diff options
| author | Jasper Hugunin | 2020-09-09 12:26:23 -0700 |
|---|---|---|
| committer | Jasper Hugunin | 2020-09-16 12:46:57 -0700 |
| commit | 389cea0e7d930d62aa888f3fab902e9b3568a6f3 (patch) | |
| tree | 9b09c1e69f8311b6a73ac1e9d06bf6e2934f963d | |
| parent | 8710a9437442003681e838a36ae572b7b24a958e (diff) | |
Modify Numbers/Natural/Abstract/NBits.v to compile with -mangle-names
The bitwise tactic was performing `intros ?m`, and the name m got
used later in many proofs. I defined a tactic notation `bitwise as m`
to be able to provide the name for `m` explicitly.
I did not make the notation local, because it seems like it would be
useful for any clients using `bitwise` who want to avoid generated
names.
I have relatively little experience with writing Ltac and tactic notations,
so if my solution can be improved, please show me how.
| -rw-r--r-- | theories/Numbers/Natural/Abstract/NBits.v | 85 |
1 files changed, 44 insertions, 41 deletions
diff --git a/theories/Numbers/Natural/Abstract/NBits.v b/theories/Numbers/Natural/Abstract/NBits.v index 6e557a567e..313b9adfd1 100644 --- a/theories/Numbers/Natural/Abstract/NBits.v +++ b/theories/Numbers/Natural/Abstract/NBits.v @@ -190,7 +190,7 @@ Qed. Lemma bit0_odd : forall a, a.[0] = odd a. Proof. - intros. symmetry. + intros a. symmetry. destruct (exists_div2 a) as (a' & b & EQ). rewrite EQ, testbit_0_r, add_comm, odd_add_mul_2. destruct b; simpl; apply odd_1 || apply odd_0. @@ -272,14 +272,14 @@ Qed. Lemma mul_pow2_bits_high : forall a n m, n<=m -> (a*2^n).[m] = a.[m-n]. Proof. - intros. + intros a n m ?. rewrite <- (sub_add n m) at 1 by order'. now rewrite mul_pow2_bits_add. Qed. Lemma mul_pow2_bits_low : forall a n m, m<n -> (a*2^n).[m] = false. Proof. - intros. apply testbit_false. + intros a n m H. apply testbit_false. rewrite <- (sub_add m n) by order'. rewrite pow_add_r, mul_assoc. rewrite div_mul by order_nz. rewrite <- (succ_pred (n-m)). rewrite pow_succ_r. @@ -370,7 +370,10 @@ Qed. Hint Rewrite lxor_spec lor_spec land_spec ldiff_spec bits_0 : bitwise. -Ltac bitwise := apply bits_inj; intros ?m; autorewrite with bitwise. +Tactic Notation "bitwise" "as" simple_intropattern(m) + := apply bits_inj; intros m; autorewrite with bitwise. + +Ltac bitwise := bitwise as ?m. (** The streams of bits that correspond to a natural numbers are exactly the ones that are always 0 after some point *) @@ -418,7 +421,7 @@ Qed. Lemma shiftl_mul_pow2 : forall a n, a << n == a * 2^n. Proof. - intros. bitwise. + intros a n. bitwise as m. destruct (le_gt_cases n m) as [H|H]. now rewrite shiftl_spec_high', mul_pow2_bits_high. now rewrite shiftl_spec_low, mul_pow2_bits_low. @@ -455,7 +458,7 @@ Qed. Lemma shiftr_shiftl_l : forall a n m, m<=n -> (a << n) >> m == a << (n-m). Proof. - intros. + intros a n m ?. rewrite shiftr_div_pow2, !shiftl_mul_pow2. rewrite <- (sub_add m n) at 1 by trivial. now rewrite pow_add_r, mul_assoc, div_mul by order_nz. @@ -464,7 +467,7 @@ Qed. Lemma shiftr_shiftl_r : forall a n m, n<=m -> (a << n) >> m == a >> (m-n). Proof. - intros. + intros a n m ?. rewrite !shiftr_div_pow2, shiftl_mul_pow2. rewrite <- (sub_add n m) at 1 by trivial. rewrite pow_add_r, (mul_comm (2^(m-n))). @@ -630,7 +633,7 @@ Qed. Lemma lor_eq_0_l : forall a b, lor a b == 0 -> a == 0. Proof. - intros a b H. bitwise. + intros a b H. bitwise as m. apply (orb_false_iff a.[m] b.[m]). now rewrite <- lor_spec, H, bits_0. Qed. @@ -638,7 +641,7 @@ Qed. Lemma lor_eq_0_iff : forall a b, lor a b == 0 <-> a == 0 /\ b == 0. Proof. intros a b. split. - split. now apply lor_eq_0_l in H. + intro H; split. now apply lor_eq_0_l in H. rewrite lor_comm in H. now apply lor_eq_0_l in H. intros (EQ,EQ'). now rewrite EQ, lor_0_l. Qed. @@ -751,13 +754,13 @@ Proof. unfold clearbit. solve_proper. Qed. Lemma pow2_bits_true : forall n, (2^n).[n] = true. Proof. - intros. rewrite <- (mul_1_l (2^n)). rewrite <- (add_0_l n) at 2. + intros n. rewrite <- (mul_1_l (2^n)). rewrite <- (add_0_l n) at 2. now rewrite mul_pow2_bits_add, bit0_odd, odd_1. Qed. Lemma pow2_bits_false : forall n m, n~=m -> (2^n).[m] = false. Proof. - intros. + intros n m ?. rewrite <- (mul_1_l (2^n)). destruct (le_gt_cases n m). rewrite mul_pow2_bits_high; trivial. @@ -768,7 +771,7 @@ Qed. Lemma pow2_bits_eqb : forall n m, (2^n).[m] = eqb n m. Proof. - intros. apply eq_true_iff_eq. rewrite eqb_eq. split. + intros n m. apply eq_true_iff_eq. rewrite eqb_eq. split. destruct (eq_decidable n m) as [H|H]. trivial. now rewrite (pow2_bits_false _ _ H). intros EQ. rewrite EQ. apply pow2_bits_true. @@ -813,7 +816,7 @@ Qed. Lemma clearbit_eq : forall a n, (clearbit a n).[n] = false. Proof. - intros. rewrite clearbit_eqb, (proj2 (eqb_eq _ _) (eq_refl n)). + intros a n. rewrite clearbit_eqb, (proj2 (eqb_eq _ _) (eq_refl n)). apply andb_false_r. Qed. @@ -830,7 +833,7 @@ Qed. Lemma shiftl_lxor : forall a b n, (lxor a b) << n == lxor (a << n) (b << n). Proof. - intros. bitwise. + intros a b n. bitwise as m. destruct (le_gt_cases n m). now rewrite !shiftl_spec_high', lxor_spec. now rewrite !shiftl_spec_low. @@ -845,7 +848,7 @@ Qed. Lemma shiftl_land : forall a b n, (land a b) << n == land (a << n) (b << n). Proof. - intros. bitwise. + intros a b n. bitwise as m. destruct (le_gt_cases n m). now rewrite !shiftl_spec_high', land_spec. now rewrite !shiftl_spec_low. @@ -860,7 +863,7 @@ Qed. Lemma shiftl_lor : forall a b n, (lor a b) << n == lor (a << n) (b << n). Proof. - intros. bitwise. + intros a b n. bitwise as m. destruct (le_gt_cases n m). now rewrite !shiftl_spec_high', lor_spec. now rewrite !shiftl_spec_low. @@ -875,7 +878,7 @@ Qed. Lemma shiftl_ldiff : forall a b n, (ldiff a b) << n == ldiff (a << n) (b << n). Proof. - intros. bitwise. + intros a b n. bitwise as m. destruct (le_gt_cases n m). now rewrite !shiftl_spec_high', ldiff_spec. now rewrite !shiftl_spec_low. @@ -944,7 +947,7 @@ Qed. Lemma ones_spec_high : forall n m, n<=m -> (ones n).[m] = false. Proof. - intros. + intros n m ?. destruct (eq_0_gt_0_cases n) as [EQ|LT]; rewrite ones_equiv. now rewrite EQ, pow_0_r, one_succ, pred_succ, bits_0. apply bits_above_log2. @@ -973,7 +976,7 @@ Qed. Lemma lnot_involutive : forall a n, lnot (lnot a n) n == a. Proof. - intros a n. bitwise. + intros a n. bitwise as m. destruct (le_gt_cases n m). now rewrite 2 lnot_spec_high. now rewrite 2 lnot_spec_low, negb_involutive. @@ -994,7 +997,7 @@ Qed. Lemma lor_ones_low : forall a n, log2 a < n -> lor a (ones n) == ones n. Proof. - intros a n H. bitwise. destruct (le_gt_cases n m). + intros a n H. bitwise as m. destruct (le_gt_cases n m). rewrite ones_spec_high, bits_above_log2; trivial. now apply lt_le_trans with n. now rewrite ones_spec_low, orb_true_r. @@ -1002,7 +1005,7 @@ Qed. Lemma land_ones : forall a n, land a (ones n) == a mod 2^n. Proof. - intros a n. bitwise. destruct (le_gt_cases n m). + intros a n. bitwise as m. destruct (le_gt_cases n m). now rewrite ones_spec_high, mod_pow2_bits_high, andb_false_r. now rewrite ones_spec_low, mod_pow2_bits_low, andb_true_r. Qed. @@ -1017,7 +1020,7 @@ Qed. Lemma ldiff_ones_r : forall a n, ldiff a (ones n) == (a >> n) << n. Proof. - intros a n. bitwise. destruct (le_gt_cases n m). + intros a n. bitwise as m. destruct (le_gt_cases n m). rewrite ones_spec_high, shiftl_spec_high', shiftr_spec'; trivial. rewrite sub_add; trivial. apply andb_true_r. now rewrite ones_spec_low, shiftl_spec_low, andb_false_r. @@ -1026,7 +1029,7 @@ Qed. Lemma ldiff_ones_r_low : forall a n, log2 a < n -> ldiff a (ones n) == 0. Proof. - intros a n H. bitwise. destruct (le_gt_cases n m). + intros a n H. bitwise as m. destruct (le_gt_cases n m). rewrite ones_spec_high, bits_above_log2; trivial. now apply lt_le_trans with n. now rewrite ones_spec_low, andb_false_r. @@ -1035,7 +1038,7 @@ Qed. Lemma ldiff_ones_l_low : forall a n, log2 a < n -> ldiff (ones n) a == lnot a n. Proof. - intros a n H. bitwise. destruct (le_gt_cases n m). + intros a n H. bitwise as m. destruct (le_gt_cases n m). rewrite ones_spec_high, lnot_spec_high, bits_above_log2; trivial. now apply lt_le_trans with n. now rewrite ones_spec_low, lnot_spec_low. @@ -1044,7 +1047,7 @@ Qed. Lemma lor_lnot_diag : forall a n, lor a (lnot a n) == lor a (ones n). Proof. - intros a n. bitwise. + intros a n. bitwise as m. destruct (le_gt_cases n m). rewrite lnot_spec_high, ones_spec_high; trivial. now destruct a.[m]. rewrite lnot_spec_low, ones_spec_low; trivial. now destruct a.[m]. @@ -1059,7 +1062,7 @@ Qed. Lemma land_lnot_diag : forall a n, land a (lnot a n) == ldiff a (ones n). Proof. - intros a n. bitwise. + intros a n. bitwise as m. destruct (le_gt_cases n m). rewrite lnot_spec_high, ones_spec_high; trivial. now destruct a.[m]. rewrite lnot_spec_low, ones_spec_low; trivial. now destruct a.[m]. @@ -1074,7 +1077,7 @@ Qed. Lemma lnot_lor_low : forall a b n, log2 a < n -> log2 b < n -> lnot (lor a b) n == land (lnot a n) (lnot b n). Proof. - intros a b n Ha Hb. bitwise. destruct (le_gt_cases n m). + intros a b n Ha Hb. bitwise as m. destruct (le_gt_cases n m). rewrite !lnot_spec_high, lor_spec, !bits_above_log2; trivial. now apply lt_le_trans with n. now apply lt_le_trans with n. @@ -1084,7 +1087,7 @@ Qed. Lemma lnot_land_low : forall a b n, log2 a < n -> log2 b < n -> lnot (land a b) n == lor (lnot a n) (lnot b n). Proof. - intros a b n Ha Hb. bitwise. destruct (le_gt_cases n m). + intros a b n Ha Hb. bitwise as m. destruct (le_gt_cases n m). rewrite !lnot_spec_high, land_spec, !bits_above_log2; trivial. now apply lt_le_trans with n. now apply lt_le_trans with n. @@ -1094,7 +1097,7 @@ Qed. Lemma ldiff_land_low : forall a b n, log2 a < n -> ldiff a b == land a (lnot b n). Proof. - intros a b n Ha. bitwise. destruct (le_gt_cases n m). + intros a b n Ha. bitwise as m. destruct (le_gt_cases n m). rewrite (bits_above_log2 a m). trivial. now apply lt_le_trans with n. rewrite !lnot_spec_low; trivial. @@ -1103,7 +1106,7 @@ Qed. Lemma lnot_ldiff_low : forall a b n, log2 a < n -> log2 b < n -> lnot (ldiff a b) n == lor (lnot a n) b. Proof. - intros a b n Ha Hb. bitwise. destruct (le_gt_cases n m). + intros a b n Ha Hb. bitwise as m. destruct (le_gt_cases n m). rewrite !lnot_spec_high, ldiff_spec, !bits_above_log2; trivial. now apply lt_le_trans with n. now apply lt_le_trans with n. @@ -1113,7 +1116,7 @@ Qed. Lemma lxor_lnot_lnot : forall a b n, lxor (lnot a n) (lnot b n) == lxor a b. Proof. - intros a b n. bitwise. destruct (le_gt_cases n m). + intros a b n. bitwise as m. destruct (le_gt_cases n m). rewrite !lnot_spec_high; trivial. rewrite !lnot_spec_low, xorb_negb_negb; trivial. Qed. @@ -1121,7 +1124,7 @@ Qed. Lemma lnot_lxor_l : forall a b n, lnot (lxor a b) n == lxor (lnot a n) b. Proof. - intros a b n. bitwise. destruct (le_gt_cases n m). + intros a b n. bitwise as m. destruct (le_gt_cases n m). rewrite !lnot_spec_high, lxor_spec; trivial. rewrite !lnot_spec_low, lxor_spec, negb_xorb_l; trivial. Qed. @@ -1129,7 +1132,7 @@ Qed. Lemma lnot_lxor_r : forall a b n, lnot (lxor a b) n == lxor a (lnot b n). Proof. - intros a b n. bitwise. destruct (le_gt_cases n m). + intros a b n. bitwise as m. destruct (le_gt_cases n m). rewrite !lnot_spec_high, lxor_spec; trivial. rewrite !lnot_spec_low, lxor_spec, negb_xorb_r; trivial. Qed. @@ -1137,7 +1140,7 @@ Qed. Lemma lxor_lor : forall a b, land a b == 0 -> lxor a b == lor a b. Proof. - intros a b H. bitwise. + intros a b H. bitwise as m. assert (a.[m] && b.[m] = false) by now rewrite <- land_spec, H, bits_0. now destruct a.[m], b.[m]. @@ -1264,7 +1267,7 @@ Qed. Lemma add_carry_div2 : forall a b (c0:bool), (a + b + c0)/2 == a/2 + b/2 + nextcarry a.[0] b.[0] c0. Proof. - intros. + intros a b c0. rewrite <- add3_bits_div2. rewrite (add_comm ((a/2)+_)). rewrite <- div_add by order'. @@ -1312,7 +1315,7 @@ Proof. apply div_lt_upper_bound; trivial. order'. now rewrite <- pow_succ_r'. exists (c0 + 2*c). repeat split. (* - add *) - bitwise. + bitwise as m. destruct (zero_or_succ m) as [EQ|[m' EQ]]; rewrite EQ; clear EQ. now rewrite add_b2n_double_bit0, add3_bit0, b2n_bit0. rewrite <- !div2_bits, <- 2 lxor_spec. @@ -1320,7 +1323,7 @@ Proof. rewrite add_b2n_double_div2, <- IH1. apply add_carry_div2. (* - carry *) rewrite add_b2n_double_div2. - bitwise. + bitwise as m. destruct (zero_or_succ m) as [EQ|[m' EQ]]; rewrite EQ; clear EQ. now rewrite add_b2n_double_bit0. rewrite <- !div2_bits, IH2. autorewrite with bitwise. @@ -1356,7 +1359,7 @@ Proof. symmetry in H. now apply lor_eq_0_l in H. intros EQ. rewrite EQ, lor_0_l in H. apply bits_inj_0. - induct n. trivial. + intro n; induct n. trivial. intros n IH. rewrite <- div2_bits, H. autorewrite with bitwise. @@ -1381,7 +1384,7 @@ Lemma ldiff_le : forall a b, ldiff a b == 0 -> a <= b. Proof. cut (forall n a b, a < 2^n -> ldiff a b == 0 -> a <= b). intros H a b. apply (H a), pow_gt_lin_r; order'. - induct n. + intro n; induct n. intros a b Ha _. rewrite pow_0_r, one_succ, lt_succ_r in Ha. assert (Ha' : a == 0) by (generalize (le_0_l a); order'). rewrite Ha'. apply le_0_l. @@ -1410,7 +1413,7 @@ Proof. rewrite sub_add. symmetry. rewrite add_nocarry_lxor. - bitwise. + bitwise as m. apply bits_inj_iff in H. specialize (H m). rewrite ldiff_spec, bits_0 in H. now destruct a.[m], b.[m]. @@ -1454,7 +1457,7 @@ Lemma add_nocarry_mod_lt_pow2 : forall a b n, land a b == 0 -> Proof. intros a b n H. apply add_nocarry_lt_pow2. - bitwise. + bitwise as m. destruct (le_gt_cases n m). now rewrite mod_pow2_bits_high. now rewrite !mod_pow2_bits_low, <- land_spec, H, bits_0. |
