diff options
| author | delahaye | 2001-01-09 15:23:08 +0000 |
|---|---|---|
| committer | delahaye | 2001-01-09 15:23:08 +0000 |
| commit | 43f76860196296aa180e27d90f64a05ed7edf9d7 (patch) | |
| tree | cc7f954fa633a55136db4a7c66d3058ef9e1590c | |
| parent | beed52ca495d7cceac9abba5722576a6d9f15ed2 (diff) | |
Tactic Definition -> Meta Definition
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@1237 85f007b7-540e-0410-9357-904b9bb8a0f7
| -rw-r--r-- | contrib/ring/ArithRing.v | 2 | ||||
| -rw-r--r-- | contrib/ring/Ring_abstract.v | 4 | ||||
| -rwxr-xr-x | theories/Lists/Streams.v | 2 | ||||
| -rw-r--r-- | theories/Zarith/zarith_aux.v | 2 |
4 files changed, 5 insertions, 5 deletions
diff --git a/contrib/ring/ArithRing.v b/contrib/ring/ArithRing.v index 5f3ff2937b..9b6a695e77 100644 --- a/contrib/ring/ArithRing.v +++ b/contrib/ring/ArithRing.v @@ -38,4 +38,4 @@ Goal (n:nat)(S n)=(plus (S O) n). Intro; Reflexivity. Save S_to_plus_one. -Tactic Definition NatRing := '(Repeat Rewrite S_to_plus_one); Ring. +Meta Definition NatRing := (Repeat Rewrite S_to_plus_one); Ring. diff --git a/contrib/ring/Ring_abstract.v b/contrib/ring/Ring_abstract.v index 6bb1f5aa9a..4150efc2d6 100644 --- a/contrib/ring/Ring_abstract.v +++ b/contrib/ring/Ring_abstract.v @@ -443,7 +443,7 @@ Save. Hint rew_isacs_aux : core := Extern 10 (eqT A ? ?) Rewrite isacs_aux_ok. -Tactic Definition Solve1 := +Meta Definition Solve1 := Simpl; Elim (varlist_lt v v0); Simpl; Rewrite isacs_aux_ok; [Rewrite H; Simpl; Auto |Simpl in H0; Rewrite H0; Auto ]. @@ -499,7 +499,7 @@ Lemma signed_sum_merge_ok : (x,y:signed_sum) Save. -Tactic Definition Solve2 := +Meta Definition Solve2 := Elim (varlist_lt l v); Simpl; Rewrite isacs_aux_ok; [ Auto | Rewrite H; Auto ]. diff --git a/theories/Lists/Streams.v b/theories/Lists/Streams.v index 5962e0ed2f..297a888ebe 100755 --- a/theories/Lists/Streams.v +++ b/theories/Lists/Streams.v @@ -61,7 +61,7 @@ CoInductive EqSt : Stream->Stream->Prop := (* A coinduction principle *) -Tactic Definition CoInduction proof := +Meta Definition CoInduction proof := Cofix proof; Intros; Constructor; [Clear proof | Try (Apply proof;Clear proof)]. diff --git a/theories/Zarith/zarith_aux.v b/theories/Zarith/zarith_aux.v index 113a593471..b67bf39f5e 100644 --- a/theories/Zarith/zarith_aux.v +++ b/theories/Zarith/zarith_aux.v @@ -11,7 +11,7 @@ Require Arith. Require Export fast_integer. -Tactic Definition ElimCompare com1 com2:= +Meta Definition ElimCompare com1 com2:= Elim (Dcompare (Zcompare com1 com2)); [ Idtac | Intro hidden_auxiliary; Elim hidden_auxiliary; |
