diff options
| author | Maxime Dénès | 2019-10-02 01:13:04 +0200 |
|---|---|---|
| committer | Maxime Dénès | 2019-10-02 01:13:04 +0200 |
| commit | 397fa7d34e100213855df7f3aa05ce4d497724e1 (patch) | |
| tree | 44e0a071b3b48e62fcd76ae648226711fa5173a0 | |
| parent | 77fd11a9f012a2878e13451e9d8a9f500c6392eb (diff) | |
| parent | 336466ddd256dea9ef0dd9a009433a35534601a9 (diff) | |
Merge PR #10805: Remove spurious uses of CoInductive in SSR prerequisite.
Reviewed-by: maximedenes
| -rw-r--r-- | test-suite/prerequisite/ssr_mini_mathcomp.v | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/test-suite/prerequisite/ssr_mini_mathcomp.v b/test-suite/prerequisite/ssr_mini_mathcomp.v index 74f94a9bed..d293dc0533 100644 --- a/test-suite/prerequisite/ssr_mini_mathcomp.v +++ b/test-suite/prerequisite/ssr_mini_mathcomp.v @@ -196,7 +196,7 @@ Definition clone_subType U v := Variable sT : subType. -CoInductive Sub_spec : sT -> Type := SubSpec x Px : Sub_spec (Sub x Px). +Variant Sub_spec : sT -> Type := SubSpec x Px : Sub_spec (Sub x Px). Lemma SubP u : Sub_spec u. Proof. by case: sT Sub_spec SubSpec u => T' _ C rec /= _. Qed. @@ -209,7 +209,7 @@ Definition insub x := Definition insubd u0 x := odflt u0 (insub x). -CoInductive insub_spec x : option sT -> Type := +Variant insub_spec x : option sT -> Type := | InsubSome u of P x & val u = x : insub_spec x (Some u) | InsubNone of ~~ P x : insub_spec x None. @@ -568,7 +568,7 @@ Fixpoint nth s n {struct n} := Fixpoint rcons s z := if s is x :: s' then x :: rcons s' z else [:: z]. -CoInductive last_spec : seq T -> Type := +Variant last_spec : seq T -> Type := | LastNil : last_spec [::] | LastRcons s x : last_spec (rcons s x). @@ -1292,7 +1292,7 @@ Open Scope big_scope. (* packages both in in a term in which i occurs; it also depends on the *) (* iterated <op>, as this can give more information on the expected type of *) (* the <general_term>, thus allowing for the insertion of coercions. *) -CoInductive bigbody R I := BigBody of I & (R -> R -> R) & bool & R. +Variant bigbody R I := BigBody of I & (R -> R -> R) & bool & R. Definition applybig {R I} (body : bigbody R I) x := let: BigBody _ op b v := body in if b then op v x else x. |
