aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJasper Hugunin2020-08-25 13:05:49 -0700
committerJasper Hugunin2020-08-25 13:53:32 -0700
commit17ed93c2caadfcf3a2aee8f2b9683191063b2951 (patch)
treefc8955ee8594e1de7b8a9edc4e699291c1e5c10c
parente5880b643bb9ce6974d3ecffd8edcbfad9f45cd4 (diff)
Modify Structures/Orders.v to compile with -mangle-names
-rw-r--r--theories/Structures/Orders.v10
1 files changed, 5 insertions, 5 deletions
diff --git a/theories/Structures/Orders.v b/theories/Structures/Orders.v
index 94938c1d4d..b3e3b6e853 100644
--- a/theories/Structures/Orders.v
+++ b/theories/Structures/Orders.v
@@ -165,7 +165,7 @@ End OT_to_Full.
Module OTF_LtIsTotal (Import O:OrderedTypeFull') <: LtIsTotal O.
Lemma lt_total : forall x y, x<y \/ x==y \/ y<x.
- Proof. intros; destruct (compare_spec x y); auto. Qed.
+ Proof. intros x y; destruct (compare_spec x y); auto. Qed.
End OTF_LtIsTotal.
Module OTF_to_TotalOrder (O:OrderedTypeFull) <: TotalOrder
@@ -250,7 +250,7 @@ Module OTF_to_TTLB (Import O : OrderedTypeFull') <: TotalTransitiveLeBool.
Lemma leb_le : forall x y, leb x y <-> x <= y.
Proof.
- intros. unfold leb. rewrite le_lteq.
+ intros x y. unfold leb. rewrite le_lteq.
destruct (compare_spec x y) as [EQ|LT|GT]; split; auto.
- discriminate.
- intros LE. elim (StrictOrder_Irreflexive x).
@@ -261,7 +261,7 @@ Module OTF_to_TTLB (Import O : OrderedTypeFull') <: TotalTransitiveLeBool.
Lemma leb_total : forall x y, leb x y \/ leb y x.
Proof.
- intros. rewrite 2 leb_le. rewrite 2 le_lteq.
+ intros x y. rewrite 2 leb_le. rewrite 2 le_lteq.
destruct (compare_spec x y); intuition.
Qed.
@@ -302,7 +302,7 @@ Module TTLB_to_OTF (Import O : TotalTransitiveLeBool') <: OrderedTypeFull.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
Proof.
- intros. unfold compare.
+ intros x y. unfold compare.
case_eq (x <=? y).
- case_eq (y <=? x).
+ constructor. split; auto.
@@ -352,7 +352,7 @@ Module TTLB_to_OTF (Import O : TotalTransitiveLeBool') <: OrderedTypeFull.
Definition le_lteq : forall x y, le x y <-> lt x y \/ eq x y.
Proof.
- intros.
+ intros x y.
unfold lt, eq, le.
split; [ | intuition ].
intros LE.