aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMaxime Dénès2019-10-02 01:13:04 +0200
committerMaxime Dénès2019-10-02 01:13:04 +0200
commit397fa7d34e100213855df7f3aa05ce4d497724e1 (patch)
tree44e0a071b3b48e62fcd76ae648226711fa5173a0
parent77fd11a9f012a2878e13451e9d8a9f500c6392eb (diff)
parent336466ddd256dea9ef0dd9a009433a35534601a9 (diff)
Merge PR #10805: Remove spurious uses of CoInductive in SSR prerequisite.
Reviewed-by: maximedenes
-rw-r--r--test-suite/prerequisite/ssr_mini_mathcomp.v8
1 files changed, 4 insertions, 4 deletions
diff --git a/test-suite/prerequisite/ssr_mini_mathcomp.v b/test-suite/prerequisite/ssr_mini_mathcomp.v
index 74f94a9bed..d293dc0533 100644
--- a/test-suite/prerequisite/ssr_mini_mathcomp.v
+++ b/test-suite/prerequisite/ssr_mini_mathcomp.v
@@ -196,7 +196,7 @@ Definition clone_subType U v :=
Variable sT : subType.
-CoInductive Sub_spec : sT -> Type := SubSpec x Px : Sub_spec (Sub x Px).
+Variant Sub_spec : sT -> Type := SubSpec x Px : Sub_spec (Sub x Px).
Lemma SubP u : Sub_spec u.
Proof. by case: sT Sub_spec SubSpec u => T' _ C rec /= _. Qed.
@@ -209,7 +209,7 @@ Definition insub x :=
Definition insubd u0 x := odflt u0 (insub x).
-CoInductive insub_spec x : option sT -> Type :=
+Variant insub_spec x : option sT -> Type :=
| InsubSome u of P x & val u = x : insub_spec x (Some u)
| InsubNone of ~~ P x : insub_spec x None.
@@ -568,7 +568,7 @@ Fixpoint nth s n {struct n} :=
Fixpoint rcons s z := if s is x :: s' then x :: rcons s' z else [:: z].
-CoInductive last_spec : seq T -> Type :=
+Variant last_spec : seq T -> Type :=
| LastNil : last_spec [::]
| LastRcons s x : last_spec (rcons s x).
@@ -1292,7 +1292,7 @@ Open Scope big_scope.
(* packages both in in a term in which i occurs; it also depends on the *)
(* iterated <op>, as this can give more information on the expected type of *)
(* the <general_term>, thus allowing for the insertion of coercions. *)
-CoInductive bigbody R I := BigBody of I & (R -> R -> R) & bool & R.
+Variant bigbody R I := BigBody of I & (R -> R -> R) & bool & R.
Definition applybig {R I} (body : bigbody R I) x :=
let: BigBody _ op b v := body in if b then op v x else x.