diff options
| author | Pierre-Marie Pédrot | 2018-09-11 11:46:10 +0200 |
|---|---|---|
| committer | Pierre-Marie Pédrot | 2018-09-11 11:46:10 +0200 |
| commit | 2f0e274a1436b477e0be0be94a36ee9461a89767 (patch) | |
| tree | 536189bce5ef6f21565fb32534bae11cc37ead2a | |
| parent | f3475cd1a68f632b1e6522975354c7dcc1acd6bb (diff) | |
| parent | ddc25ec6150005e949442d422549fbc213d8f4af (diff) | |
Merge PR #8425: Deprecate romega in favor of lia
| -rw-r--r-- | CHANGES | 2 | ||||
| -rw-r--r-- | doc/sphinx/addendum/omega.rst | 4 | ||||
| -rw-r--r-- | plugins/btauto/Algebra.v | 24 | ||||
| -rw-r--r-- | plugins/romega/g_romega.mlg | 8 | ||||
| -rw-r--r-- | theories/FSets/FMapFullAVL.v | 6 | ||||
| -rw-r--r-- | theories/Numbers/Cyclic/Int31/Cyclic31.v | 16 | ||||
| -rw-r--r-- | theories/ZArith/Zquot.v | 26 |
7 files changed, 49 insertions, 37 deletions
@@ -57,6 +57,8 @@ Tactics may need to add `Require Import Lra` to your developments. For compatibility, we now define `fourier` as a deprecated alias of `lra`. +- The `romega` tactics have been deprecated; please use `lia` instead. + Focusing - Focusing bracket `{` now supports named goal selectors, diff --git a/doc/sphinx/addendum/omega.rst b/doc/sphinx/addendum/omega.rst index 1e92d01125..f7a431ef29 100644 --- a/doc/sphinx/addendum/omega.rst +++ b/doc/sphinx/addendum/omega.rst @@ -26,7 +26,9 @@ Description of ``omega`` .. tacv:: romega :name: romega - To be documented. + .. deprecated:: 8.9 + + Use :tacn:`lia` instead. Arithmetical goals recognized by ``omega`` ------------------------------------------ diff --git a/plugins/btauto/Algebra.v b/plugins/btauto/Algebra.v index ee7341a4a2..f1095fc9f1 100644 --- a/plugins/btauto/Algebra.v +++ b/plugins/btauto/Algebra.v @@ -1,4 +1,4 @@ -Require Import Bool PArith DecidableClass Omega ROmega. +Require Import Bool PArith DecidableClass Omega Lia. Ltac bool := repeat match goal with @@ -84,9 +84,9 @@ Ltac case_decide := match goal with let H := fresh "H" in define (@decide P D) b H; destruct b; try_decide | [ |- context [Pos.compare ?x ?y] ] => - destruct (Pos.compare_spec x y); try (exfalso; zify; romega) + destruct (Pos.compare_spec x y); try lia | [ X : context [Pos.compare ?x ?y] |- _ ] => - destruct (Pos.compare_spec x y); try (exfalso; zify; romega) + destruct (Pos.compare_spec x y); try lia end. Section Definitions. @@ -325,13 +325,13 @@ Qed. Lemma linear_le_compat : forall k l p, linear k p -> (k <= l)%positive -> linear l p. Proof. -intros k l p H; revert l; induction H; constructor; eauto; zify; romega. +intros k l p H; revert l; induction H; constructor; eauto; lia. Qed. Lemma linear_valid_incl : forall k p, linear k p -> valid k p. Proof. intros k p H; induction H; constructor; auto. -eapply valid_le_compat; eauto; zify; romega. +eapply valid_le_compat; eauto; lia. Qed. End Validity. @@ -417,13 +417,13 @@ Qed. Hint Extern 5 => match goal with | [ |- (Pos.max ?x ?y <= ?z)%positive ] => - apply Pos.max_case_strong; intros; zify; romega + apply Pos.max_case_strong; intros; lia | [ |- (?z <= Pos.max ?x ?y)%positive ] => - apply Pos.max_case_strong; intros; zify; romega + apply Pos.max_case_strong; intros; lia | [ |- (Pos.max ?x ?y < ?z)%positive ] => - apply Pos.max_case_strong; intros; zify; romega + apply Pos.max_case_strong; intros; lia | [ |- (?z < Pos.max ?x ?y)%positive ] => - apply Pos.max_case_strong; intros; zify; romega + apply Pos.max_case_strong; intros; lia | _ => zify; omega end. Hint Resolve Pos.le_max_r Pos.le_max_l. @@ -445,8 +445,8 @@ intros kl kr pl pr Hl Hr; revert kr pr Hr; induction Hl; intros kr pr Hr; simpl. now rewrite <- (Pos.max_id i); intuition. destruct (Pos.compare_spec i i0); subst; try case_decide; repeat (constructor; intuition). + apply (valid_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto. - + apply (valid_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; zify; romega. - + apply (valid_le_compat (Pos.max (Pos.succ i0) (Pos.succ i0))); [now auto|]; rewrite Pos.max_id; zify; romega. + + apply (valid_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; lia. + + apply (valid_le_compat (Pos.max (Pos.succ i0) (Pos.succ i0))); [now auto|]; rewrite Pos.max_id; lia. + apply (valid_le_compat (Pos.max (Pos.succ i) i0)); intuition. + apply (valid_le_compat (Pos.max i (Pos.succ i0))); intuition. } @@ -456,7 +456,7 @@ Lemma poly_mul_cst_valid_compat : forall k v p, valid k p -> valid k (poly_mul_c Proof. intros k v p H; induction H; simpl; [now auto|]. case_decide; [|now auto]. -eapply (valid_le_compat i); [now auto|zify; romega]. +eapply (valid_le_compat i); [now auto|lia]. Qed. Lemma poly_mul_mon_null_compat : forall i p, null (poly_mul_mon i p) -> null p. diff --git a/plugins/romega/g_romega.mlg b/plugins/romega/g_romega.mlg index c1ce30027e..ac4f30b1db 100644 --- a/plugins/romega/g_romega.mlg +++ b/plugins/romega/g_romega.mlg @@ -41,14 +41,22 @@ let romega_tactic unsafe l = (Tactics.intros) (total_reflexive_omega_tactic unsafe)) +let romega_depr = + Vernacinterp.mk_deprecation + ~since:(Some "8.9") + ~note:(Some "Use lia instead.") + () + } TACTIC EXTEND romega +DEPRECATED { romega_depr } | [ "romega" ] -> { romega_tactic false [] } | [ "unsafe_romega" ] -> { romega_tactic true [] } END TACTIC EXTEND romega' +DEPRECATED { romega_depr } | [ "romega" "with" ne_ident_list(l) ] -> { romega_tactic false (List.map Names.Id.to_string l) } | [ "romega" "with" "*" ] -> { romega_tactic false ["nat";"positive";"N";"Z"] } diff --git a/theories/FSets/FMapFullAVL.v b/theories/FSets/FMapFullAVL.v index 3452967821..c0db8646c7 100644 --- a/theories/FSets/FMapFullAVL.v +++ b/theories/FSets/FMapFullAVL.v @@ -27,7 +27,7 @@ *) -Require Import FunInd Recdef FMapInterface FMapList ZArith Int FMapAVL ROmega. +Require Import FunInd Recdef FMapInterface FMapList ZArith Int FMapAVL Lia. Set Implicit Arguments. Unset Strict Implicit. @@ -39,7 +39,7 @@ Import Raw.Proofs. Local Open Scope pair_scope. Local Open Scope Int_scope. -Ltac omega_max := i2z_refl; romega with Z. +Ltac omega_max := i2z_refl; lia. Section Elt. Variable elt : Type. @@ -697,7 +697,7 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <: end. Proof. intros; unfold cardinal_e_2; simpl; - abstract (do 2 rewrite cons_cardinal_e; romega with * ). + abstract (do 2 rewrite cons_cardinal_e; lia ). Defined. Definition Cmp c := diff --git a/theories/Numbers/Cyclic/Int31/Cyclic31.v b/theories/Numbers/Cyclic/Int31/Cyclic31.v index ec480bb1eb..4a1f24b95e 100644 --- a/theories/Numbers/Cyclic/Int31/Cyclic31.v +++ b/theories/Numbers/Cyclic/Int31/Cyclic31.v @@ -21,7 +21,7 @@ Require Import Znumtheory. Require Import Zgcd_alt. Require Import Zpow_facts. Require Import CyclicAxioms. -Require Import ROmega. +Require Import Lia. Local Open Scope nat_scope. Local Open Scope int31_scope. @@ -1237,7 +1237,7 @@ Section Int31_Specs. destruct (Z_lt_le_dec (X+Y) wB). contradict H1; auto using Zmod_small with zarith. rewrite <- (Z_mod_plus_full (X+Y) (-1) wB). - rewrite Zmod_small; romega. + rewrite Zmod_small; lia. generalize (Z.compare_eq ((X+Y) mod wB) (X+Y)); intros Heq. destruct Z.compare; intros; @@ -1261,7 +1261,7 @@ Section Int31_Specs. destruct (Z_lt_le_dec (X+Y+1) wB). contradict H1; auto using Zmod_small with zarith. rewrite <- (Z_mod_plus_full (X+Y+1) (-1) wB). - rewrite Zmod_small; romega. + rewrite Zmod_small; lia. generalize (Z.compare_eq ((X+Y+1) mod wB) (X+Y+1)); intros Heq. destruct Z.compare; intros; @@ -1299,8 +1299,8 @@ Section Int31_Specs. unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros. destruct (Z_lt_le_dec (X-Y) 0). rewrite <- (Z_mod_plus_full (X-Y) 1 wB). - rewrite Zmod_small; romega. - contradict H1; apply Zmod_small; romega. + rewrite Zmod_small; lia. + contradict H1; apply Zmod_small; lia. generalize (Z.compare_eq ((X-Y) mod wB) (X-Y)); intros Heq. destruct Z.compare; intros; @@ -1318,8 +1318,8 @@ Section Int31_Specs. unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros. destruct (Z_lt_le_dec (X-Y-1) 0). rewrite <- (Z_mod_plus_full (X-Y-1) 1 wB). - rewrite Zmod_small; romega. - contradict H1; apply Zmod_small; romega. + rewrite Zmod_small; lia. + contradict H1; apply Zmod_small; lia. generalize (Z.compare_eq ((X-Y-1) mod wB) (X-Y-1)); intros Heq. destruct Z.compare; intros; @@ -1356,7 +1356,7 @@ Section Int31_Specs. change [|1|] with 1; change [|0|] with 0. rewrite <- (Z_mod_plus_full (0-[|x|]) 1 wB). rewrite Zminus_mod_idemp_l. - rewrite Zmod_small; generalize (phi_bounded x); romega. + rewrite Zmod_small; generalize (phi_bounded x); lia. Qed. Lemma spec_pred_c : forall x, [-|sub31c x 1|] = [|x|] - 1. diff --git a/theories/ZArith/Zquot.v b/theories/ZArith/Zquot.v index e93ebb1ad5..0c9aca2657 100644 --- a/theories/ZArith/Zquot.v +++ b/theories/ZArith/Zquot.v @@ -8,7 +8,7 @@ (* * (see LICENSE file for the text of the license) *) (************************************************************************) -Require Import Nnat ZArith_base ROmega ZArithRing Zdiv Morphisms. +Require Import Nnat ZArith_base Lia ZArithRing Zdiv Morphisms. Local Open Scope Z_scope. @@ -129,33 +129,33 @@ Qed. Theorem Zrem_lt_pos a b : 0<=a -> b<>0 -> 0 <= Z.rem a b < Z.abs b. Proof. intros; generalize (Z.rem_nonneg a b) (Z.rem_bound_abs a b); - romega with *. + lia. Qed. Theorem Zrem_lt_neg a b : a<=0 -> b<>0 -> -Z.abs b < Z.rem a b <= 0. Proof. intros; generalize (Z.rem_nonpos a b) (Z.rem_bound_abs a b); - romega with *. + lia. Qed. Theorem Zrem_lt_pos_pos a b : 0<=a -> 0<b -> 0 <= Z.rem a b < b. Proof. - intros; generalize (Zrem_lt_pos a b); romega with *. + intros; generalize (Zrem_lt_pos a b); lia. Qed. Theorem Zrem_lt_pos_neg a b : 0<=a -> b<0 -> 0 <= Z.rem a b < -b. Proof. - intros; generalize (Zrem_lt_pos a b); romega with *. + intros; generalize (Zrem_lt_pos a b); lia. Qed. Theorem Zrem_lt_neg_pos a b : a<=0 -> 0<b -> -b < Z.rem a b <= 0. Proof. - intros; generalize (Zrem_lt_neg a b); romega with *. + intros; generalize (Zrem_lt_neg a b); lia. Qed. Theorem Zrem_lt_neg_neg a b : a<=0 -> b<0 -> b < Z.rem a b <= 0. Proof. - intros; generalize (Zrem_lt_neg a b); romega with *. + intros; generalize (Zrem_lt_neg a b); lia. Qed. @@ -171,12 +171,12 @@ Lemma Remainder_equiv : forall a b r, Remainder a b r <-> Remainder_alt a b r. Proof. unfold Remainder, Remainder_alt; intuition. - - romega with *. - - romega with *. - - rewrite <-(Z.mul_opp_opp). apply Z.mul_nonneg_nonneg; romega. + - lia. + - lia. + - rewrite <-(Z.mul_opp_opp). apply Z.mul_nonneg_nonneg; lia. - assert (0 <= Z.sgn r * Z.sgn a). { rewrite <-Z.sgn_mul, Z.sgn_nonneg; auto. } - destruct r; simpl Z.sgn in *; romega with *. + destruct r; simpl Z.sgn in *; lia. Qed. Theorem Zquot_mod_unique_full a b q r : @@ -185,7 +185,7 @@ Proof. destruct 1 as [(H,H0)|(H,H0)]; intros. apply Zdiv_mod_unique with b; auto. apply Zrem_lt_pos; auto. - romega with *. + lia. rewrite <- H1; apply Z.quot_rem'. rewrite <- (Z.opp_involutive a). @@ -193,7 +193,7 @@ Proof. generalize (Zdiv_mod_unique b (-q) (-a÷b) (-r) (Z.rem (-a) b)). generalize (Zrem_lt_pos (-a) b). rewrite <-Z.quot_rem', Z.mul_opp_r, <-Z.opp_add_distr, <-H1. - romega with *. + lia. Qed. Theorem Zquot_unique_full a b q r : |
