diff options
| author | pottier | 2010-06-03 09:32:39 +0000 |
|---|---|---|
| committer | pottier | 2010-06-03 09:32:39 +0000 |
| commit | 345b2955b40fbe6bebedbb0bf7de9d44229fcc3f (patch) | |
| tree | 1ac76ff0721baab9c30041c64bd6a29a3a472450 | |
| parent | cc197b0decd566a3ec28ac1ab58de4dcbfa0ea77 (diff) | |
ajout oublie
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13057 85f007b7-540e-0410-9357-904b9bb8a0f7
| -rw-r--r-- | doc/refman/Nsatz.tex | 81 |
1 files changed, 81 insertions, 0 deletions
diff --git a/doc/refman/Nsatz.tex b/doc/refman/Nsatz.tex new file mode 100644 index 0000000000..7e0dfa896b --- /dev/null +++ b/doc/refman/Nsatz.tex @@ -0,0 +1,81 @@ +\achapter{Nsatz: tactics for proving equalities in $\mathbb{R}$ and $\mathbb{Z}$} +\aauthor{Loïc Pottier} + +The tactic {\tt nsatz} proves formulas of the form + +\[ \begin{array}{l} + \forall X_1,\ldots,X_n \in R,\\ + P_1(X_1,\ldots,X_n) = 0 \wedge \ldots \wedge P_s(X_1,\ldots,X_n) =0\\ + \Rightarrow P(X_1,\ldots,X_n) = 0\\ + \end{array} +\] +where $R$ is $\mathbb{R}$ or $\mathbb{Z}$ and $P, P_1,\ldots,P_s$ +are polynomials. + +\asection{Using the basic tactic {tt nsatz}} +\tacindex{nsatz} + +If you work $\mathbb{R}$, load the {\tt NsatzR} module ({\tt Require +NsatzR}.) and use the tactic {\tt nsatz} or {\tt nsatzR}. + +If you work $\mathbb{Z}$, load the {\tt NsatzZ} module ({\tt Require +NsatzR}.) and use the tactic {\tt nsatzZ}. + +\asection{More about {tt nsatz}} + +Hilbert's Nullstellensatz theorem shows how to reduce proofs of equalities on +polynomials to algebraic computations: it is easy to see that if a polynomial +$P$ in $R[X_1,\ldots,X_n]$ verifies $c P^r = \sum_{i=1}^{s} Q_i P_i$, with $c +\in R$, $c \not = 0$, $r$ a positive integer, and the $Q_i$s in +$R[X_1,\ldots,X_n]$, then $P$ is zero whenever polynomials $P_1,...,P_s$ are +zero (the converse is also true when R is an algebraic closed field: +the method is complete). + +So, proving our initial problem reduces into finding $Q_1,\ldots,Q_s$, $c$ +and $r$ such that $c P^r = \sum_{i} Q_i P_i$, which will be proved by the +tactic {\tt ring}. + +This is achieved by the computation of a Groebner basis of the +ideal generated by $P_1,...,P_s$, with an adapted version of the Buchberger +algorithm. + + +The {\tt NsatzR} module defines the tactics: +{\tt nsatz}, {\tt nsatzRradical rmax}, {\tt nsatzRparameters lparam}, and +the generic tactic {\tt nsatzRpv rmax strategy lparam lvar}. + + \begin{itemize} + \item {\tt nsatzRpv rmax strategy lparam lvar}: + \begin{itemize} + \item {\tt rmax} is the maximum r when for searching r s.t.$c P^r = +\sum_{i=1}^{s} Q_i P_i$ + \item {\tt strategy} gives the order on variables of polynomials $P$ +and $P_i$ and the strategy of choice for s-polynomials during Buchberger algorithm: + + \begin{itemize} + \item strategy = 0: reverse lexicographic order and newest s-polynomial. + \item strategy = 1: reverse lexicographic order and sugar strategy. + \item strategy = 2: pure lexicographic order and newest s-polynomial. + \item strategy = 3: pure lexicographic order and sugar strategy. + \end{itemize} + + \item {\tt lparam} is the list of variables which are considered as + parameters. Computation will be performed with rational fractions in these + variables. + + \item {\tt lvar} islist of the variables of polynomial $P$ and $P_i$, +in decreasing order, used in Buchberger algorithm. If {\tt lvar} = {(@nil +R)}, then {\tt lvar} is replaced by all the variables which are not in lparam. + \end{itemize} + \item {\tt nsatzRparameters lparam} is equivalent to + {\tt nsatzRpv nsatzRpv 6\%N 1\%Z lparam (@nil R)} + \item {\tt nsatzRradical rmax} is equivalent to + {\tt nsatzRpv rmax 1\%Z (@nil R) (@nil R)} + \item {\tt nsatz} is equivalent to + {\tt nsatzRpv 6\%N 1\%Z (@nil R) (@nil R)} + \end{itemize} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "Reference-Manual" +%%% End: |
