
Qed.
@@ -135,7 +135,7 @@ Section Powers_of_2.
Lemma two_power_nat_equiv n : two_power_nat n = 2 ^ (Z.of_nat n).
Proof.
- induction n.
+ induction n as [|n IHn].
- trivial.
- now rewrite Nat2Z.inj_succ, Z.pow_succ_r, <- IHn by apply Nat2Z.is_nonneg.
Qed.
@@ -164,7 +164,7 @@ Section Powers_of_2.
Theorem shift_nat_correct n x :
Zpos (shift_nat n x) = Zpower_nat 2 n * Zpos x.
Proof.
- induction n.
+ induction n as [|n IHn].
- trivial.
- now rewrite Zpower_nat_succ_r, <- Z.mul_assoc, <- IHn.
Qed.
@@ -295,7 +295,7 @@ Section power_div_with_rest.
rewrite Z.mul_sub_distr_r, Z.mul_shuffle3, Z.mul_assoc.
repeat split; auto.
rewrite !Z.mul_1_l, H, Z.add_assoc.
- apply f_equal2 with (f := Z.add); auto.
+ apply (f_equal2 Z.add); auto.
rewrite <- Z.sub_sub_distr, <- !Z.add_diag, Z.add_simpl_r.
now rewrite Z.mul_1_l.
- rewrite Pos2Z.neg_xO in H.
@@ -303,7 +303,7 @@ Section power_div_with_rest.
repeat split; auto.
- repeat split; auto.
rewrite H, (Z.mul_opp_l 1), Z.mul_1_l, Z.add_assoc.
- apply f_equal2 with (f := Z.add); auto.
+ apply (f_equal2 Z.add); auto.
rewrite Z.add_comm, <- Z.add_diag.
rewrite Z.mul_add_distr_l.
replace (-1 * d) with (-d).
diff --git a/theories/micromega/Tauto.v b/theories/micromega/Tauto.v
index 515372466a..e4129f8382 100644
--- a/theories/micromega/Tauto.v
+++ b/theories/micromega/Tauto.v
@@ -1371,13 +1371,13 @@ Section S.
destruct pol;auto.
generalize (is_cnf_tt_inv (xcnf (negb true) f1)).
destruct (is_cnf_tt (xcnf (negb true) f1)).
- + intros.
+ + intros H.
rewrite H by auto.
reflexivity.
+
generalize (is_cnf_ff_inv (xcnf (negb true) f1)).
destruct (is_cnf_ff (xcnf (negb true) f1)).
- * intros.
+ * intros H.
rewrite H by auto.
unfold or_cnf_opt.
simpl.
diff --git a/theories/micromega/ZMicromega.v b/theories/micromega/ZMicromega.v
index 1616b5a2a4..a4b631fc13 100644
--- a/theories/micromega/ZMicromega.v
+++ b/theories/micromega/ZMicromega.v
@@ -38,7 +38,7 @@ Ltac inv H := inversion H ; try subst ; clear H.
Lemma eq_le_iff : forall x, 0 = x <-> (0 <= x /\ x <= 0).
Proof.
intros.
- split ; intros.
+ split ; intros H.
- subst.
compute. intuition congruence.
- destruct H.
@@ -48,7 +48,7 @@ Qed.
Lemma lt_le_iff : forall x,
0 < x <-> 0 <= x - 1.
Proof.
- split ; intros.
+ split ; intros H.
- apply Zlt_succ_le.
ring_simplify.
auto.
@@ -70,12 +70,13 @@ Lemma le_neg : forall x,
Proof.
intro.
rewrite lt_le_iff.
- split ; intros.
+ split ; intros H.
- apply Znot_le_gt in H.
apply Zgt_le_succ in H.
rewrite le_0_iff in H.
ring_simplify in H; auto.
- - assert (C := (Z.add_le_mono _ _ _ _ H H0)).
+ - intro H0.
+ assert (C := (Z.add_le_mono _ _ _ _ H H0)).
ring_simplify in C.
compute in C.
apply C ; reflexivity.
@@ -84,7 +85,7 @@ Qed.
Lemma eq_cnf : forall x,
(0 <= x - 1 -> False) /\ (0 <= -1 - x -> False) <-> x = 0.
Proof.
- intros.
+ intros x.
rewrite Z.eq_sym_iff.
rewrite eq_le_iff.
rewrite (le_0_iff x 0).
@@ -108,7 +109,7 @@ Proof.
auto using Z.le_antisymm.
eauto using Z.le_trans.
apply Z.le_neq.
- destruct (Z.lt_trichotomy n m) ; intuition.
+ apply Z.lt_trichotomy.
apply Z.add_le_mono_l; assumption.
apply Z.mul_pos_pos ; auto.
discriminate.
@@ -160,18 +161,18 @@ Fixpoint Zeval_const (e: PExpr Z) : option Z :=
Lemma ZNpower : forall r n, r ^ Z.of_N n = pow_N 1 Z.mul r n.
Proof.
- destruct n.
+ intros r n; destruct n as [|p].
reflexivity.
simpl.
unfold Z.pow_pos.
replace (pow_pos Z.mul r p) with (1 * (pow_pos Z.mul r p)) by ring.
generalize 1.
- induction p; simpl ; intros ; repeat rewrite IHp ; ring.
+ induction p as [p IHp|p IHp|]; simpl ; intros ; repeat rewrite IHp ; ring.
Qed.
Lemma Zeval_expr_compat : forall env e, Zeval_expr env e = eval_expr env e.
Proof.
- induction e ; simpl ; try congruence.
+ intros env e; induction e ; simpl ; try congruence.
reflexivity.
rewrite ZNpower. congruence.
Qed.
@@ -201,7 +202,7 @@ Lemma pop2_bop2 :
forall (op : Op2) (q1 q2 : Z), is_true (Zeval_bop2 op q1 q2) <-> Zeval_pop2 op q1 q2.
Proof.
unfold is_true.
- destruct op ; simpl; intros.
+ intro op; destruct op ; simpl; intros q1 q2.
- apply Z.eqb_eq.
- rewrite <- Z.eqb_eq.
rewrite negb_true_iff.
@@ -220,7 +221,7 @@ Definition Zeval_op2 (k: Tauto.kind) : Op2 -> Z -> Z -> Tauto.rtyp k:=
Lemma Zeval_op2_hold : forall k op q1 q2,
Tauto.hold k (Zeval_op2 k op q1 q2) <-> Zeval_pop2 op q1 q2.
Proof.
- destruct k.
+ intro k; destruct k.
simpl ; tauto.
simpl. apply pop2_bop2.
Qed.
@@ -235,18 +236,18 @@ Definition Zeval_formula' :=
Lemma Zeval_formula_compat : forall env k f, Tauto.hold k (Zeval_formula env k f) <-> Zeval_formula env Tauto.isProp f.
Proof.
- destruct k ; simpl.
+ intros env k; destruct k ; simpl.
- tauto.
- - destruct f ; simpl.
- rewrite <- Zeval_op2_hold with (k:=Tauto.isBool).
+ - intros f; destruct f ; simpl.
+ rewrite <- (Zeval_op2_hold Tauto.isBool).
simpl. tauto.
Qed.
Lemma Zeval_formula_compat' : forall env f, Zeval_formula env Tauto.isProp f <-> Zeval_formula' env f.
Proof.
- intros.
+ intros env f.
unfold Zeval_formula.
- destruct f.
+ destruct f as [Flhs Fop Frhs].
repeat rewrite Zeval_expr_compat.
unfold Zeval_formula' ; simpl.
unfold eval_expr.
@@ -343,7 +344,7 @@ Lemma Zunsat_sound : forall f,
Zunsat f = true -> forall env, eval_nformula env f -> False.
Proof.
unfold Zunsat.
- intros.
+ intros f H env ?.
destruct f.
eapply check_inconsistent_sound with (1 := Zsor) (2 := ZSORaddon) in H; eauto.
Qed.
@@ -365,7 +366,7 @@ Lemma xnnormalise_correct :
forall env f,
eval_nformula env (xnnormalise f) <-> Zeval_formula env Tauto.isProp f.
Proof.
- intros.
+ intros env f.
rewrite Zeval_formula_compat'.
unfold xnnormalise.
destruct f as [lhs o rhs].
@@ -375,18 +376,18 @@ Proof.
generalize ( eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Z.mul) env lhs);
generalize (eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x)
- (fun x : N => x) (pow_N 1 Z.mul) env rhs); intros.
+ (fun x : N => x) (pow_N 1 Z.mul) env rhs); intros z z0.
- split ; intros.
- + assert (z0 + (z - z0) = z0 + 0) by congruence.
+ + assert (z0 + (z - z0) = z0 + 0) as H0 by congruence.
rewrite Z.add_0_r in H0.
rewrite <- H0.
ring.
+ subst.
ring.
- - split ; repeat intro.
+ - split ; intros H H0.
subst. apply H. ring.
apply H.
- assert (z0 + (z - z0) = z0 + 0) by congruence.
+ assert (z0 + (z - z0) = z0 + 0) as H1 by congruence.
rewrite Z.add_0_r in H1.
rewrite <- H1.
ring.
@@ -396,11 +397,11 @@ Proof.
- split ; intros.
+ apply Zle_0_minus_le; auto.
+ apply Zle_minus_le_0; auto.
- - split ; intros.
+ - split ; intros H.
+ apply Zlt_0_minus_lt; auto.
+ apply Zlt_left_lt in H.
apply H.
- - split ; intros.
+ - split ; intros H.
+ apply Zlt_0_minus_lt ; auto.
+ apply Zlt_left_lt in H.
apply H.
@@ -430,7 +431,7 @@ Ltac iff_ring :=
Lemma xnormalise_correct : forall env f,
(make_conj (fun x => eval_nformula env x -> False) (xnormalise f)) <-> eval_nformula env f.
Proof.
- intros.
+ intros env f.
destruct f as [e o]; destruct o eqn:Op; cbn - [psub];
repeat rewrite eval_pol_sub; fold eval_pol; repeat rewrite eval_pol_Pc;
generalize (eval_pol env e) as x; intro.
@@ -458,11 +459,11 @@ Lemma cnf_of_list_correct :
make_conj (fun x : NFormula Z => eval_nformula env x -> False) f.
Proof.
unfold cnf_of_list.
- intros.
+ intros T tg f env.
set (F := (fun (x : NFormula Z) (acc : list (list (NFormula Z * T))) =>
if Zunsat x then acc else ((x, tg) :: nil) :: acc)).
set (E := ((fun x : NFormula Z => eval_nformula env x -> False))).
- induction f.
+ induction f as [|a f IHf].
- compute.
tauto.
- rewrite make_conj_cons.
@@ -489,10 +490,10 @@ Definition normalise {T : Type} (t:Formula Z) (tg:T) : cnf (NFormula Z) T :=
Lemma normalise_correct : forall (T: Type) env t (tg:T), eval_cnf eval_nformula env (normalise t tg) <-> Zeval_formula env Tauto.isProp t.
Proof.
- intros.
+ intros T env t tg.
rewrite <- xnnormalise_correct.
unfold normalise.
- generalize (xnnormalise t) as f;intro.
+ generalize (xnnormalise t) as f;intro f.
destruct (Zunsat f) eqn:U.
- assert (US := Zunsat_sound _ U env).
rewrite eval_cnf_ff.
@@ -519,10 +520,10 @@ Definition negate {T : Type} (t:Formula Z) (tg:T) : cnf (NFormula Z) T :=
Lemma xnegate_correct : forall env f,
(make_conj (fun x => eval_nformula env x -> False) (xnegate f)) <-> ~ eval_nformula env f.
Proof.
- intros.
+ intros env f.
destruct f as [e o]; destruct o eqn:Op; cbn - [psub];
repeat rewrite eval_pol_sub; fold eval_pol; repeat rewrite eval_pol_Pc;
- generalize (eval_pol env e) as x; intro.
+ generalize (eval_pol env e) as x; intro x.
- tauto.
- rewrite eq_cnf.
destruct (Z.eq_decidable x 0);tauto.
@@ -533,10 +534,10 @@ Qed.
Lemma negate_correct : forall T env t (tg:T), eval_cnf eval_nformula env (negate t tg) <-> ~ Zeval_formula env Tauto.isProp t.
Proof.
- intros.
+ intros T env t tg.
rewrite <- xnnormalise_correct.
unfold negate.
- generalize (xnnormalise t) as f;intro.
+ generalize (xnnormalise t) as f;intro f.
destruct (Zunsat f) eqn:U.
- assert (US := Zunsat_sound _ U env).
rewrite eval_cnf_tt.
@@ -569,10 +570,10 @@ Require Import Znumtheory.
Lemma Zdivide_ceiling : forall a b, (b | a) -> ceiling a b = Z.div a b.
Proof.
unfold ceiling.
- intros.
+ intros a b H.
apply Zdivide_mod in H.
case_eq (Z.div_eucl a b).
- intros.
+ intros z z0 H0.
change z with (fst (z,z0)).
rewrite <- H0.
change (fst (Z.div_eucl a b)) with (Z.div a b).
@@ -642,12 +643,12 @@ Definition isZ0 (x:Z) :=
Lemma isZ0_0 : forall x, isZ0 x = true <-> x = 0.
Proof.
- destruct x ; simpl ; intuition congruence.
+ intros x; destruct x ; simpl ; intuition congruence.
Qed.
Lemma isZ0_n0 : forall x, isZ0 x = false <-> x <> 0.
Proof.
- destruct x ; simpl ; intuition congruence.
+ intros x; destruct x ; simpl ; intuition congruence.
Qed.
Definition ZgcdM (x y : Z) := Z.max (Z.gcd x y) 1.
@@ -682,8 +683,8 @@ Inductive Zdivide_pol (x:Z): PolC Z -> Prop :=
Lemma Zdiv_pol_correct : forall a p, 0 < a -> Zdivide_pol a p ->
forall env, eval_pol env p = a * eval_pol env (Zdiv_pol p a).
Proof.
- intros until 2.
- induction H0.
+ intros a p H H0.
+ induction H0 as [? ?|? ? IHZdivide_pol j|? ? ? IHZdivide_pol1 ? IHZdivide_pol2 j].
(* Pc *)
simpl.
intros.
@@ -702,7 +703,7 @@ Qed.
Lemma Zgcd_pol_ge : forall p, fst (Zgcd_pol p) >= 0.
Proof.
- induction p. 1-2: easy.
+ intros p; induction p as [c|p p1 IHp1|p1 IHp1 ? p3 IHp3]. 1-2: easy.
simpl.
case_eq (Zgcd_pol p1).
case_eq (Zgcd_pol p3).
@@ -715,7 +716,7 @@ Qed.
Lemma Zdivide_pol_Zdivide : forall p x y, Zdivide_pol x p -> (y | x) -> Zdivide_pol y p.
Proof.
- intros.
+ intros p x y H H0.
induction H.
constructor.
apply Z.divide_trans with (1:= H0) ; assumption.
@@ -725,7 +726,7 @@ Qed.
Lemma Zdivide_pol_one : forall p, Zdivide_pol 1 p.
Proof.
- induction p ; constructor ; auto.
+ intros p; induction p as [c| |]; constructor ; auto.
exists c. ring.
Qed.
@@ -744,19 +745,19 @@ Lemma Zdivide_pol_sub : forall p a b,
Zdivide_pol a (PsubC Z.sub p b) ->
Zdivide_pol (Z.gcd a b) p.
Proof.
- induction p.
+ intros p; induction p as [c|? p IHp|p ? ? ? IHp2].
simpl.
- intros. inversion H0.
+ intros a b H H0. inversion H0.
constructor.
apply Zgcd_minus ; auto.
- intros.
+ intros ? ? H H0.
constructor.
simpl in H0. inversion H0 ; subst; clear H0.
apply IHp ; auto.
- simpl. intros.
+ simpl. intros a b H H0.
inv H0.
constructor.
- apply Zdivide_pol_Zdivide with (1:= H3).
+ apply Zdivide_pol_Zdivide with (1:= (ltac:(assumption) : Zdivide_pol a p)).
destruct (Zgcd_is_gcd a b) ; assumption.
apply IHp2 ; assumption.
Qed.
@@ -765,15 +766,15 @@ Lemma Zdivide_pol_sub_0 : forall p a,
Zdivide_pol a (PsubC Z.sub p 0) ->
Zdivide_pol a p.
Proof.
- induction p.
+ intros p; induction p as [c|? p IHp|? IHp1 ? ? IHp2].
simpl.
- intros. inversion H.
+ intros ? H. inversion H.
constructor. rewrite Z.sub_0_r in *. assumption.
- intros.
+ intros ? H.
constructor.
simpl in H. inversion H ; subst; clear H.
apply IHp ; auto.
- simpl. intros.
+ simpl. intros ? H.
inv H.
constructor. auto.
apply IHp2 ; assumption.
@@ -783,9 +784,9 @@ Qed.
Lemma Zgcd_pol_div : forall p g c,
Zgcd_pol p = (g, c) -> Zdivide_pol g (PsubC Z.sub p c).
Proof.
- induction p ; simpl.
+ intros p; induction p as [c|? ? IHp|p1 IHp1 ? p3 IHp2]; simpl.
(* Pc *)
- intros. inv H.
+ intros ? ? H. inv H.
constructor.
exists 0. now ring.
(* Pinj *)
@@ -793,28 +794,28 @@ Proof.
constructor. apply IHp ; auto.
(* PX *)
intros g c.
- case_eq (Zgcd_pol p1) ; case_eq (Zgcd_pol p3) ; intros.
+ case_eq (Zgcd_pol p1) ; case_eq (Zgcd_pol p3) ; intros z z0 H z1 z2 H0 H1.
inv H1.
unfold ZgcdM at 1.
destruct (Zmax_spec (Z.gcd (ZgcdM z1 z2) z) 1) as [HH1 | HH1];
destruct HH1 as [HH1 HH1'] ; rewrite HH1'.
constructor.
- apply Zdivide_pol_Zdivide with (x:= ZgcdM z1 z2).
+ apply (Zdivide_pol_Zdivide _ (ZgcdM z1 z2)).
unfold ZgcdM.
destruct (Zmax_spec (Z.gcd z1 z2) 1) as [HH2 | HH2].
- destruct HH2.
+ destruct HH2 as [H1 H2].
rewrite H2.
apply Zdivide_pol_sub ; auto.
apply Z.lt_le_trans with 1. reflexivity. now apply Z.ge_le.
- destruct HH2. rewrite H2.
+ destruct HH2 as [H1 H2]. rewrite H2.
apply Zdivide_pol_one.
unfold ZgcdM in HH1. unfold ZgcdM.
destruct (Zmax_spec (Z.gcd z1 z2) 1) as [HH2 | HH2].
- destruct HH2. rewrite H2 in *.
+ destruct HH2 as [H1 H2]. rewrite H2 in *.
destruct (Zgcd_is_gcd (Z.gcd z1 z2) z); auto.
- destruct HH2. rewrite H2.
+ destruct HH2 as [H1 H2]. rewrite H2.
destruct (Zgcd_is_gcd 1 z); auto.
- apply Zdivide_pol_Zdivide with (x:= z).
+ apply (Zdivide_pol_Zdivide _ z).
apply (IHp2 _ _ H); auto.
destruct (Zgcd_is_gcd (ZgcdM z1 z2) z); auto.
constructor. apply Zdivide_pol_one.
@@ -873,7 +874,7 @@ Definition is_pol_Z0 (p : PolC Z) : bool :=
Lemma is_pol_Z0_eval_pol : forall p, is_pol_Z0 p = true -> forall env, eval_pol env p = 0.
Proof.
unfold is_pol_Z0.
- destruct p ; try discriminate.
+ intros p; destruct p as [z| |]; try discriminate.
destruct z ; try discriminate.
reflexivity.
Qed.
@@ -915,8 +916,8 @@ Fixpoint max_var (jmp : positive) (p : Pol Z) : positive :=
Lemma pos_le_add : forall y x,
(x <= y + x)%positive.
Proof.
- intros.
- assert ((Z.pos x) <= Z.pos (x + y))%Z.
+ intros y x.
+ assert ((Z.pos x) <= Z.pos (x + y))%Z as H.
rewrite <- (Z.add_0_r (Zpos x)).
rewrite <- Pos2Z.add_pos_pos.
apply Z.add_le_mono_l.
@@ -929,10 +930,10 @@ Qed.
Lemma max_var_le : forall p v,
(v <= max_var v p)%positive.
Proof.
- induction p; simpl.
+ intros p; induction p as [?|p ? IHp|? IHp1 ? ? IHp2]; simpl.
- intros.
apply Pos.le_refl.
- - intros.
+ - intros v.
specialize (IHp (p+v)%positive).
eapply Pos.le_trans ; eauto.
assert (xH + v <= p + v)%positive.
@@ -942,7 +943,7 @@ Proof.
}
eapply Pos.le_trans ; eauto.
apply pos_le_add.
- - intros.
+ - intros v.
apply Pos.max_case_strong;intros ; auto.
specialize (IHp2 (Pos.succ v)%positive).
eapply Pos.le_trans ; eauto.
@@ -951,10 +952,10 @@ Qed.
Lemma max_var_correct : forall p j v,
In v (vars j p) -> Pos.le v (max_var j p).
Proof.
- induction p; simpl.
+ intros p; induction p; simpl.
- tauto.
- auto.
- - intros.
+ - intros j v H.
rewrite in_app_iff in H.
destruct H as [H |[ H | H]].
+ subst.
@@ -980,7 +981,7 @@ Section MaxVar.
(v <= acc ->
v <= fold_left F l acc)%positive.
Proof.
- induction l ; simpl ; [easy|].
+ intros l; induction l as [|a l IHl] ; simpl ; [easy|].
intros.
apply IHl.
unfold F.
@@ -993,7 +994,7 @@ Section MaxVar.
(acc <= acc' ->
fold_left F l acc <= fold_left F l acc')%positive.
Proof.
- induction l ; simpl ; [easy|].
+ intros l; induction l as [|a l IHl]; simpl ; [easy|].
intros.
apply IHl.
unfold F.
@@ -1006,13 +1007,13 @@ Section MaxVar.
Lemma max_var_nformulae_correct_aux : forall l p o v,
In (p,o) l -> In v (vars xH p) -> Pos.le v (fold_left F l 1)%positive.
Proof.
- intros.
+ intros l p o v H H0.
generalize 1%positive as acc.
revert p o v H H0.
- induction l.
+ induction l as [|a l IHl].
- simpl. tauto.
- simpl.
- intros.
+ intros p o v H H0 ?.
destruct H ; subst.
+ unfold F at 2.
simpl.
@@ -1128,14 +1129,14 @@ Require Import Wf_nat.
Lemma in_bdepth : forall l a b y, In y l -> ltof ZArithProof bdepth y (EnumProof a b l).
Proof.
- induction l.
+ intros l; induction l as [|a l IHl].
(* nil *)
simpl.
tauto.
(* cons *)
simpl.
- intros.
- destruct H.
+ intros a0 b y H.
+ destruct H as [H|H].
subst.
unfold ltof.
simpl.
@@ -1180,8 +1181,8 @@ Lemma eval_Psatz_sound : forall env w l f',
make_conj (eval_nformula env) l ->
eval_Psatz l w = Some f' -> eval_nformula env f'.
Proof.
- intros.
- apply (eval_Psatz_Sound Zsor ZSORaddon) with (l:=l) (e:= w) ; auto.
+ intros env w l f' H H0.
+ apply (fun H => eval_Psatz_Sound Zsor ZSORaddon l _ H w) ; auto.
apply make_conj_in ; auto.
Qed.
@@ -1193,7 +1194,7 @@ Proof.
unfold nformula_of_cutting_plane.
unfold eval_nformula. unfold RingMicromega.eval_nformula.
unfold eval_op1.
- intros.
+ intros env e e' c H H0.
rewrite (RingMicromega.eval_pol_add Zsor ZSORaddon).
simpl.
(**)
@@ -1201,10 +1202,10 @@ Proof.
revert H0.
case_eq (Zgcd_pol e) ; intros g c0.
generalize (Zgt_cases g 0) ; destruct (Z.gtb g 0).
- intros.
+ intros H0 H1 H2.
inv H2.
change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in *.
- apply Zgcd_pol_correct_lt with (env:=env) in H1. 2: auto using Z.gt_lt.
+ apply (Zgcd_pol_correct_lt _ env) in H1. 2: auto using Z.gt_lt.
apply Z.le_add_le_sub_l, Z.ge_le; rewrite Z.add_0_r.
apply (narrow_interval_lower_bound g (- c0) (eval_pol env (Zdiv_pol (PsubC Z.sub e c0) g)) H0).
apply Z.le_ge.
@@ -1213,7 +1214,7 @@ Proof.
rewrite <- H1.
assumption.
(* g <= 0 *)
- intros. inv H2. auto with zarith.
+ intros H0 H1 H2. inv H2. auto with zarith.
Qed.
Lemma cutting_plane_sound : forall env f p,
@@ -1222,34 +1223,34 @@ Lemma cutting_plane_sound : forall env f p,
eval_nformula env (nformula_of_cutting_plane p).
Proof.
unfold genCuttingPlane.
- destruct f as [e op].
+ intros env f; destruct f as [e op].
destruct op.
(* Equal *)
- destruct p as [[e' z] op].
+ intros p; destruct p as [[e' z] op].
case_eq (Zgcd_pol e) ; intros g c.
case_eq (Z.gtb g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Z.gcd g c) g))) ; [discriminate|].
case_eq (makeCuttingPlane e).
- intros.
+ intros ? ? H H0 H1 H2 H3.
inv H3.
unfold makeCuttingPlane in H.
rewrite H1 in H.
revert H.
change (eval_pol env e = 0) in H2.
case_eq (Z.gtb g 0).
- intros.
- rewrite <- Zgt_is_gt_bool in H.
+ intros H H3.
+ rewrite <- Zgt_is_gt_bool in H.
rewrite Zgcd_pol_correct_lt with (1:= H1) in H2. 2: auto using Z.gt_lt.
- unfold nformula_of_cutting_plane.
+ unfold nformula_of_cutting_plane.
change (eval_pol env (padd e' (Pc z)) = 0).
inv H3.
rewrite eval_pol_add.
set (x:=eval_pol env (Zdiv_pol (PsubC Z.sub e c) g)) in *; clearbody x.
simpl.
rewrite andb_false_iff in H0.
- destruct H0.
+ destruct H0 as [H0|H0].
rewrite Zgt_is_gt_bool in H ; congruence.
rewrite andb_false_iff in H0.
- destruct H0.
+ destruct H0 as [H0|H0].
rewrite negb_false_iff in H0.
apply Zeq_bool_eq in H0.
subst. simpl.
@@ -1259,13 +1260,13 @@ Proof.
apply Zeq_bool_eq in H0.
assert (HH := Zgcd_is_gcd g c).
rewrite H0 in HH.
- inv HH.
+ destruct HH as [H3 H4 ?].
apply Zdivide_opp_r in H4.
rewrite Zdivide_ceiling ; auto.
apply Z.sub_move_0_r.
apply Z.div_unique_exact. now intros ->.
now rewrite Z.add_move_0_r in H2.
- intros.
+ intros H H3.
unfold nformula_of_cutting_plane.
inv H3.
change (eval_pol env (padd e' (Pc 0)) = 0).
@@ -1273,7 +1274,7 @@ Proof.
simpl.
now rewrite Z.add_0_r.
(* NonEqual *)
- intros.
+ intros ? H H0.
inv H0.
unfold eval_nformula in *.
unfold RingMicromega.eval_nformula in *.
@@ -1282,20 +1283,20 @@ Proof.
rewrite (RingMicromega.eval_pol_add Zsor ZSORaddon).
simpl. now rewrite Z.add_0_r.
(* Strict *)
- destruct p as [[e' z] op].
+ intros p; destruct p as [[e' z] op].
case_eq (makeCuttingPlane (PsubC Z.sub e 1)).
- intros.
+ intros ? ? H H0 H1.
inv H1.
- apply makeCuttingPlane_ns_sound with (env:=env) (2:= H).
+ apply (makeCuttingPlane_ns_sound env) with (2:= H).
simpl in *.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
now apply Z.lt_le_pred.
(* NonStrict *)
- destruct p as [[e' z] op].
+ intros p; destruct p as [[e' z] op].
case_eq (makeCuttingPlane e).
- intros.
+ intros ? ? H H0 H1.
inv H1.
- apply makeCuttingPlane_ns_sound with (env:=env) (2:= H).
+ apply (makeCuttingPlane_ns_sound env) with (2:= H).
assumption.
Qed.
@@ -1304,12 +1305,15 @@ Lemma genCuttingPlaneNone : forall env f,
eval_nformula env f -> False.
Proof.
unfold genCuttingPlane.
- destruct f.
+ intros env f; destruct f as [p o].
destruct o.
case_eq (Zgcd_pol p) ; intros g c.
case_eq (Z.gtb g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Z.gcd g c) g))).
- intros.
+ intros H H0 H1 H2.
flatten_bool.
+ match goal with [ H' : (g >? 0) = true |- ?G ] => rename H' into H3 end.
+ match goal with [ H' : negb (Zeq_bool c 0) = true |- ?G ] => rename H' into H end.
+ match goal with [ H' : negb (Zeq_bool (Z.gcd g c) g) = true |- ?G ] => rename H' into H5 end.
rewrite negb_true_iff in H5.
apply Zeq_bool_neq in H5.
rewrite <- Zgt_is_gt_bool in H3.
@@ -1359,7 +1363,7 @@ Lemma agree_env_subset : forall v1 v2 env env',
agree_env v2 env env'.
Proof.
unfold agree_env.
- intros.
+ intros v1 v2 env env' H ? ? ?.
apply H.
eapply Pos.le_trans ; eauto.
Qed.
@@ -1369,7 +1373,7 @@ Lemma agree_env_jump : forall fr j env env',
agree_env (fr + j) env env' ->
agree_env fr (Env.jump j env) (Env.jump j env').
Proof.
- intros.
+ intros fr j env env' H.
unfold agree_env ; intro.
intros.
unfold Env.jump.
@@ -1382,7 +1386,7 @@ Lemma agree_env_tail : forall fr env env',
agree_env (Pos.succ fr) env env' ->
agree_env fr (Env.tail env) (Env.tail env').
Proof.
- intros.
+ intros fr env env' H.
unfold Env.tail.
apply agree_env_jump.
rewrite <- Pos.add_1_r in H.
@@ -1393,7 +1397,7 @@ Qed.
Lemma max_var_acc : forall p i j,
(max_var (i + j) p = max_var i p + j)%positive.
Proof.
- induction p; simpl.
+ intros p; induction p as [|? ? IHp|? IHp1 ? ? IHp2]; simpl.
- reflexivity.
- intros.
rewrite ! IHp.
@@ -1415,27 +1419,27 @@ Lemma agree_env_eval_nformula :
(AGREE : agree_env (max_var xH (fst e)) env env'),
eval_nformula env e <-> eval_nformula env' e.
Proof.
- destruct e.
- simpl; intros.
+ intros env env' e; destruct e as [p o].
+ simpl; intros AGREE.
assert ((RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x) env p)
=
- (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x) env' p)).
+ (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x) env' p)) as H.
{
revert env env' AGREE.
generalize xH.
- induction p ; simpl.
+ induction p as [?|p ? IHp|? IHp1 ? ? IHp2]; simpl.
- reflexivity.
- - intros.
- apply IHp with (p := p1%positive).
+ - intros p1 **.
+ apply (IHp p1).
apply agree_env_jump.
eapply agree_env_subset; eauto.
rewrite (Pos.add_comm p).
rewrite max_var_acc.
apply Pos.le_refl.
- - intros.
+ - intros p ? ? AGREE.
f_equal.
f_equal.
- { apply IHp1 with (p:= p).
+ { apply (IHp1 p).
eapply agree_env_subset; eauto.
apply Pos.le_max_l.
}
@@ -1446,7 +1450,7 @@ Proof.
apply Pos.le_1_l.
}
{
- apply IHp2 with (p := p).
+ apply (IHp2 p).
apply agree_env_tail.
eapply agree_env_subset; eauto.
rewrite !Pplus_one_succ_r.
@@ -1463,11 +1467,11 @@ Lemma agree_env_eval_nformulae :
make_conj (eval_nformula env) l <->
make_conj (eval_nformula env') l.
Proof.
- induction l.
+ intros env env' l; induction l as [|a l IHl].
- simpl. tauto.
- intros.
rewrite ! make_conj_cons.
- assert (eval_nformula env a <-> eval_nformula env' a).
+ assert (eval_nformula env a <-> eval_nformula env' a) as H.
{
apply agree_env_eval_nformula.
eapply agree_env_subset ; eauto.
@@ -1491,7 +1495,7 @@ Qed.
Lemma eq_true_iff_eq :
forall b1 b2 : bool, (b1 = true <-> b2 = true) <-> b1 = b2.
Proof.
- destruct b1,b2 ; intuition congruence.
+ intros b1 b2; destruct b1,b2 ; intuition congruence.
Qed.
Ltac pos_tac :=
@@ -1520,7 +1524,7 @@ Qed.
Lemma ZChecker_sound : forall w l,
ZChecker l w = true -> forall env, make_impl (eval_nformula env) l False.
Proof.
- induction w using (well_founded_ind (well_founded_ltof _ bdepth)).
+ intros w; induction w as [w H] using (well_founded_ind (well_founded_ltof _ bdepth)).
destruct w as [ | w pf | w pf | p pf1 pf2 | w1 w2 pf | x pf].
- (* DoneProof *)
simpl. discriminate.
@@ -1529,12 +1533,12 @@ Proof.
intros l. case_eq (eval_Psatz l w) ; [| discriminate].
intros f Hf.
case_eq (Zunsat f).
- intros.
+ intros H0 ? ?.
apply (checker_nf_sound Zsor ZSORaddon l w).
unfold check_normalised_formulas. unfold eval_Psatz in Hf. rewrite Hf.
unfold Zunsat in H0. assumption.
- intros.
- assert (make_impl (eval_nformula env) (f::l) False).
+ intros H0 H1 env.
+ assert (make_impl (eval_nformula env) (f::l) False) as H2.
apply H with (2:= H1).
unfold ltof.
simpl.
@@ -1553,8 +1557,8 @@ Proof.
case_eq (eval_Psatz l w) ; [ | discriminate].
intros f' Hlc.
case_eq (genCuttingPlane f').
- intros.
- assert (make_impl (eval_nformula env) (nformula_of_cutting_plane p::l) False).
+ intros p H0 H1 env.
+ assert (make_impl (eval_nformula env) (nformula_of_cutting_plane p::l) False) as H2.
eapply (H pf) ; auto.
unfold ltof.
simpl.
@@ -1565,13 +1569,13 @@ Proof.
intro.
apply H2.
split ; auto.
- apply eval_Psatz_sound with (env:=env) in Hlc.
+ apply (eval_Psatz_sound env) in Hlc.
apply cutting_plane_sound with (1:= Hlc) (2:= H0).
auto.
(* genCuttingPlane = None *)
- intros.
+ intros H0 H1 env.
rewrite <- make_conj_impl.
- intros.
+ intros H2.
apply eval_Psatz_sound with (2:= Hlc) in H2.
apply genCuttingPlaneNone with (2:= H2) ; auto.
- (* SplitProof *)
@@ -1581,18 +1585,20 @@ Proof.
case_eq (genCuttingPlane (popp p, NonStrict)) ; [| discriminate].
intros cp1 GCP1 cp2 GCP2 ZC1 env.
flatten_bool.
+ match goal with [ H' : ZChecker _ pf1 = true |- _ ] => rename H' into H0 end.
+ match goal with [ H' : ZChecker _ pf2 = true |- _ ] => rename H' into H1 end.
destruct (eval_nformula_split env p).
- + apply H with (env:=env) in H0.
+ + apply (fun H' ck => H _ H' _ ck env) in H0.
rewrite <- make_conj_impl in *.
intro ; apply H0.
rewrite make_conj_cons. split; auto.
- apply cutting_plane_sound with (f:= (p,NonStrict)) ; auto.
+ apply (cutting_plane_sound _ (p,NonStrict)) ; auto.
apply ltof_bdepth_split_l.
- + apply H with (env:=env) in H1.
+ + apply (fun H' ck => H _ H' _ ck env) in H1.
rewrite <- make_conj_impl in *.
intro ; apply H1.
rewrite make_conj_cons. split; auto.
- apply cutting_plane_sound with (f:= (popp p,NonStrict)) ; auto.
+ apply (cutting_plane_sound _ (popp p,NonStrict)) ; auto.
apply ltof_bdepth_split_r.
- (* EnumProof *)
intros l.
@@ -1601,22 +1607,22 @@ Proof.
case_eq (eval_Psatz l w2) ; [ | discriminate].
intros f1 Hf1 f2 Hf2.
case_eq (genCuttingPlane f2).
- destruct p as [ [p1 z1] op1].
+ intros p; destruct p as [ [p1 z1] op1].
case_eq (genCuttingPlane f1).
- destruct p as [ [p2 z2] op2].
+ intros p; destruct p as [ [p2 z2] op2].
case_eq (valid_cut_sign op1 && valid_cut_sign op2 && is_pol_Z0 (padd p1 p2)).
intros Hcond.
flatten_bool.
- rename H1 into HZ0.
- rename H2 into Hop1.
- rename H3 into Hop2.
+ match goal with [ H1 : is_pol_Z0 (padd p1 p2) = true |- _ ] => rename H1 into HZ0 end.
+ match goal with [ H2 : valid_cut_sign op1 = true |- _ ] => rename H2 into Hop1 end.
+ match goal with [ H3 : valid_cut_sign op2 = true |- _ ] => rename H3 into Hop2 end.
intros HCutL HCutR Hfix env.
(* get the bounds of the enum *)
rewrite <- make_conj_impl.
- intro.
- assert (-z1 <= eval_pol env p1 <= z2).
+ intro H0.
+ assert (-z1 <= eval_pol env p1 <= z2) as H1.
split.
- apply eval_Psatz_sound with (env:=env) in Hf2 ; auto.
+ apply (eval_Psatz_sound env) in Hf2 ; auto.
apply cutting_plane_sound with (1:= Hf2) in HCutR.
unfold nformula_of_cutting_plane in HCutR.
unfold eval_nformula in HCutR.
@@ -1628,10 +1634,10 @@ Proof.
rewrite Z.add_move_0_l in HCutR; rewrite HCutR, Z.opp_involutive; reflexivity.
now apply Z.le_sub_le_add_r in HCutR.
(**)
- apply is_pol_Z0_eval_pol with (env := env) in HZ0.
+ apply (fun H => is_pol_Z0_eval_pol _ H env) in HZ0.
rewrite eval_pol_add, Z.add_move_r, Z.sub_0_l in HZ0.
rewrite HZ0.
- apply eval_Psatz_sound with (env:=env) in Hf1 ; auto.
+ apply (eval_Psatz_sound env) in Hf1 ; auto.
apply cutting_plane_sound with (1:= Hf1) in HCutL.
unfold nformula_of_cutting_plane in HCutL.
unfold eval_nformula in HCutL.
@@ -1647,7 +1653,7 @@ Proof.
match goal with
| |- context[?F pf (-z1) z2 = true] => set (FF := F)
end.
- intros.
+ intros Hfix.
assert (HH :forall x, -z1 <= x <= z2 -> exists pr,
(In pr pf /\
ZChecker ((PsubC Z.sub p1 x,Equal) :: l) pr = true)%Z).
@@ -1655,16 +1661,18 @@ Proof.
revert Hfix.
generalize (-z1). clear z1. intro z1.
revert z1 z2.
- induction pf;simpl ;intros.
+ induction pf as [|a pf IHpf];simpl ;intros z1 z2 Hfix x **.
revert Hfix.
now case (Z.gtb_spec); [ | easy ]; intros LT; elim (Zlt_not_le _ _ LT); transitivity x.
flatten_bool.
+ match goal with [ H' : _ <= x <= _ |- _ ] => rename H' into H0 end.
+ match goal with [ H' : FF pf (z1 + 1) z2 = true |- _ ] => rename H' into H2 end.
destruct (Z_le_lt_eq_dec _ _ (proj1 H0)) as [ LT | -> ].
2: exists a; auto.
rewrite <- Z.le_succ_l in LT.
assert (LE: (Z.succ z1 <= x <= z2)%Z) by intuition.
elim IHpf with (2:=H2) (3:= LE).
- intros.
+ intros x0 ?.
exists x0 ; split;tauto.
intros until 1.
apply H ; auto.
@@ -1676,7 +1684,7 @@ Proof.
apply Z.add_le_mono_r. assumption.
(*/asser *)
destruct (HH _ H1) as [pr [Hin Hcheker]].
- assert (make_impl (eval_nformula env) ((PsubC Z.sub p1 (eval_pol env p1),Equal) :: l) False).
+ assert (make_impl (eval_nformula env) ((PsubC Z.sub p1 (eval_pol env p1),Equal) :: l) False) as H2.
eapply (H pr) ;auto.
apply in_bdepth ; auto.
rewrite <- make_conj_impl in H2.
@@ -1690,15 +1698,15 @@ Proof.
unfold eval_pol. ring.
discriminate.
(* No cutting plane *)
- intros.
+ intros H0 H1 H2 env.
rewrite <- make_conj_impl.
- intros.
+ intros H3.
apply eval_Psatz_sound with (2:= Hf1) in H3.
apply genCuttingPlaneNone with (2:= H3) ; auto.
(* No Cutting plane (bis) *)
- intros.
+ intros H0 H1 env.
rewrite <- make_conj_impl.
- intros.
+ intros H2.
apply eval_Psatz_sound with (2:= Hf2) in H2.
apply genCuttingPlaneNone with (2:= H2) ; auto.
- intros l.
@@ -1708,15 +1716,15 @@ Proof.
set (z1 := (Pos.succ fr)) in *.
set (t1 := (Pos.succ z1)) in *.
destruct (x <=? fr)%positive eqn:LE ; [|congruence].
- intros.
+ intros H0 env.
set (env':= fun v => if Pos.eqb v z1
then if Z.leb (env x) 0 then 0 else env x
else if Pos.eqb v t1
then if Z.leb (env x) 0 then -(env x) else 0
else env v).
- apply H with (env:=env') in H0.
+ apply (fun H' ck => H _ H' _ ck env') in H0.
+ rewrite <- make_conj_impl in *.
- intro.
+ intro H1.
rewrite !make_conj_cons in H0.
apply H0 ; repeat split.
*
@@ -1729,17 +1737,17 @@ Proof.
destruct (env x <=? 0); ring.
{ unfold t1.
pos_tac; normZ.
- lia (Hyp H2).
+ lia (Hyp (e := Z.pos z1 - Z.succ (Z.pos z1)) ltac:(assumption)).
}
{
unfold t1, z1.
pos_tac; normZ.
- lia (Add (Hyp LE) (Hyp H3)).
+ lia (Add (Hyp LE) (Hyp (e := Z.pos x - Z.succ (Z.succ (Z.pos fr))) ltac:(assumption))).
}
{
unfold z1.
pos_tac; normZ.
- lia (Add (Hyp LE) (Hyp H3)).
+ lia (Add (Hyp LE) (Hyp (e := Z.pos x - Z.succ (Z.pos fr)) ltac:(assumption))).
}
*
apply eval_nformula_bound_var.
@@ -1749,7 +1757,7 @@ Proof.
compute. congruence.
rewrite Z.leb_gt in EQ.
normZ.
- lia (Add (Hyp EQ) (Hyp H2)).
+ lia (Add (Hyp EQ) (Hyp (e := 0 - (env x + 1)) ltac:(assumption))).
*
apply eval_nformula_bound_var.
unfold env'.
@@ -1758,15 +1766,15 @@ Proof.
destruct (env x <=? 0) eqn:EQ.
rewrite Z.leb_le in EQ.
normZ.
- lia (Add (Hyp EQ) (Hyp H2)).
+ lia (Add (Hyp EQ) (Hyp (e := 0 - (- env x + 1)) ltac:(assumption))).
compute; congruence.
unfold t1.
clear.
pos_tac; normZ.
- lia (Hyp H).
+ lia (Hyp (e := Z.pos z1 - Z.succ (Z.pos z1)) ltac:(assumption)).
*
- rewrite agree_env_eval_nformulae with (env':= env') in H1;auto.
- unfold agree_env; intros.
+ rewrite (agree_env_eval_nformulae _ env') in H1;auto.
+ unfold agree_env; intros x0 H2.
unfold env'.
replace (x0 =? z1)%positive with false.
replace (x0 =? t1)%positive with false.
@@ -1776,13 +1784,13 @@ Proof.
unfold fr in *.
apply Pos2Z.pos_le_pos in H2.
pos_tac; normZ.
- lia (Add (Hyp H2) (Hyp H4)).
+ lia (Add (Hyp H2) (Hyp (e := Z.pos x0 - Z.succ (Z.succ (Z.pos (max_var_nformulae l)))) ltac:(assumption))).
}
{
unfold z1, fr in *.
apply Pos2Z.pos_le_pos in H2.
pos_tac; normZ.
- lia (Add (Hyp H2) (Hyp H4)).
+ lia (Add (Hyp H2) (Hyp (e := Z.pos x0 - Z.succ (Z.pos (max_var_nformulae l))) ltac:(assumption))).
}
+ unfold ltof.
simpl.
@@ -1796,27 +1804,27 @@ Lemma ZTautoChecker_sound : forall f w, ZTautoChecker f w = true -> forall env,
Proof.
intros f w.
unfold ZTautoChecker.
- apply tauto_checker_sound with (eval' := eval_nformula).
+ apply (tauto_checker_sound _ _ _ _ eval_nformula).
- apply Zeval_nformula_dec.
- - intros until env.
+ - intros t ? env.
unfold eval_nformula. unfold RingMicromega.eval_nformula.
destruct t.
apply (check_inconsistent_sound Zsor ZSORaddon) ; auto.
- - unfold Zdeduce. intros. revert H.
+ - unfold Zdeduce. intros ? ? ? H **. revert H.
apply (nformula_plus_nformula_correct Zsor ZSORaddon); auto.
-
- intros.
+ intros ? ? ? ? H.
rewrite normalise_correct in H.
rewrite Zeval_formula_compat; auto.
-
- intros.
+ intros ? ? ? ? H.
rewrite negate_correct in H ; auto.
rewrite Tauto.hold_eNOT.
rewrite Zeval_formula_compat; auto.
- intros t w0.
unfold eval_tt.
- intros.
- rewrite make_impl_map with (eval := eval_nformula env).
+ intros H env.
+ rewrite (make_impl_map (eval_nformula env)).
eapply ZChecker_sound; eauto.
tauto.
Qed.
diff --git a/theories/setoid_ring/Field_theory.v b/theories/setoid_ring/Field_theory.v
index c12f46bed6..4b3bba9843 100644
--- a/theories/setoid_ring/Field_theory.v
+++ b/theories/setoid_ring/Field_theory.v
@@ -397,7 +397,7 @@ Qed.
Theorem cross_product_eq a b c d :
~ b == 0 -> ~ d == 0 -> a * d == c * b -> a / b == c / d.
Proof.
-intros.
+intros H H0 H1.
transitivity (a / b * (d / d)).
- now rewrite rdiv_r_r, rmul_1_r.
- now rewrite rdiv4, H1, (rmul_comm b d), <- rdiv4, rdiv_r_r.
@@ -418,23 +418,23 @@ Qed.
Lemma pow_pos_0 p : pow_pos rmul 0 p == 0.
Proof.
-induction p;simpl;trivial; now rewrite !IHp.
+induction p as [p IHp|p IHp|];simpl;trivial; now rewrite !IHp.
Qed.
Lemma pow_pos_1 p : pow_pos rmul 1 p == 1.
Proof.
-induction p;simpl;trivial; ring [IHp].
+induction p as [p IHp|p IHp|];simpl;trivial; ring [IHp].
Qed.
Lemma pow_pos_cst c p : pow_pos rmul [c] p == [pow_pos cmul c p].
Proof.
-induction p;simpl;trivial; now rewrite !(morph_mul CRmorph), !IHp.
+induction p as [p IHp|p IHp|];simpl;trivial; now rewrite !(morph_mul CRmorph), !IHp.
Qed.
Lemma pow_pos_mul_l x y p :
pow_pos rmul (x * y) p == pow_pos rmul x p * pow_pos rmul y p.
Proof.
-induction p;simpl;trivial; ring [IHp].
+induction p as [p IHp|p IHp|];simpl;trivial; ring [IHp].
Qed.
Lemma pow_pos_add_r x p1 p2 :
@@ -446,7 +446,7 @@ Qed.
Lemma pow_pos_mul_r x p1 p2 :
pow_pos rmul x (p1*p2) == pow_pos rmul (pow_pos rmul x p1) p2.
Proof.
-induction p1;simpl;intros; rewrite ?pow_pos_mul_l, ?pow_pos_add_r;
+induction p1 as [p1 IHp1|p1 IHp1|];simpl;intros; rewrite ?pow_pos_mul_l, ?pow_pos_add_r;
simpl; trivial; ring [IHp1].
Qed.
@@ -459,8 +459,8 @@ Qed.
Lemma pow_pos_div a b p : ~ b == 0 ->
pow_pos rmul (a / b) p == pow_pos rmul a p / pow_pos rmul b p.
Proof.
- intros.
- induction p; simpl; trivial.
+ intros H.
+ induction p as [p IHp|p IHp|]; simpl; trivial.
- rewrite IHp.
assert (nz := pow_pos_nz p H).
rewrite !rdiv4; trivial.
@@ -578,14 +578,15 @@ Qed.
Theorem PExpr_eq_semi_ok e e' :
PExpr_eq e e' = true -> (e === e')%poly.
Proof.
-revert e'; induction e; destruct e'; simpl; try discriminate.
+revert e'; induction e as [| |?|?|? IHe1 ? IHe2|? IHe1 ? IHe2|? IHe1 ? IHe2|? IHe|? IHe ?];
+ intro e'; destruct e'; simpl; try discriminate.
- intros H l. now apply (morph_eq CRmorph).
- case Pos.eqb_spec; intros; now subst.
- intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2.
- intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2.
- intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2.
- intros H. now rewrite IHe.
-- intros H. destruct (if_true _ _ H).
+- intros H. destruct (if_true _ _ H) as [H0 H1].
apply N.eqb_eq in H0. now rewrite IHe, H0.
Qed.
@@ -667,7 +668,7 @@ Proof.
- case Pos.eqb_spec; [intro; subst | intros _].
+ simpl. now rewrite rpow_pow.
+ destruct e;simpl;trivial.
- repeat case ceqb_spec; intros; rewrite ?rpow_pow, ?H; simpl.
+ repeat case ceqb_spec; intros H **; rewrite ?rpow_pow, ?H; simpl.
* now rewrite phi_1, pow_pos_1.
* now rewrite phi_0, pow_pos_0.
* now rewrite pow_pos_cst.
@@ -686,7 +687,8 @@ Infix "**" := NPEmul (at level 40, left associativity).
Theorem NPEmul_ok e1 e2 : (e1 ** e2 === e1 * e2)%poly.
Proof.
intros l.
-revert e2; induction e1;destruct e2; simpl;try reflexivity;
+revert e2; induction e1 as [| |?|?|? IHe1 ? IHe2|? IHe1 ? IHe2|? IHe1 ? IHe2|? IHe1|? IHe1 n];
+ intro e2; destruct e2; simpl;try reflexivity;
repeat (case ceqb_spec; intro H; try rewrite H; clear H);
simpl; try reflexivity; try ring [phi_0 phi_1].
apply (morph_mul CRmorph).
@@ -801,7 +803,7 @@ Qed.
Theorem PCond_app l l1 l2 :
PCond l (l1 ++ l2) <-> PCond l l1 /\ PCond l l2.
Proof.
-induction l1.
+induction l1 as [|a l1 IHl1].
- simpl. split; [split|destruct 1]; trivial.
- simpl app. rewrite !PCond_cons, IHl1. symmetry; apply and_assoc.
Qed.
@@ -813,7 +815,7 @@ Definition absurd_PCond := cons 0%poly nil.
Lemma absurd_PCond_bottom : forall l, ~ PCond l absurd_PCond.
Proof.
unfold absurd_PCond; simpl.
-red; intros.
+red; intros ? H.
apply H.
apply phi_0.
Qed.
@@ -901,7 +903,7 @@ Theorem isIn_ok e1 p1 e2 p2 :
Proof.
Opaque NPEpow.
revert p1 p2.
-induction e2; intros p1 p2;
+induction e2 as [| |?|?|? IHe1 ? IHe2|? IHe1 ? IHe2|? IHe2_1 ? IHe2_2|? IHe|? IHe2 n]; intros p1 p2;
try refine (default_isIn_ok e1 _ p1 p2); simpl isIn.
- specialize (IHe2_1 p1 p2).
destruct isIn as [([|p],e)|].
@@ -936,7 +938,7 @@ induction e2; intros p1 p2;
destruct IHe2_2 as (IH,GT). split; trivial.
set (d := ZtoN (Z.pos p1 - NtoZ n)) in *; clearbody d.
npe_simpl. rewrite IH. npe_ring.
-- destruct n; trivial.
+- destruct n as [|p]; trivial.
specialize (IHe2 p1 (p * p2)%positive).
destruct isIn as [(n,e)|]; trivial.
destruct IHe2 as (IH,GT). split; trivial.
@@ -983,7 +985,7 @@ Lemma split_aux_ok1 e1 p e2 :
/\ e2 === right res * common res)%poly.
Proof.
Opaque NPEpow NPEmul.
- intros. unfold res;clear res; generalize (isIn_ok e1 p e2 xH).
+ intros res. unfold res;clear res; generalize (isIn_ok e1 p e2 xH).
destruct (isIn e1 p e2 1) as [([|p'],e')|]; simpl.
- intros (H1,H2); split; npe_simpl.
+ now rewrite PE_1_l.
@@ -1000,7 +1002,8 @@ Theorem split_aux_ok: forall e1 p e2,
(e1 ^ Npos p === left (split_aux e1 p e2) * common (split_aux e1 p e2)
/\ e2 === right (split_aux e1 p e2) * common (split_aux e1 p e2))%poly.
Proof.
-induction e1;intros k e2; try refine (split_aux_ok1 _ k e2);simpl.
+intro e1;induction e1 as [| |?|?|? IHe1_1 ? IHe1_2|? IHe1_1 ? IHe1_2|e1_1 IHe1_1 ? IHe1_2|? IHe1|? IHe1 n];
+ intros k e2; try refine (split_aux_ok1 _ k e2);simpl.
destruct (IHe1_1 k e2) as (H1,H2).
destruct (IHe1_2 k (right (split_aux e1_1 k e2))) as (H3,H4).
clear IHe1_1 IHe1_2.
@@ -1101,7 +1104,8 @@ Eval compute
Theorem Pcond_Fnorm l e :
PCond l (condition (Fnorm e)) -> ~ (denum (Fnorm e))@l == 0.
Proof.
-induction e; simpl condition; rewrite ?PCond_cons, ?PCond_app;
+induction e as [| |?|?|? IHe1 ? IHe2|? IHe1 ? IHe2|? IHe1 ? IHe2|? IHe|? IHe|? IHe1 ? IHe2|? IHe n];
+ simpl condition; rewrite ?PCond_cons, ?PCond_app;
simpl denum; intros (Hc1,Hc2) || intros Hc; rewrite ?NPEmul_ok.
- simpl. rewrite phi_1; exact rI_neq_rO.
- simpl. rewrite phi_1; exact rI_neq_rO.
@@ -1141,7 +1145,8 @@ Theorem Fnorm_FEeval_PEeval l fe:
PCond l (condition (Fnorm fe)) ->
FEeval l fe == (num (Fnorm fe)) @ l / (denum (Fnorm fe)) @ l.
Proof.
-induction fe; simpl condition; rewrite ?PCond_cons, ?PCond_app; simpl;
+induction fe as [| |?|?|fe1 IHfe1 fe2 IHfe2|fe1 IHfe1 fe2 IHfe2|fe1 IHfe1 fe2 IHfe2|fe IHfe|fe IHfe|fe1 IHfe1 fe2 IHfe2|fe IHfe n];
+ simpl condition; rewrite ?PCond_cons, ?PCond_app; simpl;
intros (Hc1,Hc2) || intros Hc;
try (specialize (IHfe1 Hc1);apply Pcond_Fnorm in Hc1);
try (specialize (IHfe2 Hc2);apply Pcond_Fnorm in Hc2);
@@ -1260,7 +1265,7 @@ Proof.
destruct (Nnorm _ _ _) as [c | | ] eqn: HN;
try ( apply rdiv_ext;
eapply ring_rw_correct; eauto).
- destruct (ceqb_spec c cI).
+ destruct (ceqb_spec c cI) as [H0|].
set (nnum := NPphi_dev _ _).
apply eq_trans with (nnum / NPphi_dev l (Pc c)).
apply rdiv_ext;
@@ -1285,7 +1290,7 @@ Proof.
destruct (Nnorm _ _ _) as [c | | ] eqn: HN;
try ( apply rdiv_ext;
eapply ring_rw_pow_correct; eauto).
- destruct (ceqb_spec c cI).
+ destruct (ceqb_spec c cI) as [H0|].
set (nnum := NPphi_pow _ _).
apply eq_trans with (nnum / NPphi_pow l (Pc c)).
apply rdiv_ext;
@@ -1415,7 +1420,8 @@ Theorem Field_simplify_eq_pow_in_correct :
NPphi_pow l np1 ==
NPphi_pow l np2.
Proof.
- intros. subst nfe1 nfe2 lmp np1 np2.
+ intros n l lpe fe1 fe2 ? lmp ? nfe1 ? nfe2 ? den ? np1 ? np2 ? ? ?.
+ subst nfe1 nfe2 lmp np1 np2.
rewrite !(Pphi_pow_ok Rsth Reqe ARth CRmorph pow_th get_sign_spec).
repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial).
simpl. apply Field_simplify_aux_ok; trivial.
@@ -1434,7 +1440,8 @@ forall n l lpe fe1 fe2,
PCond l (condition nfe1 ++ condition nfe2) ->
NPphi_dev l np1 == NPphi_dev l np2.
Proof.
- intros. subst nfe1 nfe2 lmp np1 np2.
+ intros n l lpe fe1 fe2 ? lmp ? nfe1 ? nfe2 ? den ? np1 ? np2 ? ? ?.
+ subst nfe1 nfe2 lmp np1 np2.
rewrite !(Pphi_dev_ok Rsth Reqe ARth CRmorph get_sign_spec).
repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial).
apply Field_simplify_aux_ok; trivial.
@@ -1458,7 +1465,7 @@ Lemma fcons_ok : forall l l1,
(forall lock, lock = PCond l -> lock (Fapp l1 nil)) -> PCond l l1.
Proof.
intros l l1 h1; assert (H := h1 (PCond l) (refl_equal _));clear h1.
-induction l1; simpl; intros.
+induction l1 as [|a l1 IHl1]; simpl; intros.
trivial.
elim PCond_fcons_inv with (1 := H); intros.
destruct l1; trivial. split; trivial. apply IHl1; trivial.
@@ -1480,7 +1487,7 @@ Fixpoint Fcons (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) :=
Theorem PFcons_fcons_inv:
forall l a l1, PCond l (Fcons a l1) -> ~ a @ l == 0 /\ PCond l l1.
Proof.
-induction l1 as [|e l1]; simpl Fcons.
+intros l a l1; induction l1 as [|e l1 IHl1]; simpl Fcons.
- simpl; now split.
- case PExpr_eq_spec; intros H; rewrite !PCond_cons; intros (H1,H2);
repeat split; trivial.
@@ -1501,7 +1508,7 @@ Fixpoint Fcons0 (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) :=
Theorem PFcons0_fcons_inv:
forall l a l1, PCond l (Fcons0 a l1) -> ~ a @ l == 0 /\ PCond l l1.
Proof.
-induction l1 as [|e l1]; simpl Fcons0.
+intros l a l1; induction l1 as [|e l1 IHl1]; simpl Fcons0.
- simpl; now split.
- generalize (ring_correct O l nil a e). lazy zeta; simpl Peq.
case Peq; intros H; rewrite !PCond_cons; intros (H1,H2);
@@ -1529,7 +1536,7 @@ intros l a; elim a; try (intros; apply PFcons0_fcons_inv; trivial; fail).
destruct (H0 _ H3) as (H4,H5). split; trivial.
simpl.
apply field_is_integral_domain; trivial.
-- intros. destruct (H _ H0). split; trivial.
+- intros ? H ? ? H0. destruct (H _ H0). split; trivial.
apply PEpow_nz; trivial.
Qed.
@@ -1580,7 +1587,7 @@ intros l a; elim a; try (intros; apply PFcons0_fcons_inv; trivial; fail).
split; trivial.
apply ropp_neq_0; trivial.
rewrite (morph_opp CRmorph), phi_0, phi_1 in H0. trivial.
-- intros. destruct (H _ H0);split;trivial. apply PEpow_nz; trivial.
+- intros ? H ? ? H0. destruct (H _ H0);split;trivial. apply PEpow_nz; trivial.
Qed.
Definition Fcons2 e l := Fcons1 (PEsimp e) l.
@@ -1674,7 +1681,7 @@ Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0.
Lemma add_inj_r p x y :
gen_phiPOS1 rI radd rmul p + x == gen_phiPOS1 rI radd rmul p + y -> x==y.
Proof.
-elim p using Pos.peano_ind; simpl; intros.
+elim p using Pos.peano_ind; simpl; [intros H|intros ? H ?].
apply S_inj; trivial.
apply H.
apply S_inj.
@@ -1710,8 +1717,8 @@ Lemma gen_phiN_inj x y :
gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y ->
x = y.
Proof.
-destruct x; destruct y; simpl; intros; trivial.
- elim gen_phiPOS_not_0 with p.
+destruct x as [|p]; destruct y as [|p']; simpl; intros H; trivial.
+ elim gen_phiPOS_not_0 with p'.
symmetry .
rewrite (same_gen Rsth Reqe ARth); trivial.
elim gen_phiPOS_not_0 with p.
@@ -1770,14 +1777,14 @@ Lemma gen_phiZ_inj x y :
gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y ->
x = y.
Proof.
-destruct x; destruct y; simpl; intros.
+destruct x as [|p|p]; destruct y as [|p'|p']; simpl; intros H.
trivial.
- elim gen_phiPOS_not_0 with p.
+ elim gen_phiPOS_not_0 with p'.
rewrite (same_gen Rsth Reqe ARth).
symmetry ; trivial.
- elim gen_phiPOS_not_0 with p.
+ elim gen_phiPOS_not_0 with p'.
rewrite (same_gen Rsth Reqe ARth).
- rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
+ rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p')).
rewrite <- H.
apply (ARopp_zero Rsth Reqe ARth).
elim gen_phiPOS_not_0 with p.
@@ -1790,12 +1797,12 @@ destruct x; destruct y; simpl; intros.
rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
rewrite H.
apply (ARopp_zero Rsth Reqe ARth).
- elim gen_phiPOS_discr_sgn with p0 p.
+ elim gen_phiPOS_discr_sgn with p' p.
symmetry ; trivial.
- replace p0 with p; trivial.
+ replace p' with p; trivial.
apply gen_phiPOS_inject.
rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
- rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)).
+ rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p')).
rewrite H; trivial.
reflexivity.
Qed.