diff options
| author | Pierre-Marie Pédrot | 2019-04-29 18:50:47 +0200 |
|---|---|---|
| committer | Pierre-Marie Pédrot | 2019-05-03 13:42:40 +0200 |
| commit | 24c570834dccc90c7ff14d3f6b9d33b818fa79c9 (patch) | |
| tree | d986ebd93114b8b29711e8afc1811683905d4812 | |
| parent | 6960da4736186fa6214854329f36f558e7aa4d0b (diff) | |
Fix #9994: `revert dependent` is extremely slow.
We add a fast path when generalizing over variables.
| -rw-r--r-- | tactics/tactics.ml | 18 | ||||
| -rw-r--r-- | test-suite/bugs/closed/bug_10025.v | 39 |
2 files changed, 50 insertions, 7 deletions
diff --git a/tactics/tactics.ml b/tactics/tactics.ml index 16bede0d1b..35b3b38298 100644 --- a/tactics/tactics.ml +++ b/tactics/tactics.ml @@ -2863,17 +2863,21 @@ let generalize_dep ?(with_let=false) c = | _ -> tothin in let cl' = it_mkNamedProd_or_LetIn (pf_concl gl) to_quantify in - let body = - if with_let then - match EConstr.kind sigma c with - | Var id -> id |> (fun id -> pf_get_hyp id gl) |> NamedDecl.get_value - | _ -> None - else None + let is_var, body = match EConstr.kind sigma c with + | Var id -> + let body = NamedDecl.get_value (pf_get_hyp id gl) in + let is_var = Option.is_empty body && not (List.mem id init_ids) in + if with_let then is_var, body else is_var, None + | _ -> false, None in let cl'',evd = generalize_goal gl 0 ((AllOccurrences,c,body),Anonymous) (cl',project gl) in (* Check that the generalization is indeed well-typed *) - let (evd, _) = Typing.type_of env evd cl'' in + let evd = + (* No need to retype for variables, term is statically well-typed *) + if is_var then evd + else fst (Typing.type_of env evd cl'') + in let args = Context.Named.to_instance mkVar to_quantify_rev in tclTHENLIST [ Proofview.Unsafe.tclEVARS evd; diff --git a/test-suite/bugs/closed/bug_10025.v b/test-suite/bugs/closed/bug_10025.v new file mode 100644 index 0000000000..1effc771b0 --- /dev/null +++ b/test-suite/bugs/closed/bug_10025.v @@ -0,0 +1,39 @@ +Require Import Program. + +Axiom I : Type. + +Inductive S : Type := NT : I -> S. + +Axiom F : S -> Type. + +Axiom G : forall (s : S), F s -> Type. + +Section S. + +Variable init : I. +Variable my_s : F (NT init). + +Inductive foo : forall (s: S) (hole_sem: F s), Type := +| Foo : foo (NT init) my_s. + +Goal forall + (n : I) (s : F (NT n)) (ptz : foo (NT n) s) (pt : G (NT n) s) (x : unit), +match + match x with tt => tt end +with +| tt => + match + match ptz in foo x s return (forall _ : G x s, unit) with + | Foo => fun _ : G (NT init) my_s => tt + end pt + with + | tt => False + end +end. +Proof. +dependent destruction ptz. +(* Check well-typedness of goal *) +match goal with [ |- ?P ] => let t := type of P in idtac end. +Abort. + +End S. |
