aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMatthieu Sozeau2014-10-15 13:46:56 +0200
committerMatthieu Sozeau2014-10-15 13:46:56 +0200
commit347c4888e07cf76c7e1c6672ccfa89f86a0f11ea (patch)
tree083133886b1fa53fdcd064f6b98fa9f3a23004be
parent0307d06ac50caaa38d980a05f6ac3b0685720411 (diff)
Fix test-suite files which failed due to usage of $(admit)$ which
now fails with Error: Already an existential evar of name Main
-rw-r--r--test-suite/bugs/closed/3648.v6
-rw-r--r--test-suite/bugs/closed/3668.v5
2 files changed, 5 insertions, 6 deletions
diff --git a/test-suite/bugs/closed/3648.v b/test-suite/bugs/closed/3648.v
index 1256d125f5..ba6006ed93 100644
--- a/test-suite/bugs/closed/3648.v
+++ b/test-suite/bugs/closed/3648.v
@@ -49,13 +49,11 @@ Record Functor (C D : PreCategory) :=
}.
Arguments morphism_of [C%category] [D%category] F%functor [s%object d%object] m%morphism : rename, simpl nomatch.
Notation "F '_1' m" := (morphism_of F m) (at level 10, no associativity) : morphism_scope.
-
+Axiom cheat : forall {A}, A.
Record NaturalTransformation C D (F G : Functor C D) := { components_of :> forall c, morphism D (F c) (G c) }.
Definition functor_category (C D : PreCategory) : PreCategory.
exact (@Build_PreCategory (Functor C D)
- (@NaturalTransformation C D)
- $(admit)$
- $(admit)$).
+ (@NaturalTransformation C D) cheat cheat).
Defined.
Local Notation "C -> D" := (functor_category C D) : category_scope.
diff --git a/test-suite/bugs/closed/3668.v b/test-suite/bugs/closed/3668.v
index ec70fc5abe..547159b954 100644
--- a/test-suite/bugs/closed/3668.v
+++ b/test-suite/bugs/closed/3668.v
@@ -11,12 +11,13 @@ Axiom IsHProp : Type -> Type.
Inductive Bool := true | false.
Definition negb (b : Bool) := if b then false else true.
Hypothesis LEM : forall A : Type, IsHProp A -> A + (A -> False).
+Axiom cheat : forall {A},A.
Module NonPrim.
Class Contr (A : Type) := { center : A ; contr : (forall y : A, center = y) }.
Definition Book_6_9 : forall X, X -> X.
Proof.
intro X.
- pose proof (@LEM (Contr { f : X <~> X & ~(forall x, f x = x) }) $(admit)$) as contrXEquiv.
+ pose proof (@LEM (Contr { f : X <~> X & ~(forall x, f x = x) }) cheat) as contrXEquiv.
destruct contrXEquiv as [[f H]|H]; [ exact f.1 | exact (fun x => x) ].
Defined.
Lemma Book_6_9_not_id b : Book_6_9 Bool b = negb b.
@@ -36,7 +37,7 @@ Module Prim.
Definition Book_6_9 : forall X, X -> X.
Proof.
intro X.
- pose proof (@LEM (Contr { f : X <~> X & ~(forall x, f x = x) }) $(admit)$) as contrXEquiv.
+ pose proof (@LEM (Contr { f : X <~> X & ~(forall x, f x = x) }) cheat) as contrXEquiv.
destruct contrXEquiv as [[f H]|H]; [ exact (f.1) | exact (fun x => x) ].
Defined.
Lemma Book_6_9_not_id b : Book_6_9 Bool b = negb b.