diff options
| author | Jasper Hugunin | 2020-10-08 17:26:48 -0700 |
|---|---|---|
| committer | Jasper Hugunin | 2020-10-08 17:26:48 -0700 |
| commit | 460a9bb281a69da2be1113adc146e168586de0bd (patch) | |
| tree | 6299355ec48ca0435a3074fcb7549fd17e315a38 | |
| parent | 8c3231dc17e851a2c1e2777833f6fa5e24ba5e8e (diff) | |
Modify Numbers/Integer/Abstract/ZGcd.v to compile with -mangle-names
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZGcd.v | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZGcd.v b/theories/Numbers/Integer/Abstract/ZGcd.v index 09d28a18ec..755557ff17 100644 --- a/theories/Numbers/Integer/Abstract/ZGcd.v +++ b/theories/Numbers/Integer/Abstract/ZGcd.v @@ -98,7 +98,7 @@ Qed. Lemma gcd_abs_l : forall n m, gcd (abs n) m == gcd n m. Proof. - intros. destruct (abs_eq_or_opp n) as [H|H]; rewrite H. + intros n m. destruct (abs_eq_or_opp n) as [H|H]; rewrite H. easy. apply gcd_opp_l. Qed. @@ -125,7 +125,7 @@ Qed. Lemma gcd_add_mult_diag_r : forall n m p, gcd n (m+p*n) == gcd n m. Proof. - intros. apply gcd_unique_alt; try apply gcd_nonneg. + intros n m p. apply gcd_unique_alt; try apply gcd_nonneg. intros. rewrite gcd_divide_iff. split; intros (U,V); split; trivial. apply divide_add_r; trivial. now apply divide_mul_r. apply divide_add_cancel_r with (p*n); trivial. @@ -164,12 +164,12 @@ Proof. (* First, a version restricted to natural numbers *) assert (aux : forall n, 0<=n -> forall m, 0<=m -> Bezout n m (gcd n m)). intros n Hn; pattern n. - apply strong_right_induction with (z:=0); trivial. + apply (fun H => strong_right_induction _ H 0); trivial. unfold Bezout. solve_proper. clear n Hn. intros n Hn IHn. apply le_lteq in Hn; destruct Hn as [Hn|Hn]. intros m Hm; pattern m. - apply strong_right_induction with (z:=0); trivial. + apply (fun H => strong_right_induction _ H 0); trivial. unfold Bezout. solve_proper. clear m Hm. intros m Hm IHm. destruct (lt_trichotomy n m) as [LT|[EQ|LT]]. @@ -227,7 +227,7 @@ Qed. Lemma gcd_mul_mono_l_nonneg : forall n m p, 0<=p -> gcd (p*n) (p*m) == p * gcd n m. Proof. - intros. rewrite <- (abs_eq p) at 3; trivial. apply gcd_mul_mono_l. + intros n m p ?. rewrite <- (abs_eq p) at 3; trivial. apply gcd_mul_mono_l. Qed. Lemma gcd_mul_mono_r : @@ -239,7 +239,7 @@ Qed. Lemma gcd_mul_mono_r_nonneg : forall n m p, 0<=p -> gcd (n*p) (m*p) == gcd n m * p. Proof. - intros. rewrite <- (abs_eq p) at 3; trivial. apply gcd_mul_mono_r. + intros n m p ?. rewrite <- (abs_eq p) at 3; trivial. apply gcd_mul_mono_r. Qed. Lemma gauss : forall n m p, (n | m * p) -> gcd n m == 1 -> (n | p). |
