aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorOlivier Laurent2019-10-30 12:53:05 +0100
committerOlivier Laurent2019-12-06 14:34:30 +0100
commit53231ac0ee2e91b01b64ab6d5b1c17cab2f36eaf (patch)
tree23b8b0d303d14d503152fdefb47e1fb1f9d8e01c
parentdff979d31a18dcf892fac75cd8a1e608adaefb9e (diff)
redundancy between skipn_node and skipn_all
-rw-r--r--theories/Lists/List.v9
1 files changed, 4 insertions, 5 deletions
diff --git a/theories/Lists/List.v b/theories/Lists/List.v
index 38723e291f..f608458f45 100644
--- a/theories/Lists/List.v
+++ b/theories/Lists/List.v
@@ -1825,9 +1825,11 @@ Section Cutting.
Lemma skipn_cons n a l: skipn (S n) (a::l) = skipn n l.
Proof. reflexivity. Qed.
- Lemma skipn_none : forall l, skipn (length l) l = [].
+ Lemma skipn_all : forall l, skipn (length l) l = nil.
Proof. now induction l. Qed.
+#[deprecated(since="8.11",note="Use skipn_all instead.")] Notation skipn_none := skipn_all.
+
Lemma skipn_all2 n: forall l, length l <= n -> skipn n l = [].
Proof.
intros l L%Nat.sub_0_le; rewrite <-(firstn_all l) at 1.
@@ -1855,9 +1857,6 @@ Section Cutting.
- destruct l; simpl; auto.
Qed.
- Lemma skipn_all l: skipn (length l) l = nil.
- Proof. now induction l. Qed.
-
Lemma skipn_app n : forall l1 l2,
skipn n (l1 ++ l2) = (skipn n l1) ++ (skipn (n - length l1) l2).
Proof. induction n; auto; intros [|]; simpl; auto. Qed.
@@ -1884,7 +1883,7 @@ Section Cutting.
intros x l; rewrite firstn_skipn_rev, rev_involutive, <-rev_length.
destruct (Nat.le_ge_cases (length (rev l)) x) as [L | L].
- rewrite skipn_all2; [apply Nat.sub_0_le in L | trivial].
- now rewrite L, Nat.sub_0_r, skipn_none.
+ now rewrite L, Nat.sub_0_r, skipn_all.
- replace (length (rev l) - (length (rev l) - x))
with (length (rev l) + x - length (rev l)).
rewrite minus_plus. reflexivity.